Optimizing High Performance Distributed Memory
Parallel Hash Tables for DNA k-mer Counting

Tony C. Pan
School of Computational Science
and Engineering
Georgia Institute of Technology
Atlanta, Georgia 30332-0250
Email: tpan7@gatech.edu

Abstract—High-throughput DNA sequencing is the mainstay
of modern genomics research. A common operation used in
bioinformatic analysis for many applications of high-throughput
sequencing is the counting and indexing of fixed length substrings
of DNA sequences called k-mers. Counting k-mers is often ac-
complished via hashing, and distributed memory k-mer counting
algorithms for large datasets are memory access and network
communication bound. In this work, we present two optimized
distributed parallel hash table techniques that utilize cache
friendly algorithms for local hashing, overlapped communication
and computation to hide communication costs, and vectorized
hash functions that are specialized for k-mer and other short
key indices. On 4096 cores of the NERSC Cori supercomputer,
our implementation completed index construction and query on
an approximately 1 TB human genome dataset in just 11.8
seconds and 5.8 seconds, demonstrating speedups of 2.06x and
3.7x, respectively, over the previous state-of-the-art distributed
memory k-mer counter.

Index Terms—Hash tables, k-mer counting, vectorization,
cache-aware optimizations, distributed memory algorithms

I. INTRODUCTION

Wide-spread adoption of next-generation sequencing (NGS)
technologies in fields ranging from basic biology and medicine
to agriculture and even social sciences, has resulted in the
tremendous growth of public and private genomic data collec-
tions such as the Cancer Genome Atlas [/1]], the 1000 Genome
Project [2]], and the 10K Genome Project [3|]. The ubiquity of
NGS technology adoption is attributable to multiple orders of
magnitude increases in sequencing throughput amidst rapidly
decreasing cost. For example, a single Illumina HiSeq X
Ten system can sequence over 18,000 human genomes in a
single year at less than $1000 per genome, corresponding to
approximately 1.6 quadrillion DNA base pairs per year.

The volume and the velocity at which genomes are se-
quenced continues to push bioinformatics as a big data disci-
pline. Efficient and scalable algorithms and implementations
are essential for high throughput and low latency analyses in-
cluding whole genome assembly [4]-[6], sequencing coverage
estimation and error correction [7]]-[9], variant detection [8]]
and metagenomic analysis [10].

Supported in part by the National Science Foundation under 1IS-1416259
and Intel Parallel Computing Center on Big Data in Biosciences and Public
Health.

SC18, November 11-16, 2018, Dallas, Texas, USA
978-1-5386-8384-2/18/$31.00 ©2018 IEEE

Sanchit Misra
Parallel Computing Laboratory
Intel Corporation
Bangalore, India
Email: sanchit.misra@intel.com

Srinivas Aluru
School of Computational Science
and Engineering
Georgia Institute of Technology
Atlanta, Georgia 30332-0250
Email: aluru@cc.gatech.edu

Central to many of these bioinformatic analyses is k-
mer counting, which computes the occurrences of length
k substrings, or k-mers, in the complete sequences. k-mer
occurrence frequencies reflect the quality of sequencing, cov-
erage variations, and repetitions in the genome. The majority
of k-mer counting tools and algorithms are optimized for
shared-memory, multi-core systems [11]-[17]. However, dis-
tributed memory environments present a ready-path for scal-
ing genomic data analysis, by recruiting additional memory
and computational resources as needed, to larger problem
sizes and higher performance requirements. While distributed-
memory k-mer indexing is sometimes integrated in distributed
genome assemblers [5], [6]], [18]], we previously presented an
open source distributed k-mer counting and indexing library,
Kmerind [19], with class-leading performance in distributed
and shared memory environments.

Exact k-mer counting is usually accomplished via sort-
and-count [[16] or via hashing [11]], [[19]. With the hashing
approach, the k-mers are inserted into a hash table using a hash
function. Each hash table entry contains a k-mer as key and its
count as value. In distributed memory parallel environments,
each rank reads a subset of input sequences to extracts k-
mers, while maintaining a subset of the distributed hash table
as a local hash table. The extracted k-mers on a rank are sent
to the ranks maintaining the corresponding distributed hash
table subsets. The k-mers thus received by a rank are then
inserted into its local hash table. Distributed memory k-mer
counting spends majority of its time in the following tasks: 1)
Hashing the k-mers by each rank, 2) Communicating k-mers
between ranks over the network and 3) Inserting k-mers into
the local hash tables. The local hash tables are typically much
larger than cache sizes and table operations require irregular
memory access. Operations on local hash tables are therefore
lead to cache misses for nearly every insertion and query and
are memory latency-bound. On the other hand, hashing of k-
mers is a highly compute intensive task.

In this paper, we present algorithms and designs for high
performance distributed hash tables for k-mer counting. With
the goal of achieving good performance and scaling on
leadership-class supercomputers, we optimized the time con-
suming tasks at multiple architectural levels — from mitigating

network communication costs, to improving memory access
performance, to vectorizing computation at each core.

Specifically, we make the following major contributions:

o« We designed a hybrid MPI-OpenMP distributed hash
table for the k-mer counting application using thread-
local sequential hash tables for subset storage.

o We designed a generic interface for overlapping arbitrary
computation with communication and applied it to all
distributed hash table operations used in k-mer counting.

o We vectorized MurmurHash3 32- and 128-bit hash func-
tions using AVX2 intrinsics for batch-hashing small keys
such as k-mers. We also demonstrated the use of CRC32C
hardware intrinsic as a hash function for hash tables.

« We improved Robin Hood hashing [20]], [21]], a hash table
collision handling scheme, by using an auxiliary offset
array to support direct access to elements of a bucket,
thus reducing memory bandwidth usage.

o We additionally designed a novel hashing scheme that
uses lazy intra-bucket radix sort to manage collisions and
reduce memory access and compute requirements.

o We leveraged the batch processing nature of k-mer count-
ing and incorporated software prefetching in both hashing
schemes to improve irregular memory access latency.

The impacts of our contributions are multi-faceted. This
work represents, to the best of our knowledge, the first
instance where Robin Hood hashing has been applied to k-
mer counting. We believe this is also the first instance where
software prefetching has been used in hash tables for k-
mer counting, transforming the insert and query operation
from being latency bound to bandwidth bound. Given both
of our hashing schemes are designed to lower bandwidth
requirements, they perform significantly better than existing
hash tables. The hybrid MPI-OpenMP distributed hash table
with thread-local storage minimizes communication overhead
at high core counts and improves scalability, while avoiding
fine grain synchronizations otherwise required by shared,
thread-safe data structures.

Our vectorized hash function implementations achieved up
to 6.6x speedup over the scalar implementation, while our
hashing schemes out-performed Google’s dense hash map by
~2x for insertion and ~5x for query. Cumulatively, the
optimizations described in this work resulted in performance
improvement over Kmerind of 2.05 — 2.9x for k-mer count
index construction and 2.6 —4.4x for query. It performs index
construction and query on a ~1 TB human genome dataset in
just 11.8 seconds and 5.8 seconds, respectively, using 4096
cores of the Cori supercomputer.

While our vectorized MurmurHash3 hash function imple-
mentation and our hash table collision handling algorithms
are motivated by the k-mer-counting problem, we expect them
to work well generally for applications involving batches of
small keys. Our implementation is available at https://github.
com/tcpan/kmerhash.

The paper is organized as follows: Section [lI| summarizes
previous work on sequential and distributed hash tables. Sec-
tion [[TI] describes our approach to communication-computation

overlap for the distributed hash tables while Section [IV| our
Robin Hood and radix sort based hash table collision handling
schemes. Section [V]describes our implementation and the hash
function vectorization strategy. In Section [VI| we examine the
performance and scalability of our algorithms, and compare
our k-mer counters to the existing tools in shared and dis-
tributed memory environments.

A. Problem Statement

A k-mer v is defined as a length k sequence of characters
drawn from the alphabet X. The space of all possible k-mers
is then defined as I' = 3*. Given a biological sequence S =
s[0...(n — 1)] with characters drawn from X, the collection
of all k-mers in S is denoted by K = {s[j... (j+k—1)],0 <
i<(n-k)

K-mer counting computes the number of occurrences wy,
or frequency, of each k-mer v; € I, 0 < | < |X[¥, in S.
The k-mer frequency spectrum F can be viewed as a set of
mappings F = {f : v — wi}.

K-mer counting then requires first transforming S to K and
then reducing K to F in I' space. We note that k-mers in X
are arranged in the same order as S, while I' and F typically
follow lexicographic ordering established by the alphabet. The
difference in ordering of K and F necessitates data movement
when computing F, and thus communication.

We further note that the storage representation of F affects
the efficiency of its traversal. While I" grows exponentially
with k, genome sizes are limited and therefore F is sparse
for typical k values. Associative data structures such as hash
tables are well suited, which typically support the minimal
operations of construction (or insert and update) and query of
the k-mer counts.

In this paper we focus on efficient data movement in the X
to F reduction with distributed memory, and on efficient hash
functions and hash tables for constructing and querying F.

