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Abstract—We consider the problem of scheduling a parallel
computation—represented as a directed acyclic graph (DAG)—on
a distributed parallel system with a global resource constraint—
specifically a global power budget—and configurable resources,
allowing a range of different power/performance tradeoffs. There
is a rich body of literature on the independent problems of (1)
scheduling DAGs and (2) scheduling independent applications
under resource constraints. Very little, however, is known about
the combined problem of scheduling DAGs under resource
constraints. We present a novel approximation algorithm using a
divide-and-conquer method for minimizing application execution
time. We prove that the length of the schedule returned by
our algorithm is always within O(logn)-factor of the optimum
that can be achieved with any selection of configurations for
the tasks. We implement and test our algorithm on simulations
of real application DAGs. We find that our divide-and-conquer
method improves performance by up to 75% compared to greedy
scheduling algorithms.

Index Terms—scheduling, DAG, precedence, power, resource,
configuration

I. INTRODUCTION

Future High Performance Computing (HPC) systems are
expected to maximize workload performance subject to strict
power constraints [1]–[3]. These workloads are effectively
modeled as directed acyclic graphs (DAGs) that capture
precedence requirements between tasks. DAG representations
describe diverse workloads such as scientific computing ap-
plications (e.g. representing data flow between MPI calls),
scheduling assignments of HPC jobs, and data-driven scientific
workflows managed by frameworks like Spark. Scheduling
DAGs for minimum execution time (without power con-
straints) is an old and well-understood problem. Likewise,
scheduling independent workloads (without precedence) under
power constraints has been gaining more focused attention in
the last few years. However, the combined problem of two
restricted special cases—resource (i.e. power) and precedence
constrained (i.e. DAG) scheduling—is not well understood.
Further complicating the problem, future HPC systems are
expected to be highly configurable, allowing them to operate
at a range of power and performance tradeoffs by tuning hard-
ware or system software properties [4]. Distributed scheduling
algorithms must take advantage of these configurations to
minimize DAG execution time while respecting the system-
wide power constraint.

Intuitively, minimizing DAG execution time under a power
cap is the problem of packing tasks into an open-ended strip.
The strip’s height is the power cap; the length it reaches is
the execution time to be minimized. On modern computing
systems, we can configure the combination of a task (DAG
node) and machine to operate at different power/performance
tradeoffs. Thus, each task can be represented by different
rectangles whose heights are the individual task’s power and
the length is the runtime. Even before we consider precedence
constraints, this packing problem is known to be NP-hard [5].
Intuitively, to minimize the strip’s length (i.e. overall execution
time), one should minimize the total uncovered area of the strip
and also minimize the areas of each task’s rectangle. In other
words, we can approach the problem by

1) Trying to maximize power utilization, so that at any time
instant as much work as possible is being accomplished
and the individual rectangles represented by the scheduled
tasks are as close to the power limit as possible; or

2) Trying to maximize energy efficiency (or task performance
over power), so that each task’s individual rectangle has
the smallest possible area.

The first strategy favors configurations that correspond to
tall, skinny rectangles for individual tasks, while the second
strategy favors minimal area rectangles.

Greedy scheduling strategies can easily be developed to
favor one of these approaches. For example, a simple greedy
strategy that attempts to maximize power utilization would
wait for a machine to go idle and just select the next largest
task and configuration that takes up as much of the remaining
power budget as possible. In particular, greedy algorithms for
the problem we consider can be obtained by taking a state-
of-the-art greedy algorithm satisfying either the precedence
constraint or the power constraint and simply extending it to
handle the other as well. We find that such greedy algorithms
achieve poor results in practice for the combined problem
of DAG scheduling under power constraints and that the key
insight to efficient scheduling is to find a good tradeoff between
maximizing power utilization and maximizing individual tasks’
energy efficiency.

Based on this insight, we propose a divide-and-conquer
algorithm for scheduling DAGs under power constraints when
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power/performance tradeoffs are configurable. The key prin-
ciple of this divide-and-conquer algorithm is: to concurrently
schedule tasks whose completion time (rectangle length) is
similar when they run in their most energy-efficient configura-
tion. This principle allows our algorithm to achieve higher
power utilization without deviating too far from executing
tasks in an energy efficient manner (keeping individual task
rectangles small). Our divide-and-conquer approach extends
prior work that considers a more restricted scheduling problem
in which the tasks have fixed power and performance charac-
teristics [6]. In this paper, we consider the harder version of
working with a discrete configuration set involving different
power/performance trade-offs per configuration per task.