II. BACKGROUND

K-mer counting has been studied extensively [|11[]—[/13]],
[L5]-[17], [19], with most of the associated algorithms de-
signed for shared-memory, multi-core systems. More recently,
GPUs and FPGAs have been evaluated for this applica-
tion [[17], [22f], [23] as well as general purpose hashing [24].
Counting is accomplished mainly through incremental updates
to hash tables, while some used sorting and aggregation [16].
A majority of the prior efforts focus on minimizing de-
vice and host memory usage through approximating data
structures [12], [[15] and external memory [16], or efficient
utilization of multiple CPU cores and accelerators [11], or
both [17], [23].

Kmerind [19] is a k-mer counting and indexing library
that instead targets distributed memory systems and compares
favorably even against shared memory k-mer counters on high
core-count systems. It utilizes a distributed hash table for
storing F and relies on MPI collective communication for data
movement and coarse-grain synchronization. It is able to scale
to data sizes that exceed the resources of a single machine.

https://github.com/tcpan/kmerhash
https://github.com/tcpan/kmerhash

In this work, we significantly improved Kmerind by replacing
its core distributed hash table with optimized hash functions
and sequential and distributed hash tables, while adopting its
templated interfaces and built-in functionalities such as file
parsing for compatibility and ease of comparisons.

A. Hash Tables and Collision Handling Strategies

Three factors affect sequential hash table performance: hash
function choice, irregular access to a hash table bucket, and
element access within a bucket. Hash function performance
depends strongly on implementation and hardware capability.
Irregular memory access renders hardware prefetching inef-
fective but software prefetching can serve as the alternative if
the memory address can be determined ahead of use.

Intra-bucket data access performance, on the other hand,
is an inherent property of the hash table design, namely the
collision handling strategy. Collision occurs when multiple
keys are assigned to the same bucket, necessitating multiple
comparisons and memory accesses. High collision rate results
in a deviation from the amortized constant time complexity.

Hash table designs have been studied extensively. Cormen,
Leiserson, Rivest, and Stein [25] described two basic hash
table designs, chaining and open addressing. Briefly, chaining
uses linked list to store collided entries, while open addressing
maintains a linear array and employs deterministic probing
logic to locate an alternative insertion point during collision.
Identical probing logic is used during query.

Different probing algorithms exist. Cormen, Leiserson,
Rivest, and Stein presented linear probing, where the hash
table is searched linearly for empty bucket for insertion.
Linear probing is sensitive to non-uniform key distribution,
suboptimal hash functions, high load factor, and even inser-
tion order, all of which affect performance. Strategies such
as quadratic probing and double hashing [25], HopScotch
hashing [26], and Robin Hood hashing [20], [21] aim to
address these shortcomings. In all these strategies save Robin
Hood hashing, key-value tuples from different buckets are
interleaved. Probing thus also require comparisons with keys
from other buckets, increasing the average number of probes
and running time.

The choice of collision handling strategy can even affect
memory access patterns for intra-bucket traversal. Double
hashing, HopScotch, and quadratic probing introduce irregular
memory accesses. Linear probing and Robin Hood require
only sequential memory access, thus can benefit from hard-
ware prefetching, maximize cache line utilization, and reduce
bandwidth requirement.

III. DISTRIBUTED MEMORY HASH TABLE

We adopt Kmerind’s approach and represent F as a dis-
tributed memory hash table. This allows us to encapsulate
the parallel algorithm details behind the semantically simple
insert and find operation interfaces.

We first summarize the distributed memory k-mer count-
ing algorithms in Kmerind. Kmerind models a two level
distributed hash table. The first level maps k-mers to MPI

processes using a hash function, while the second level exists
as local hash tables. Different hash functions are used at the
two levels to avoid correlated hash values which increases
collision in the local hash table. The distributed hash table
evenly partitions I' and therefore F across P processes. We
assume that I as the input is evenly partitioned across P
processes. Kmerind uses Google’s dense hash map as the hash
table and Farmhash as the hash function.

The distributed hash table insertion algorithm proceeds in
3 steps. Query operation follows the same steps, except an
additional communication returns the query results.

1) permute: The k-mers are assigned to processes via the
top level hash function, and then grouped by process id
via radix sort. The input is traversed linearly, but the
output array is randomly accessed. The first half of this
step is bandwidth and compute bound while the radix
sort is latency bound.

2) alltoallv: The rearranged k-mers are communicated to
the remote processes via MPI_Alltoallv personal-
ized collective communication.

3) local compute: The received k-mers are inserted into the
local hash table.

A. Communication Optimization

A typical MPI_Alltoallv implementation internally
uses point-to-point communication over P iterations to dis-
tribute data from one rank to all others. Its complexity is
O(TP + uN/P) where 7 and p are latency and bandwidth
coefficients, respectively, and N/P is the average message
size for a processor. As P increases, the latency term becomes
dominant and scaling efficiency decreases. To manage the
growth of communication latency, we sought to overlap com-
munication and computation, and to reduce P with a hybrid
multi-node (MPI) and multi-thread (OpenMP) hash table.

1) Overlapped communication and computation: We over-
lap communication and computation to hide communication
costs during insertion. Rather than waiting for all point-to-
point communication iterations to complete, we begin com-
putation as soon as one iteration completes (Algorithm [I)).
This approach also allows buffer reuse across iterations, thus
reducing memory usage.

Query operations can similarly leverage overlapped commu-
nication and computation. Once the computation is complete,

Algorithm 1 Alltoallv with overlapping computation

1: I[][]: Input key-value array, grouped by process rank

2: O[2][]: Output buffer

3: P: number of processes; r: process rank; C(): computation to perform
4: for i+ 1...(P—1) do

5 non-blocking send I[(r + P — i)%P][| to rank (r + P — i)%P
6: end for

7:for i< 1...(P—1) do

8: non-blocking recv O[(r + 7)%2][] from rank (r + ¢)%P

9: CO[(r+1i—1)%2][])

10: wait for non-blocking recv from rank (r + ¢)%P to complete
11: end for

12: C(O[(r+ P — 1)%2][))
13: wait for all non-blocking sends to complete

a non-blocking send is issued, for which the matching non-
blocking receives can be posted in Lines [4H6

We designed a set of generic, templated interfaces for
overlapped communication and computation, using function
objects or functors to encapsulate the computation. Both insert
and query operations use these interfaces.

2) Hybrid multi-node and multi-thread: With large P, the
latency term dominates in the communication time complex-
ity. In addition, small perturbation during execution due to
communication overhead, load imbalance, or system noise
can potentially propagate and amplify over P iterations in
MPI_Alltoallv and our overlapped version (Algorithm [I)).

To ameliorate this sensitivity, we reduce P by assigning
one MPI process per socket, and for each process spawn
as many threads as cores per socket. Each thread instanti-
ates its own local sequential hash table, and we partition I"
across all threads on all processes. This approach maintains
independence between local hash tables, thus inter-thread
synchronization is minimized. We enabled multi-threading for
the permute and local compute steps in the distributed hash
table insertion algorithm, and the computation steps (Lines [9]
and [12)) in Algorithm [I]

IV. SEQUENTIAL HASH TABLES

In this section we focus on optimizing intra-bucket element
access for sequential hash tables. We use the following no-
tations. A hash table element is defined as a key-value pair
w = (k,v). The table consists of B buckets. The id of a bucket
is denoted as b. The hash function associated with the hash
table is H (-). For open addressing hash tables, the ideal bucket
id for an element w is denoted b,, = H(w.k)%B, where %
is the modulo operator, to distinguish from the actual bucket
position where the element is stored. The probe distance r of
an element is the number of hash table elements that must be
examined before a match is found or a miss is declared. For
linear probing, the probe distance is 7 = b — by,.

A. Robin Hood Hashing

Robin Hood Hashing is an open addressing strategy that
minimizes the expected probe distance, and thus the insertion
and query times. It was first proposed by Pedro Celis [20]],
[21]. We briefly describe the basic algorithms.

During insertion, a new element w is swapped with element
w at position b if w has a higher probe distance than w, i.e.
(b—by) > (b—b,,). The insertion operation continues with the
swapped element, w’, until an empty bucket is found, where
w'’ is then inserted. This strategy results in the spatial ordering
of table elements by the ideal bucket ids, resembling sorting.

Query, or find, operation is similar algorithmically. Search
completes when an element is found, an empty bucket is
reached, or the end of the target bucket is reached, (b—b,,) >
(b — b,), indicating an absent element.

B. Optimized Robin Hood Hashing

The “classic” Robin Hood hashing strategy spatially groups
elements of a bucket together. This decreases the variance of

r and eliminates interleaving of buckets, thus reducing the
number of elements that must be compared and minimizing
memory bandwidth requirement. However, classic Robin Hood
begins a search from the ideal bucket, b,,. Elements in the
range [by ... (b, + 7)) are expected to belong to buckets with
ids b < b,. On average, classic Robin Hood must access
r elements, compute their hash values, and compare probe
distances before arriving at the elements of the desired bucket.
We can avoid the extraneous work by storing the distance
between b,, and the first element in the bucket.

1) Structure: Our extended Robin Hood hash table, T,
consists of the tuple (P[], I;4[]). The P[] array stores the
elements of the hash table. Each element in I.;[], I.,[b],
consists of a tuple (empty, offset). The empry field indicates
whether bucket b is empty, while the offset field contains the
probe distance from position b to the first element of bucket
b, which is then located at P,;[b+ L.;[b]]. In the case where
I.,[b] is empty and offset is not zero, I,.,[b] references the
insertion position for the first element of bucket b.

Storing the probe distances in the I,;[] array avoids 7 hash
function invocations and memory accesses to P,.;[]. Conse-
quently computation time and memory bandwidth utilization
are reduced compared to classic Robin Hood. We assume
that insertion occurs less frequently than queries and therefore
optimizations that benefit query operations, such as the use of
I,.1,[], are preferred. As r is expected to be relatively small [21]],
a small data type, e.g. an 8 bit integer, can be chosen to
minimize memory footprint and to increase the cache-resident
fraction of I,,[]. The sign bit of I,;[b] corresponds to empty
while the remaining bits correspond to offset.

2) Insert: The optimized Robin Hood hash table insertion
algorithm is outlined in Algorithm A search range in P[] is
first computed in constant time from I, [] in Line 4| Elements
in the bucket are then compared for match in Lines PH9
When matched, the function terminates. If a match is not
found within the bucket, then the input element is inserted into
P,p[] in the same manner as in classic Robin Hood Hashing,
i.e. via iterative swapping. Since elements from bucket b + 1
to p, where p after Line references the last bucket to be
modified, are shifted forward, their offsets [.,[(b + 1)...p]
are incremented (Lines [TGHI9).

The number of P,,[] elements to shift and I,;[] elements to
update can be significant, up to O(log(B)) according to Celis.
We limit this shift distance indirectly by using only 7 bits
for the offsets in I,.[]. Overflow of any I,.;[] element during
insertion causes the hash table to resize automatically. The
small number of bits used for offset values and the contiguous
memory accesses imply that I,.,[] updates can benefit from
hardware prefetching and few cache line loads and stores.

3) Find: Query operations in the optimized Robin Hood
hash table follows closely the first part of the Insert algorithm
(Algorithm [2] Lines 19).

C. Radix-sort Map

Inspired by the fact that Robin hood hashing effectively
creates a sorted array of elements according to their bucket

Algorithm 2 Optimized Robin Hood Hashing: Insertion

Algorithm 3 Radix-sort Hashing: Insert

: T, Robin Hood hash table (P, I,-p,)
: H(): hash function; (k,v): key-value pair to insert
. b« H(k)%B
1 p < b+ I [bloffset; pl < b+ 1+ I, [b + 1].offset
while p <pl do
if (Pqp[p].k == k) then return
end if
p+p+1
end while
: p < b+ I.p[b].offset
: while p < B AND NOT (I, [p] is empty AND I,.;, [p].offset == 0)
do
12: swap({(k,v), Prnlp])
13: p+—p+1
14: end while
15: P.plp] < (k,v); I, [bl.empty + FALSE
16: while b <p do
17: I.p[b+ 1].offset <— I.p[b+ 1].offset +1
18: b+—0b+1
19: end while

ESvonouswns

—_—

id, thereby improving locality of all operations, we created a
hashing scheme that explicitly sorts the elements according to
their bucket id and concurrently manages duplicated elements.
The scheme exploits the batch processing nature of the k-mer
counting application to achieve good performance.

1) Structure: Our Radix sort based hash
table, T, consists of the following tuple:
(Prsl]; Crsll, Orsl]s Irsl]s Drsy wrs, qrs), Where, P[] is

the primary one dimensional array that stores the elements
of the hash table. It is divided into bins of equal width, w,.,
such that the first w,; entries of P[] belong to the bin 0, the
next w,s belong to bin 1, and so on. Each bin is responsible
for maintaining a fixed number of buckets, g,s, such that the
first ¢,.; buckets of the hash table are stored in bin 0, the
next ¢.s in bin 1 and so on. The elements in the bin are
maintained in the increasing order of their bucket id. For this
reason, we also store the bucket id, b, with each element in
addition to the key-value pair (k,v). C,s[d] maintains the
count of stored elements in bin d. D, is the total number of
bins. Thus, D,s = B/q,s. If a particular bin becomes full,
any additional elements of the bin are stored in the overflow
buffer, O,[]. For each bucket id, b, the corresponding bin id
d = b/q,s and I,.5[b] stores the position within the bin of the
first element of the bucket. Thus, the first element of a bucket
is located at Prs[d X wys + I.s[b]].

2) Insert: During insertion of an element (Algorithm [3),
if the target bin has less than (w,s — 1) elements, we append
the element to the bin regardless of whether the key exists
in the hash table. Otherwise, we sort the bin elements in
increasing order of bucket id and merge and count elements
with duplicate keys. If the bin remains full after sorting, we
borrow a block from O, and store any further elements for
the bin in that block. We use the last entry of the bin to store
the location of the block in O,.s. Instead of sorting after each
insertion, we only sort when a bin becomes full on insertion.
We call this technique lazy sorting.

At the end of insertion of a batch of keys, a significant num-
ber of bins may contain duplicated keys. Before performing

: Trs: Radix sort based hash table (Prs, Crs,Ors, Irs)
: H(): hash function; (k,v): key-value pair to insert
b« H(k)%B
d <+ b/qrs
¢+ Crs[d]
if (¢ ==wys — 1) then
¢ <radixSort(Prs + d X wys, ¢)
Crsld] < ¢
: end if
10: if ¢ == w,s — 1 then
11: borrow a block from overflow buffer and store (k,v) there
12: else
13: Prsld X wrs +] < (k,v, b)
14: end if
15: Crsld] «+c+1

R A A o

any additional operations, we finalize insert (Algorithm M) by
sorting each bin and merging elements with equal keys. We
also set the value of I,.4[b] for each bucket b.

There are several nuances to the design. In practice, the
bins are chosen to be small such that 16-bit integers are
sufficient for C,;[] and I,.s[]. In addition, if the D,.; is small,
Cys[] can fit in cache. Insertion of a new element occurs at
the end of a bin thus only one cache line is accessed from
memory (for P,.g). Moreover, the last active cache line of
all recently accessed bins should be in cache. Thus, if D,
is small, many of these accesses result in cache hits. This
is in contrast to the Robin Hood scheme where we might
need to access two cache lines from memory for inserting
each element. We use radix sort for sorting the elements in a
bin. As the number of different possible values, ¢,s, is fairly
small in practice, a single iteration of radix sort is sufficient.
If the bin size is smaller than the cache size, then the elements
in the bin are loaded into cache completely during their first
reads. Subsequent element accesses, which are random during
sorting, can be serviced by the cache with low latency. Thus
small bin sorting can be highly efficient. On the other hand,
larger bins ensure sorting is done less frequently.

Clearly, using overflow buffer is a lot more expensive and
should be avoided as much as possible. Given a uniform hash
function and a sufficiently large q,s, the number of elements
per bin is expected to be uniformly distributed by the Law
of Large Numbers, despite any non-uniformity in the number
of elements in each bucket. Therefore, with a large enough
w,s, We should be able to avoid overflow at the cost of
decreased hash table load and higher memory foot print. In
our implementation, we specify the parameters in such a way
that O,[] is never used when minimizing memory usage. In
practice, we have yet to encounter a use case where O,]] is

Algorithm 4 Radix-sort Hashing: Finalize insert

I: Trs: Radix sort based hash table (Pys, Crs, Ors, Irs)
2: for each bin d do

Crs[d] <radixSort(Prs + d X wrs, Crs[d])
4 for each bucket b in bin d do
5 I,.5[b] + starting position of bucket b in bin d
6: end for
7: end for

[95]

utilized. We therefore do not detail the usage of O,|].

3) Find: In order to find a key (Algorithm [5), we identify
the positions in P[] of the corresponding bucket at P,.4[d X
wyrs + I [b]]. We then linearly scan the bucket for a match.

V. IMPLEMENTATION LEVEL OPTIMIZATIONS

The k-mer counting application, and likely other big data
analytic problems, are often amenable to batch mode process-
ing. We leverage this fact to enable vectorized hash value
computation, cardinality estimation, and software prefetching
for irregular memory access in the hash table.

For both Robin Hood and Radix-sort hash tables, we choose
B and ¢, as powers of 2 so that single-cycle bitwise shift and
and are used instead of division and modulo operations.

A. Hash Function Vectorization

The choice of hash functions can have significant impacts
for sequential and distributed memory hash table perfor-
mances. Uniform distribution of hash values improves load
balance for distribute hash tables and thus the communication
and parallel computation time, and reduces collision rate thus
increases sequential hash table performance. Computational
performance of the hash function itself is also important.

For k-mer counting, the keys to be processed are numerous
and limited in size, rarely exceeding 64 bytes in length and
often can fit in 8 to 16 bytes. Well known and well behaving
hash functions such as MurmurHash3 and Google FarmHash
are designed for hashing single long key efficiently, however.