This paper makes the following contributions:
• A divide-and-conquer algorithm based on the principle

of finding and co-scheduling tasks with similar execu-
tion times in their most energy-efficient configurations.
Specifically, we extend prior work [6] to intelligently
incorporate configuration selection. We then improve this
algorithm with a randomized variant.

• A proof that the algorithm is a (2 + log n)-approximation
for the problem where n is the number of tasks; i.e.,
the algorithm returns a schedule whose length is always
within a factor 2 + log n of the optimum.

• Discussion of variations on the greedy algorithms that
form the basis for today’s state-of-the-art schedulers with
an empirical demonstration that the divide-and-conquer
algorithm is superior.

We evaluate our algorithm using both real-world and syn-
thetic DAGs of up to 10,000 nodes using a simulator1. Our
algorithm is DAG-agnostic and capable of scheduling DAGs
of any shape and size. It outperforms greedy approaches
especially well in severely power-restricted systems with sig-
nificant energy savings and improving performance up to 75%.

We use simulation infrastructure for this evaluation because
our goal is to compare fundamentally different algorithmic
strategies (greedy versus divide-and-conquer), rather than to
evaluate practical implementation issues. All modern job
management systems (of which we are aware) are based
on greedy strategies. Performance-aware schedulers minimize
execution time for DAGs—on both distributed (e.g. Spark [7]
and MapReduce [8]) and multi-core systems (e.g. Cilk++ [9]
and TBB [10])—based on greedy strategies derived from that
first proposed and analyzed by Graham [11]. State-of-the-art
power-aware schedulers also use greedy schedules to max-
imize throughput for independent tasks [12]–[15]. Whether
constrained by precedence or power, all these recent schedul-
ing efforts share a common algorithmic foundation: they adopt
greedy strategies and innovate for practical concerns. In
this paper, we present a fundamentally different algorithmic
strategy: divide-and-conquer. Our simulation-based evaluation
factors out implementation concerns to focus on the potential
benefits of divide-and-conquer over the greedy strategy that
underlies all known schedulers.

1Available at: https://github.com/PowerCapDAG/PowerCapDagScheduling

II. RELATED WORK

The problem of power-aware scheduling has recently at-
tracted a lot of interest. In this paper, we consider the problem
of configuring multiple processors to maximize performance
under a power constraint in a multiprocessor setting where
there are precedence constraints between tasks. We first dis-
cuss related work in energy-aware scheduling and then the
most closely related work: scheduling malleable tasks.

A. Power-aware Scheduling

In the scheduling literature, most power-aware algorithms
assume the only configurable part of the system is proces-
sor speed. They then model the speed scaling using the
standard assumption proposed by Yao, Demers, and Shenker
(YDS) [16]: there is a continuous power function P (s), such
that a processor running at speed s has power consumption
P (s) = sα for some α > 1. Unfortunately, this assumption
ignores the fact that real processors have both minimum and
maximum speeds; i.e., in real computing systems one cannot
arbitrarily increase energy efficiency (s/P (s)) by slowing
down computation [17].

Nevertheless, many researchers have proposed extensions
and improvements of the YDS algorithm. These include
algorithms that account for non-zero idle-power states [18]
and algorithms that consider zero power sleep states that
require additional energy and time to restart computation [19].
Numerous other improvements on the original YDS algorithm
exist in the scheduling literature [20]–[28].

Most approaches, however, schedule only independent jobs
and maintain the YDS assumption about the relationship
between power and speed. Pruhs, van Stee, and Uthaisombut
[29] consider speed scaling to minimize total energy for
multiprocessor settings with precedence constraints between
tasks. Bunde assumes that jobs arrive over time and considers
continuous power functions that are convex, strictly convex,
or discrete [30]. He develops algorithms that minimize the
makespan for uniprocessor and multiprocessor settings where
the processors have a shared energy budget. This technique
is not applicable to our multiprocessor setting with a power
bound, rather than an energy bound—i.e., a bound on the
maximum rate of energy consumption rather than total energy
consumption—as the combinations of such configurations may
violate the power constraint.