We optimized MurmurHash3 32- and 128-bit hash functions
for batch hashing short keys using AVX and AVX2 SIMD
intrinsics. MurmurHash3 was chosen due to its algorithmic
simplicity. The vectorized functions hash 8 k-mers concur-
rently, iteratively processing 32-bit blocks from each. We
additionally implemented a 32-bit hash function using the
CRC32C hardware instruction for use with local hash tables,
where B is unlikely to exceed 232. While CRC32C shows
reasonable performance for our hash tables, detailed analysis
of its hash value distribution is beyond the scope of this work.

B. Cardinality Estimation

Hash table resizing is an expensive operation, as elements
are reinserted into the expanded table. We estimate the number
of unique k-mers and resize the table ahead of batch insertion.

Algorithm 5 Radix-sort Hashing: Find

: Trs: Radix sort based hash table (Prs, Crs, Ors, Irs)
: H(): hash function; k: key to find

b+« H(k)%B

do b/qTS, di +— (b+ 1)/qr5

10 < Irs[b]

s if (do == d1) then hi <+ I5[b+ 1]

: else hi < Crs[do]

. end if

: for j < lo...hi do

10: e+ Prs[do X wrs + j]

11: if (e.k == k) then return (do X wrs + j)
12: end if

13: end for

14: return —1

R - Y R T

We implemented HyperLogLog++ [27] as its use of 64-
bit hash values supports larger genomes and k values. We
use a batch mode vectorized MurmurHash3 hash function in
HyperLoglog++ updates, and reuse the hash values during
table insertion. Precision defaults to 12-bits, corresponding
to a 4096-bin register with 8-bit bins that fit easily in L1
cache during batch update. The estimator is integrated into
both Robin Hood and Radix-sort hash tables.

C. Software Prefetching

While individual hash table insert and find operations incur
irregular memory access, with batch mode processing, future
memory accesses can be computed thus software prefetching
can be employed to reduce or hide memory access latencies.

For each operation, we compute the hash values and bucket
ids by, in batch. The software prefetching intrinsics are issued
some iterations ahead of a bucket or bin’s actual use. The
number of iteration is referred to as the prefetch distance.
In both Robin Hood and Radix-sort hashing schemes, the
arrays P, /s[] and I,./,,[] are prefetched via this approach.
The permute step of distributed hash table operations likewise
benefits from software prefetching.

We began with a problem that suffers from random memory
access and poor data locality, and requires large amounts of
data to be read from memory. We formulated new algorithms
that improves data locality and reduces memory IO require-
ment, while using software prefetching to convert the latency
bound problem to one of bandwidth bound. We also vectorized
the hash function computation and restricted hash table size
to powers of 2 to avoid expensive arithmetic operations.

VI. RESULTS

1) Experimental setup: Table |I| details the datasets used in
our studies. The shared-memory experiments, including the
comparison to existing tools, were conducted on a single-
node quad-socket Intel® Xeon CPU E7-8870 v3 (Haswell)
system with 18 cores per socket running at 2.1 GHz and with
1TB of DDR4 memory. All binaries were compiled using
GCC 5.3.0 and OpenMPI 1.10.2. We conducted our multinode
experiments on the Cori supercomputer (Phase I partition).
Each Phase I node has 128 GB of host memory and a dual-
socket Intel® Xeon® CPU E5-2698 v3 (Haswell) with 16 cores
per socket running at 2.3 GHz. The nodes are connected with
Cray Aries interconnect with Dragonfly topology with 5.625
TB/s global bandwidth. We use cray-mpich 7.6.0 and ICC
18.0.0. Shared-memory experiments were not conducted on a
Cori node due to memory requirements for the larger datasets.

A. Hash Function Comparisons

We compare the performance of our vectorized implementa-
tions of MurmurHash3 32- and 128-bit hash functions with the

'Intel and Xeon trademarks of Intel Corporation or its subsidiaries in the
U.S. and/or other countries. Other names and brands may be claimed as the
property of others. ©Intel Corporation. Benchmark results were obtained prior
to implementation of recent software patches and firmware updates intended
to address exploits referred to as ”Spectre” and "Meltdown”. Implementation
of these updates may make these results inapplicable to your device or system.

TABLE I
EXPERIMENTAL DATASETS USED FOR ALL EVALUATIONS. WHERE
APPLICABLE, ACCESSION NUMBERS FOR NCBI ARE PROVIDED.

File File Size Accession/
Id | Organism Count (Gbytes) | Source Notes
R1 | F. vesca 11 14.1 | NCBI SRA020125
R2 | G. gallus 12 115.9 | NCBI SRA030220
R3 | H. sapiens 48 424.5 | NCBI ERA015743
R4 | B. impatiens 8 151 | GAGE [28]] Bumble Bee
RS | H. sapiens 6 957 | NCBI SRP003680
G1 | H. sapiens 1 2.9 | 1000 Genome assembled

GRCh37 ref.

G2 | P. abies 1 12.4 | Congenie.org assembled

corresponding scalar implementations for different key sizes in
Fig.[I} The keys were randomly generated to simulate encoded
DNA sequences. As typical length of a k-mer (i.e., value of k)
is less than 100, our hash function performance test used keys
with power-of-2 lengths up to 64 bytes, sufficient for £ = 256
with DNA 2-bit encoding and k& = 128 for DNA-IUPAC using
4-bit per base encoding.

Our vectorized implementations showed up to 6.6 x speedup
at key length of 4 bytes over the corresponding scalar im-
plementations. At the more common 8 byte key length, the
128-bit vectorized hash function was 3.4 x faster than scalar,
and the 32-bit function was 5x faster than scalar. As key size
increases towards cache line size and beyond, the overhead of
reorganizing data across multiple cache lines for vectorization
offsets any performance gains. CRC32C was compared to
MurmurHash3 32-bit scalar implementation. It was up to 8.1x
faster but its hash value uniformity has not been demonstrated
hence it is used with local hash tables only.

B. Hashing Schemes

1) Setting the parameters values: We set the parameters of
the hashing schemes - Robin Hood hashing (RH) and Radix-
sort hashing (RS) - to empirically determined optimal values
near the approximate best theoretical values.

For RS, we set B to the expected number of unique keys.
We set w,.s to 4096 so as to have approximately the largest bins
that fit in cache. Thus, we ensure nearly the smallest possible
frequency of sorting while still guaranteeing fast radix sort
performance. We set ¢, to 2048, maintaining sufficient space

M3 128bit AVX2 ®M3 32bit AVX2 = CRC32C (32bit)

g =
% 2 OEQ
< 00
~ 1.5 / 3%(\!
s A~
= 1 6 29
2 o 8
= 05 I 9 =2'Q
=
g 0 S 128"1
a
= 0 =)
£ cveeggg o v e e gy &

Key length (bytes)

Fig. 1. Time to hash 1 million keys (shown as bars) using AVX2 vectorized
MurmurHash3 (M3) 128-bit (left) and 32-bit (right) hash functions, and the
speedups versus their respective scalar implementations (shown as lines).
Hardware assisted CRC32C based hashing is shown with its speedup values
computed relative to the times for the 32-bit scalar MurmurHash3 function.

PR RH Classic —RH RS —Densehash

Z30 =202 m6

2 2 . S

220 g ANAL7 g4

i 0.1 453 L o2

210 3 ! 2.2

; o ———— 5

g0 g0 50

B CRS888 g ©8S888 = °&8888E
Tuples (1006)

(a) Insert (b) Find (c) Memory Usage

Fig. 2. Performance of different hashing schemes as hash table sizes increased
in increments of 4 million random integer tuples (64-bit key, 32-bit value).
Total insertion time, total memory usage, and time to find 4 million keys are
reported for each table size. Densehash uses quadratic probing. RH Classic
implementation is from https://github.com/martinus/robin-hood- hashing|

for lazy sorting to be effective without allowing too much
empty space. We set the prefetch distance to 8 for I,.4[] and 8
and 16 for P[] for insert and other operations respectively.
Prefetching for I,.s[] must be completed first, as positions in
P[] are computed from I,.5[] entries.

For RH, all hash table operations begin with accessing 7.1, []
for bucket b, followed by conditionally comparing P,;[b +
I,.1,[b]] if I,.1,[b] indicates an occupied bucket. We therefore set
the prefetch distances of P[] as 8 and I,.4[] at twice that. The
load factor is inversely proportional to memory requirement
and throughput. We experimented with multiple values of the
load factor between 0.5 and 0.9 and found the throughput
to be nearly the same for values between 0.5 and 0.8, and
decreased for values greater than 0.8. Hence, we picked the
value of 0.8 to get nearly the maximum performance with
minimum memory footprint.

2) Sequential Comparison of various hashing schemes:
Fig. 2] compares the sequential performance of our hashing
schemes with the classic Robin Hood (RH Classic) hashing
and Google dense hash map (Densehash) as table size grows
from repeated insertion. In order to isolate the comparison to
only the hashing scheme, we chose the scalar MurmurHash3
128-bit as the hash function, since only our hashing schemes
support vectorized hash functions. For RS, for the insert plot
we performed finalize insert only at the end. For the find plot,
we performed finalize insert at the end of every iteration and
then performed find. Randomly generated 64-bit integers were
used as keys and 32-bit integers as values.

In Fig. [2a the sudden jumps in insertion time were due
to hash table resizing and corresponded to the jumps in
Fig. For insert, RS significantly out-performed all other
implementations, achieving speedups of up to 3.5x, 2.2x and
3.2x over RH Classic, RH and Densehash. RH was up to 2.6 x
and 2.3x faster than RH Classic and Densehash. For find, RS
and RH respectively achieved speedups of 4x and 4.3x over
Densehash, and 4.3x and 4.7x over RH Classic. The times
consumed showed only a small dependence on hash table size
and table load in contrast to RH Classic and Densehash. RS
consumed significantly higher memory than the other three
schemes. The memory consumption of RH, Google dense hash
map and RH classic were similar to each other with RH classic

https://github.com/martinus/robin-hood-hashing

TABLE II
NUMBER OF LOAD MICRO-OPERATIONS AND MISS RATE FOR L1, L2, AND
L3 CACHE FOR INSERTING 90 MILLION RANDOM DNA 31-MERS WITH
AVERAGE REPEAT RATE OF 8. MURMURHASH3 128-BIT WAS USED.

Load pOp (109) Miss (%)

L1 L2 L3 L1 L2 L3
Densehash | 13.05 040 0.40 | 3.09 9941 90.11
RH Classic | 10.35 022 021 | 2.06 96.68 83.14
RH 20.67 0.13 0.12 | 0.62 89.78 8232
RS 1512 021 0.13 | 143 5967 7127

needing the least amount in most cases.

Table [lI] illustrates the effectiveness of RH and RS hashing
schemes. The experiment inserted 90 million random DNA
31-mers with an average duplication rate of 8 into Densehash,
RH Classic, RH, and RS hash tables configured with 128-
bit MurmurHash3. The simulation parameters were chosen
to mirror the per-processor k-mer counts when dataset R4
is partitioned to 512 processors. Both RH and RS posted
significantly more L1 load operations as well as significantly
lower L1 miss rate than Densehash and RH Classic. RH in
particular had the lowest L1 miss rate of 0.62%, corresponding
to 128 million L1 misses, or equivalently, L2 load operation
counts. Higher L1 miss rate in RS was offset by lower L2
miss rates, however, bringing the L3 load operation count to
par when compared to that for RH. Densehash and RH Classic
L2 load operation counts remained higher than RH and RS.
The higher L2 miss rate in Densehash and RH Classic (and
to a lesser degree, RH) suggests that the L2 cache was not
effective for these schemes. The lower L3 miss rate for RH
and RS, coupled with significantly lower L3 load operation
counts, contributed to the higher RH and RS performance.
Table [lI| demonstrates that generally the Robin Hood hashing
scheme reduces cache loads and misses, and RH and RS
further improves cache utilization. The find operation showed
similar cache performance.

C. Speedup with respect to optimizations on a single node

Fig. [3] compares the performance of Kmerind [19] (KI)
with RH and RS based k-mer count indices. For RH and
RS hashing schemes, each bar includes the cumulative effects
of all the optimizations listed to its left. The left-most bar
represents the performance using scalar MurmurHash3 128-
bit hash function for Transform, Permute and Local compute
stages and with software prefetching OFF. The next bar shows
the effects of activating software prefetching. The subsequent
bar shows the impact of vectorized MurmurHash3 128-bit
hash function. The last bar shows the performance when the
vectorized MurmurHash3 128-bit hash function was replaced
with the CRC32C hash function for the Local compute stage.

The performance of Transform, Permute and Local compute
stages in insert improved with the use of software prefetching
and vectorization. Software prefetching improved insertion
time by 58.1% for RS, while vectorization resulted in an
additional 18.7% improvement. CRC32C further improved the
performance by 8.5%. For RH, the incremental improvements
were 48.7%, 18.0%, and 3.8% for insertion.

Transform, permute All2allv mmLocal compute CIMisc Speedup
70 4 »
60 3 =
= 50 2 2
o 40 1 E
1 U M ¥
20 I -1 2
10 Unpe Bups 2 e
0 -3 %
5 mggy mggm gw ageg Ay
Hen S0 %20 Eo %520 aso0 ’

5 382 SETg 5 5LTE SETE

+ + + +
¥ ¥ ¥ ¥
KI RS RH KI RS RH
Insert Find

Fig. 3. Effects of optimizations on hash table operations on a single node. M3
refers to MurmurHash3. The line plots depict speedups relative to Kmerind
operations with M3 128. MPI ranks: 64, dataset: 1/2 of R4, k = 31.

For the find operation, the hashing schemes alone accounted
for 96.4% and 97.0% improvement over KI for RS and RH, re-
spectively. Software prefetching produced an additional 40.0%
and 45.1% improvement respectively for RS and RH. Hash
function vectorization and CRC32C accounted for another
15.3% and 3.2% improvement for RS, and 10.2% and 7.2% for
RH. Overall, RS was 2.1x and 3.3x faster than KI for insert
and find operations, while RH was 1.8 and 3.4 x faster than
KI for insert and find respectively. In subsequent experiments,
KI used Farmhash, and RS and RH used software prefetching,
AVX2 MurmurHash3 128-bit (for Transform, Permute), and
CRC32C (for Local compute).

D. Comparison to existing k-mer counters on a single node

We compared our performance with existing k-mer coun-
ters, the majority of which are built for shared memory
systems. We include KMC3 [16], Gerbil [17] (GB), and KI
in our comparisons as they represent the most performant k-
mer counters current available. KMC3 and GB were run with
default parameters, up to 512 GB memory, and 1 thread per
core. KI, RH, and RS assigned 1 MPI process per core.

File IO and memory access are two important factors
in k-mer counting scalability. Fig. 4| compares the strong
scaling performance of various tools on total time inclusive
of file 10. Scaling efficiency of KMC3 and GB degraded
rapidly, reaching only 0.27 at 64 threads in both cases. This
is attributable to heavy use of file IO by these tools and
synchronization costs.

KI, RH and RS scaled significantly better at 0.65, 0.49, and
0.56 respectively. However, they were hindered by the file 10
scaling efficiency (0.36-0.38 at 64 cores) as well. Excluding
file 10, KI, RH, and RS have scaling efficiencies of 0.76, 0.56,
and 0.69 at 64 cores, respectively. Note that optimizing file IO
is beyond the scope of this paper.

Given that these implementations are memory bandwidth
bound and RS requires lower memory bandwidth than RH, RS
scales better. While KI was significantly slower than RH and
RS at 64 cores, it achieved better scaling due to significantly
worse performance at lower core count, attributable to a
memory latency bound implementation.

TABLE III
COMPARISON OF TIME CONSUMED (IN SECONDS) BY VARIOUS k-MER
COUNTERS ON VARIOUS DATASETS. THE “COUNTING” ROWS EXCLUDE
FILE IO TIME. PHYSICAL CORES: 64, k = 31.

K R1 R2 R3 Gl G2
-~ JF 127.84 347.28 1465.86 132.65 329.45
5 KMC3 31.80 99.41 455.96 31.03 102.15
E GB 34.83 184.31 696.62 123582 153.09
E KI 23.97 77.90 269.96 21.01 70.59
£ RH 21.13 66.34 239.59 18.17 61.68
= RS 19.30 58.44 231.90 17.71 61.32
) JF 2795 21521 1201.46 14.74 63.93
£ KI 12.53 52.06 190.29 8.42 27.84
Z RH 9.67 40.58 160.69 5.73 22.12
O RS 8.08 35.22 162.05 5.36 21.74

Next, we compare the performance of these tools on a
set of larger datasets (Table [III). We included additionally
JellyFish [[11] as it is a well known k-mer counter. The results
show that we obtained significantly better performance, ~15%
improvement over the previous state-of-the-art, Kmerind (KI),
for most all datasets tested. Compared to KMC3, RS and RH
demonstrated at least a speedup of 1.5x and up to 2x for RS
with dataset R3. In addition, we observed that nearly all the
improvements are in the counting time rather than the file 10
times when compared to KI. For smaller read sets, R1 and R2,
RS further showed a 10~20% advantage over RH.

E. Multi-node Scaling

1) Strong scaling: We compare the strong scaling perfor-
mance of KI with various versions of RS and RH in the
left half of Fig. E} At lower core counts, the benefit of
overlapping Local compute and communication is evident,
while the hybrid MPI-OpenMP version is handicapped by a
significantly higher Wait time attributable to large message
sizes, O(N/p) instead of O(N/cp), where p is the socket
count and c is the core count per socket. At lower total
core count, a single communicating thread per socket in the
hybrid configuration was not sufficient to saturate the network
bandwidth. MPI operations in the hybrid MPI-OpenMP case
also process messages c times larger than with MPI only. At
higher core counts, however, the hybrid version performed
well as it reduced the impact of the increased network latency

mmRH RS =—KMC3 =—GB =—KI

500 125 &
2400 15
gwo k 075%
£200 0.5 &

o Wi, A0, A W TN ¢
#Cores P2 T ©E2GT *E2GT *=EST =283

k15 21 31 63 31

(a) Strong scaling (b) Efficiency

Fig. 4. Comparison of strong scaling performance of KMC3, GB, KI, RH, and
RS on 8-64 shared memory cores. Varying k shows the effects of changing
key size. Parallel efficiencies are shown for & = 31 as the efficiency behaviors
for different k values are similar. Dataset: R2

TABLE IV
L3 CACHE LOADS AND MISS RATE AS A FUNCTION OF PER-PROCESS
ELEMENT COUNT (NN/p, IN MILLIONS) IN STRONG SCALING SCENARIO.
HASH FUNCTION: 128-BIT MURMURHASH3.