Power bounds, however, are essential for future generation
high-performance computing systems as noted by several
recent studies [1]–[3]. Recent heuristic schedulers account for
power by attempting to predict a workload’s critical path and
reduce power where it will not affect execution time [31], [32].
Patki et al. propose building HPC systems that are specifically
over-provisioned and could easily draw much more power
than is safe to deliver to the system at once [33]. Sarood
et al. have shown similar results: hardware over-provisioning
increases performance given a power cap [34]. These hardware
over-provisioning approaches acknowledge that compute re-
sources are no longer the primary factor limiting cluster size—
power is. Furthermore, these approaches require implementing



severely restrictive power caps, where the system-level power
budget is significantly below the maximum total power draw
of the available machines. This scenario is precisely the realm
where our proposed divide-and-conquer algorithm provides the
biggest advantages over greedy approaches.

As existing scheduling implementations are heuristic in
nature, Bailey et al. recently proposed a mathematical opti-
mization framework for analyzing job schedules under a power
constraint [35]. This formulation considers configurability,
power constraints, and precedence constraints, but it is an
offline algorithm and requires imposing a total order on the
DAG representing the workload to be scheduled. For these
reasons, the Bailey et al. approach is best suited for post
hoc analysis of heuristic schedules, to determine how far
they deviate from optimal. In contrast, our divide-and-conquer
algorithm works directly on the partial order of the DAG and
is suitable to be used as a scheduler with a time complexity
comparable to greedy algorithms.

B. Scheduling Malleable Tasks

Malleable task scheduling with precedence constraints re-
sembles the problem we consider here in all three aspects—
configurability, resource limits, and precedence constraints.
For malleable tasks, each task is allotted a number of 1 to
m processors, where m is the total available processors. A
task’s execution time is a function of the processors allotted.
A feasible schedule ensures that co-scheduled tasks are allotted
no more than m machines while respecting the DAG depen-
dencies. It is often assumed that tasks’ execution times are
non-increasing and the work (the number of processor times
the execution time) is non-decreasing with increasing proces-
sors. Under such assumptions, the problem admits constant-
approximations [36]–[38].

While similar, malleable task scheduling differs from our
problem in several key ways. Most importantly, we model the
resource (power) as a continuous variable; at any point in a
feasible schedule the tasks’ power requirements may sum to
any real number between 0 and the power cap. In contrast, in
malleable task scheduling, there are only m states a schedule
can be in at any point. This discrete modeling of resource
(together with the assumptions on the function of execution
time) is the key for obtaining a constant-approximation for
the malleable task scheduling with precedence constraints. The
continuous nature of the resource in our problem renders the
same methods less useful. Moreover, Demirci et al. [6] point
to an instance of our problem which shows that simple lower
bound analysis methods and straightforward extensions of LPs
designed for precedence constrained scheduling all have an
Ω(log n) gap. Nevertheless, we find that a method previously
used in scheduling independent malleable tasks [39] to be
useful in proving an O(log n) approximation bound for our
algorithm (see Section III-C).

The malleable task problem clearly differs from that con-
sidered in this work from a systems point of view as well.
Malleable task scheduling reduces configurability to simply
the number of processors, which determines a task’s execution

time. In contrast, we do not impose any assumptions on the
machine/task pairs’ configuration spaces. Additionally, our
configurations are not necessarily directly comparable with
each other (but comparable in terms of their resource–power–
requirement). For example, one configuration may correspond
to four active cores on a lower DVFS setting with no hyper-
threading and two memory controllers and another one may
correspond to two active cores on a higher DVFS setting with
hyperthreading and a single memory controller (see Section
V-A).

Recently, Demirci, Hoffmann, and Kim (DHK) proposed
the first approximation algorithm with non-trivial bounds for
scheduling DAGs under power constraints [6]. This algorithm
solves a restricted, theoretical version of DAG scheduling
under a power constraint—specifically, when tasks have pre-
determined power requirements and execution times. That
is, DHK does not consider configurable power/performance
tradeoffs, available on all real systems. In this work, we
modify the DHK algorithm to cover configurable tradeoffs.
Our modification and extension allow us to prove that DAG
scheduling under a power cap on configurable systems has
a 2 + log n approximation. Note that they also allow us to
slightly improve the approximation bound of 2 + 2 log(n+ 1)
given in [6] for the non-configurable version of the problem.

III. THE DIVIDE-AND-CONQUER STRATEGY

We formalize our problem statement, discuss the divide-and-
conquer strategy, prove an upper bound on the approximation,
and then present a randomized variant of divide-and-conquer.

A. Problem Formulation

Our problem is stated formally as follows. We want to
schedule a set of tasks T on m machines given a DAG
representing the dependencies between tasks. Each task t ∈ T
running on machine i has a discrete configuration set