Load pOp (10%) Miss rate (%)
N/p 90 45 225 113 90 45 225 113
KI 403.1 197.1 101.6 534 | 90.1 832 70.1 510
RH 116.9 51.2 28.1 132 | 823 802 60.7 485
RS 129.1 54.9 304 131 | 713 689 51.8 53.0

overhead. For the MPI-only version with overlap, Wait time
was significantly higher at large core-counts due to reasons
discussed in Section

As the core count increased in this strong scaling exper-
iment, per-processor element count decreased such that a
greater proportion of the hash table became cached. Table
shows this effect with a simulated hash table insertion experi-
ment that scaled from 90 million DNA 31-mers, corresponding
to per-core elements counts for dataset R4 partitioned to 512
cores, down to 11.3 million k-mers per-core for the 4096 core
case. The L3 cache miss rates decreased for all hash tables in
the simulation as the element counts decreased. Since RH and
RS required significantly fewer L3 loads while demonstrating
lower L3 miss rate, their memory access latency penalties were
lower than that for KI.

The better cache behavior, along with the lower latency
overhead of the hybrid version (+MT) at high total core counts,
contributed to higher and even super-linear scaling efficiencies
in almost all cases. Overall, we achieved significantly higher
performance compared to KI, a speedup over KI of up to
2.6x and 4.4x for insert and find using the overlapped
communication and computation strategy at 512 cores. At
4096 cores, the hybrid implementation produced speedups of
2.15x and 2.6x for insert and find. The differences in the
scaling behaviors at low and high core counts suggest that a
strategy to dynamically choose an implementation based on
core count and network performance. For insertion, that point
occurs between 1024 and 2048 cores, whereas for find the
inflection point is close to 4096 cores.

The performance of our implementation relies on balanced
communication volume and computation as stated in Sec-
tion We encourage load balance through equi-partitioning
of the input k-mers and the use of hash functions with
approximately uniform output. With RS, MurmurHash 3 and
512 cores, each core is assigned an average of 195.5 million
input k-mers with a standard deviation of 1.48 million, or
0.76%. At 4096 cores, the standard deviation was 513.6
thousand, 2.1% of the average of 24.5 million k-mers.

2) Weak scaling: We needed to use a small dataset for
strong scaling experiments as we were bound by the available
memory at lower node counts, resulting in strong scaling
experiments consuming less than 2 seconds in Local compute
using 4096 cores. For runs this short, wasted cycles in wait
time can be overrepresented. Thus, we perform weak scaling
experiments using much larger dataset at 4096 cores as shown
in the right half of Fig. 5] The results confirm that the wait

Transform, permute mAI2Allv B Wait
24 26.73
20
= 16
g 12
£ 8 I
4 Iefh® (]
0 l N llllll DI =l -
24
20
Z 16
g 12
il |
4 I I |_|
N L Il B=F l-ll-l [==
OZEOZE OZEOZH ZEOBE 93EQ3E
292292 z?zz?z 2292 zOzzoz
+ + + + T +
KI RS RH KI RS RH KI RS RH KI RS RH
Cores 512 1024 2048 4096

B Local compute OMisc

Scaling efficiency
24.37 1.2

1.0

0.8

i
Ielin IO
0.0

1.2
1.0
0.8

Scaling efficiency

0.4
0.2
0.0

Scaling efficiency

>0 > SO 2 >0 > OBHO >
208235 295295 293205 2952cE
KI RS RH KI RS RH KI RS RH KI RS RH
512 1024 2048 4096

Fig. 5. Scaling experiments on Cori using 16 to 128 nodes. Strong scaling (left column) used dataset R4, weak scaling (right column) used portions of RS5.
The top row shows insert times, and the bottom row shows find times. NO and Ov stand for non-overlapped and overlapped communication, respectively.
For RS and RH, the left-most bar (NO) corresponds to the best configuration from Fig. El The next bar includes overlapped compute and communication
(+Ov), and the last bar includes multi-threading (+MT). The markers show the scaling efficiency of each configuration relative to the 512-core run. For the
+MT case, we use one MPI rank per socket or NUMA domain, and # cores/socket as # OpenMP threads/rank. For all other cases, # MPI ranks = # cores.

time is overrepresented in the strong scaling results for 4096
cores for the MPI-only version with overlap. Apart from
that, the weak scaling results show similar pattern to the
strong scaling results. The overlapped communication and
computation strategy performs the best. For insert and find,
we achieved a speedup over KI of up to 2.9x and 4.1x at
512 cores and up to 2.06x and 3.7x at 4096 cores.

VII. CONCLUSION

In this paper we present our work towards optimizing k-mer
counting, a critical task in many bioinformatics applications,
for distributed memory environments. We optimized tasks at
multiple architectural levels, ranging from network communi-
cation optimization, to cache utilization and memory access
tuning, to SIMD vectorization of computational kernels, in
order to create an efficient distributed memory implementation.

We designed our optimizations to take advantage of specific
features of k-mers and properties of the k-mer counting task.
We vectorized MurmurHash3 to support hashing multiple
small keys such as k-mers concurrently. Our AVX2 vectorized
hash functions achieved up to 6.6x speedup for hashing k-
mers compared to the scalar MurmurHash3 implementation.

The batch-mode nature of k-mer counting allowed us to
make effective use of software prefetching, hiding the latencies
of irregular memory accesses common for hash tables. We
designed and implemented two hashing schemes, Robin Hood
and Radix-sort, both aimed to improve cache locality and
minimize memory bandwidth usage though through distinct
approaches. Our cache friendly hashing schemes addresses
both the latency and bandwidth aspects of memory access.
With integer keys, our sequential hash tables out-performed
Google dense hash map by up to 3.2x for the insert operation
and 4.3 x for the find operation.

Finally, we developed a communication primitive for over-
lapping arbitrary user specified computation with collective
all-to-all personalized communication. We also designed a
hybrid MPI-OpenMP distributed hash tables with thread-local
sequential hash tables that minimizes synchronization costs.
Our distributed hash tables have been shown to scale effec-
tively to 4096 cores with high parallel efficiency, and performs
index construction and query on a ~1 TB human genome
dataset in just 11.8 seconds and 5.8 seconds, respectively,
using 4096 cores. Cumulatively, the optimizations contribute
to performance improvements over Kmerind of 2.05 — 2.9x
for k-mer count index construction and 2.6 — 4.4x for query.

As next generation sequencing becomes an increasingly
ubiquitous tool in diverse fields of study, the need for low
latency and high throughput analysis of bioinformatic data will
only increase. Distributed memory algorithms and software
offer the potential to address these big data challenges. Our
contributions presented in this work, while motivated by k-
mer counting in bioinformatics, have broader potential impact
for applications that require fast hash functions, cache friendly
and memory access efficient hash tables, and high performance
and scalable distributed memory parallel hash tables.

ACKNOWLEDGMENTS

This research used resources of the National Energy Re-
search Scientific Computing Center (NERSC), a U.S. Depart-
ment of Energy Office of Science User Facility operated under
Contract No. DE-AC02-05CH11231. Conflicts of interest:
None declared.

[1

—

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

REFERENCES

The Cancer Genome Atlas Research Network, J. N. Weinstein, E. A.
Collisson, G. B. Mills, K. R. M. Shaw, B. A. Ozenberger, K. Ellrott,
1. Shmulevich, C. Sander, and J. M. Stuart, “The Cancer Genome Atlas
Pan-Cancer analysis project,” Nature Genetics, vol. 45, no. 10, pp. 1113—
1120, 2013.

The 1000 Genomes Project Consortium, “A global reference for human
genetic variation,” Nature, vol. 526, no. 7571, pp. 68-74, 2015.

K. Koepfli, B. Paten, the Genome 10K Community of Scientists, and
S. J. O’Brien, “The Genome 10k Project: A way forward,” Feb. 2015.
D. R. Zerbino and E. Birney, “Velvet: Algorithms for de novo short read
assembly using de Bruijn graphs,” Genome Research, vol. 18, no. 5, pp.
821-829, 2008.

J. T. Simpson, K. Wong, S. D. Jackman, J. E. Schein, S. J. Jones, and
1. Birol, “ABySS: A parallel assembler for short read sequence data,”
Genome Research, vol. 19, no. 6, pp. 1117-1123, 2009.

E. Georganas, A. Bulug, J. Chapman, S. Hofmeyr, C. Aluru, R. Egan,
L. Oliker, D. Rokhsar, and K. Yelick, “HipMer: An extreme-scale de
novo genome assembler,” in Proceedings of the International Conference

for High Performance Computing, Networking, Storage and Analysis,

ser. SC ’15. New York, NY, USA: ACM, 2015, pp. 14:1-14:11.

S. Kurtz, A. Narechania, J. C. Stein, and D. Ware, “A new method
to compute k-mer frequencies and its application to annotate large
repetitive plant genomes,” BMC Genomics, vol. 9, no. 1, p. 517, 2008.
D. R. Kelley, M. C. Schatz, and S. L. Salzberg, “Quake: Quality-aware
detection and correction of sequencing errors,” Genome Biology, vol. 11,
no. 11, p. 1, 2010.

X. Yang, K. S. Dorman, and S. Aluru, “Reptile: Representative tiling for
short read error correction,” Bioinformatics, vol. 26, no. 20, pp. 2526—
2533, 2010.

R. Ounit, S. Wanamaker, T. J. Close, and S. Lonardi, “CLARK: Fast
and accurate classification of metagenomic and genomic sequences using
discriminative k-mers,” BMC Genomics, vol. 16, p. 236, 2015.

G. Margais and C. Kingsford, “A fast, lock-free approach for efficient
parallel counting of occurrences of k-mers,” Bioinformatics, vol. 27,
no. 6, pp. 764-770, 2011.

P. Melsted and J. K. Pritchard, “Efficient counting of k-mers in DNA
sequences using a Bloom filter,” BMC Bioinformatics, vol. 12, no. 1,
p- 1, 2011.

G. Rizk, D. Lavenier, and R. Chikhi, “DSK: k-mer counting with very
low memory usage,” Bioinformatics, vol. 29, no. 5, pp. 652-653, 2013.
R. S. Roy, D. Bhattacharya, and A. Schliep, “Turtle: Identifying frequent
k-mers with cache-efficient algorithms,” Bioinformatics, vol. 30, no. 14,
pp. 1950-1957, 2014.

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]
(23]

[24]

[25]

[26]

[27]

(28]

Q. Zhang, J. Pell, R. Canino-Koning, A. C. Howe, and C. T. Brown,
“These are not the k-mers you are looking for: Efficient online k-mer
counting using a probabilistic data structure,” PloS ONE, vol. 9, no. 7,
p. 101271, 2014.

M. Kokot, M. Dtugosz, S. Deorowicz, and B. Berger, “KMC 3: Counting
and manipulating k-mer statistics,” Bioinformatics, vol. 33, no. 17, pp.
2759-2761, Sep. 2017.

M. Erbert, S. Rechner, and M. Miiller-Hannemann, “Gerbil: A fast
and memory-efficient k-mer counter with GPU-support,” Algorithms for
Molecular Biology, vol. 12, no. 1, p. 9, Mar. 2017.

Y. Liu, B. Schmidt, and D. L. Maskell, “Parallelized short read assembly
of large genomes using de Bruijn graphs,” BMC Bioinformatics, vol. 12,
no. 1, p. 354, 2011.

T. Pan, P. Flick, C. Jain, Y. Liu, and S. Aluru, “Kmerind: A flexible
parallel library for k-mer indexing of biological sequences on distributed
memory systems,” IEEE/ACM Transactions on Computational Biology
and Bioinformatics, vol. PP, no. 99, pp. 1-1, 2017.

P. Celis, P-A. Larson, and J. I. Munro, “Robin Hood hashing,” in
Proceedings of the 26th Annual Symposium on Foundations of Computer
Science, ser. SFCS ’85. Washington, DC, USA: IEEE Computer
Society, 1985, pp. 281-288.

P. Celis, “Robin Hood hashing,” Ph.D. Thesis, Department of Computer
Science, University of Waterloo, Waterloo, ON, Canada, 1986, tech
report CS-86-14.

“NVBIO,” https://nvlabs.github.io/nvbio/, last accessed May 31, 2018.
N. Mevicar, C. C. Lin, and S. Hauck, “K-mer counting using Bloom
filters with an FPGA-attached HMC,” in 2017 IEEE 25th Annual
International Symposium on Field-Programmable Custom Computing
Machines (FCCM), Apr. 2017, pp. 203-210.

D. Jiinger, C. Hundt, and B. Schmidt, “WarpDrive: Massively parallel
hashing on multi-GPU nodes,” in Proceedings of the International
Farallel and Distributed Processing Symposium (IPDPS), May 2018.
T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, Third Edition, 3rd ed. The MIT Press, 2009.

M. Herlihy, N. Shavit, and M. Tzafrir, “Hopscotch hashing,” in Dis-
tributed Computing, ser. Lecture Notes in Computer Science. Springer,
Berlin, Heidelberg, Sep. 2008, pp. 350-364.

S. Heule, M. Nunkesser, and A. Hall, “HyperLoglog in practice:
Algorithmic engineering of a state of the art cardinality estimation
algorithm,” in Proceedings of the 16th International Conference on
Extending Database Technology, ser. EDBT ’13. New York, NY, USA:
ACM, 2013, pp. 683-692.

S. L. Salzberg, A. M. Phillippy, A. Zimin, D. Puiu, T. Magoc, S. Koren,
T. J. Treangen, M. C. Schatz, A. L. Delcher, M. Roberts, G. Margais,
M. Pop, and J. A. Yorke, “GAGE: A critical evaluation of genome
assemblies and assembly algorithms,” Genome Research, vol. 22, no. 3,
pp. 557-567, 2012.

https://nvlabs.github.io/nvbio/

APPENDIX

A. Abstract

We present the artifacts associated with the paper Opti-
mizing High Performance Distributed Memory Parallel Hash
Tables with Application to DNA k-mer Counting. Two primary
categories of artifacts were produced in this work. The first
includes the C++ and MPI-based software implementations
described in ths paper, structured as a reusable header-only
library, and the applications that utilize these library compo-
nents. The second category of artifacts consists of execution
and analysis scripts for the experiments and results described
in the paper, as well as the experimental data themselves. Both
categories of artifacts are being released publicly. We describe
the artifacts, the process to obtain them, and the software
installation and invocation procedures in order to facilitate the
reproduction the presented experiments and results.

B. Description

1) Check-list (artifact meta information):

o Algorithm: AVX2 vectorized MurmurHash3 hash functions,
optimized Robin Hood hashing algorithm, Radix-sort based
hash table, and collective all-to-all communication implemen-
tation with overlapped generic computation.

o Program: C++ templated header-only libraries for the hash
function and hash table implementation, and standalone demon-
stration application for k-mer counting.

o Compilation: CMake, make, and a C++ 11 compiler (GNU
C++, Clang, or Intel C++ compiler)

o Binary: Sequential and MPI unit tests, and MPI applications

« Data set: See Section

« Run-time environment: RedHat Enterprise Linux 6.x, Cray
Unix

« Hardware: 64-bit x86 CPU with AVX2 support, MPI sup-
ported interconnection network (InfiniBand, ethernet)

o Run-time state: For benchmarks, exclusive reservation of
compute resources, and preferably of parallel file systems and
interconnection network

« Execution: via job schedulers scripts or interactive invocation,
using mpirun with appropriate arguments

o Output: k-mer counts can be saved as binary files. Timing
results are written to console and can be redirected to log files.

« Experiment workflow: Please see Section [D]

o Publicly available?: Yes

2) How software can be obtained (if available): The k-
mer counting application is available from the git repository
https://github.com/tcpan/kmerhash under the sc2018 branch.
All software are Licensed under the Apache version 2.0
License. To obtain the software, invoke the command:

git clone —--recurse-submodules \coderepo --branch sc2018
—--single-branch

The git repository https://github.com/tcpan/
kmerhash-sc2018-results contains the scripts to run the
experiments and extract relevant data from the experimental
logs. Additionally, the repository contains the Microsoft
Excel spreadsheets used to generate the tables and figures in
this paper. The Excel figures are covered by the same IEEE
copyright as this paper.

3) Hardware dependencies: Our software has been tested
on 64-bit systems and clusters with Intel Haswell, Broadwell,
and Skylake CPUs. AVX 2 support is required. Fast intercon-
nect, e.g. QDR Infiniband, is recommended when the software
is used in a distributed memory environment.

4) Software dependencies: We compiled and tested our
software on Linux platforms. Our software depends on com-
ponents from the Kmerind library and its dependencies. All
dependencies are handled as git submodules.

Compilation: The software requires CMake version 2.8 or later
for configuration and make for building. Tested compilers
include GNU g++ 4.9.3 and later, Clang++ 3.7 and later,
and ICPC 18.0.0. Compiler support for OpenMP is required.
OpenMPI, MPICH, MVAPICH, or Cray MPICH headers and
libraries are required

Execution: MPI applications in https://github.com/tcpan/
kmerhash depends on MPI version 2.0 compliant runtime.
OpenMPI, MPICH, MVAPICH, and Cray MPICH have been
tested. SLURM job scripts are included in https:/github.
com/tcpan/kmerhash-sc2018-results| for references. For cache
performance profiling, Intel VTune is required.

Comparisons: We compared our algorithm implementation to
Kmerind, JellyFish, KMC, and Gerbil. The specific versions
used can be obtained from:

o Kmerind revision d9c7c7b: https://github.com/ParBLiSS/

kmerind

o JellyFish 2.2.3: |http://www.genome.umd.edu/jellyfish.

html

e KMC 3.0: http://sun.aei.polsl.p/REFRESH/index.php?

page=projects&project=kmc&subpage=download
 Gerbil 1.0: jhttps://github.com/uni-halle/gerbil
Data Analysis: The experimental data is primarily analyzed
using grep, shell scripts, and Microsoft Excel.

5) Datasets: The datasets used for the experiments are
listed in Table I in the paper. The datasets can be downloaded
from the following URLs using the accession or project
numbers listed in the table.

o R1-R3, RS5: https://www.ncbi.nlm.nih.gov/sra

o R4: http://gage.cbcb.umd.edu/data

o GI: https://www.ncbi.nlm.nih.gov/assembly/GCF_
000001405.13

o G2: ftp://plantgenie.org/Data/ConGenlE/Picea_abies/v1.
0/FASTA/GenomeAssemblies/Pabies1.0-genome.fa.gz

For datasets R1, R2, R3, and RS, the SRA Toolkit is
used to convert from SRA to FASTQ format.

C. Installation

The following commands are used to configure the software
with default settings and to compile the software. The same
cmake command is executed twice in order to ensure that the
parameters are propagated.

mkdir build

cd build

cmake {src directory}
cmake {src directory}
make -38

-DCMAKE_BUILD_TYPE=Release
-DCMAKE_BUILD_TYPE=Release

https://github.com/tcpan/kmerhash
https://github.com/tcpan/kmerhash-sc2018-results
https://github.com/tcpan/kmerhash-sc2018-results
https://github.com/tcpan/kmerhash
https://github.com/tcpan/kmerhash
https://github.com/tcpan/kmerhash-sc2018-results
https://github.com/tcpan/kmerhash-sc2018-results
https://github.com/ParBLiSS/kmerind
https://github.com/ParBLiSS/kmerind
http://www.genome.umd.edu/jellyfish.html
http://www.genome.umd.edu/jellyfish.html
http://sun.aei.polsl.pl/REFRESH/index.php?page=projects&project=kmc&subpage=download
http://sun.aei.polsl.pl/REFRESH/index.php?page=projects&project=kmc&subpage=download
https://github.com/uni-halle/gerbil
https://www.ncbi.nlm.nih.gov/sra
http://gage.cbcb.umd.edu/data
https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.13
https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.13
ftp://plantgenie.org/Data/ConGenIE/Picea_abies/v1.0/FASTA/GenomeAssemblies/Pabies1.0-genome.fa.gz
ftp://plantgenie.org/Data/ConGenIE/Picea_abies/v1.0/FASTA/GenomeAssemblies/Pabies1.0-genome.fa.gz

CMake will attempt to detect the installed C++ compiler and
MPI library. To use an alternative compiler or MPI library, the
environment variables CC and CXX can be set. Alternatively,
ccmake can be used for interactive configuration of the build
parameters. The default parameters translates to the following
compiler flags: -march=native -03 -std=c++11.

For cache miss rate profiling, Intel VTune and additional
CMake parameters are required

—DENABLE_VTUNE_PROFILING=ON
-DVTUNE_LIB="absolute path to libittnotify.a"

Software used in comparisons, including KMC, Gerbil,
and JellyFish, may require additional installation according
to the instructions accompanying the respective distributions.
Kmerind’s k-mer counting application is replicated in our
software and no additional installation is required.

D. Experiment workflow

The generated binaries are in build/bin directory. A
collection of MPI executables are generated, each corresponds
to a set of template specializations. The executables are named
with the following pattern:

{prefix}KmerIndex-{format}-a{alphabet}-k{k}-CANONICAL-{
map}-COUNT-dt IDEN-dh{distributed_hash}-sh{
local_hash}

testKmerCounter—{format}-a{alphabet}-k{k}-CANONICAL-{map
}—=COUNT-dt IDEN-dh{distributed_hash}-sh{local_hash}

The testKmerCounter— variant counts the k-mer incre-
mentally in memory-limited settings. Supported prefix strings
include:

e noPref_: software prefetching is turned off

e overlap—: overlapped communication/computation is
turned on

e test: overlapped communication/computation is turned
off

The executable name parameters have the following allow-
able values:

e format: supports FASTA and FASTQ

e alphabet: 4, 5, and 16 corresponding to DNA, DNAS,
and DNA16 respectively.

e k: supports 15, 21, 31, and 63 for scaling experi-
ments. Additional k£ values can be added by modifying
benchmark/CMakelLists.txt in the source direc-
tory.

e map: supports DENSEHASH, BROBINHOOD, and
RADIXSORT, as well as the multi-threaded variants
MTROBINHOOD and MTRADIXSORT.

e distributed_hash: supports MURMUR, MURMUR32,
MURMURG64avx, MURMUR32avx, and FARM

e local_hash: supports all distributed_hash val-
ues and CRC32C.

MPI experiments should account for NUMA memory ar-

chitecture through binding processes to cores. With OpenMPI
we used the command

mpirun -np {P} —--map-by ppr:{cores}:socket
—-rank-by core --bind-to core
{executable} [params...]

Sequential hash function and hash table benchmarks are

benchmark_hashes
benchmark_hashtables_{local_hash}
benchmark_hashtables_grow

where local_hash is the same set as those used by the
distributed k-mer counters.

All binaries support the command line parameters —h and
——help to produce the list of available commandline param-
eters and their meanings.

SLURM job scripts for all experiments
can be found in https://github.com/tcpan/
kmerhash-sc2018-results] /scripts/run. Please see

the scripts for example commandline parameters, and use
them as templates. The job scripts will likely require
customizations for each system, for example the directory
names and software installation locations will need to be
modified.

E. Evaluation and expected result

The benchmark logging facility captures timing and mem-
ory usage data on each MPI process and performs simple
aggregation when reporting results.

The benchmarking facility captures the cumulative and
elapsed times (“cum_*” and “dur_*"), the current and peak
memory (“curr_*” and “peak_*") used, as well as the number
of data elements processed (“‘cnt_*"") by each MPI rank for
a block of instrumented code. For each measurement, the
minimum (min), maximum (max), mean (mean), and standard
deviation (stdev) across all MPI ranks are computed then
output to console by MPI rank O process. The console output
can be redirected to a log file. Sequential experiments report
identical minimum, maximum, and mean for each measure-
ment, and the standard deviation is 0.

An example log file snippet for the elapsed time is shown
below.

[TIME] open header (s) [, read,]

[TIME] open dur_min [,30.772840450,]

[TIME] open dur_max [,30.773302853,]

[TIME] open dur_mean [,30.772997589,1
[TIME] open dur_stdev [,0.000146621,]

The time and memory usage information are extracted from
the log files for Robin Hood and Radix-sort hashtable results
and Kmerind output, using grep and reformatted into tabular
form. For KMC3, Gerbil, and JellyFish, https://github.com/
tcpan/kmerhash-sc2018-results scripts/analysis con-
tains shell scripts to extract and format the relevant timing
and memory usage data from their respective log files.

The extracted results are imported into Microsoft Excel
for further summarization and visualization. Expected re-
sults depend on the CPU, cache memory hierarchy, file
system, the network performances, and other environmental
factors. Our reported results in the Excel files in https:
//github.com/tcpan/kmerhash-sc2018-results in |https://github.
com/tcpan/kmerhash-sc2018-results| can serve as references.

https://github.com/tcpan/kmerhash-sc2018-results
https://github.com/tcpan/kmerhash-sc2018-results
https://github.com/tcpan/kmerhash-sc2018-results
https://github.com/tcpan/kmerhash-sc2018-results
https://github.com/tcpan/kmerhash-sc2018-results
https://github.com/tcpan/kmerhash-sc2018-results
https://github.com/tcpan/kmerhash-sc2018-results
https://github.com/tcpan/kmerhash-sc2018-results

	Introduction
	Problem Statement

	Background
	Hash Tables and Collision Handling Strategies

	Distributed Memory Hash Table
	Communication Optimization
	Overlapped communication and computation
	Hybrid multi-node and multi-thread

	Sequential Hash Tables
	Robin Hood Hashing
	Optimized Robin Hood Hashing
	Structure
	Insert
	Find

	Radix-sort Map
	Structure
	Insert
	Find

	Implementation Level Optimizations
	Hash Function Vectorization
	Cardinality Estimation
	Software Prefetching

	Results
	Experimental setup
	Hash Function Comparisons
	Hashing Schemes
	Setting the parameters values
	Sequential Comparison of various hashing schemes

	Speedup with respect to optimizations on a single node
	Comparison to existing k-mer counters on a single node
	Multi-node Scaling
	Strong scaling
	Weak scaling

	Conclusion
	References
	Appendix
	Abstract
	Description
	Check-list (artifact meta information)
	How software can be obtained (if available)
	Hardware dependencies
	Software dependencies
	Datasets

	Installation
	Experiment workflow
	Evaluation and expected result

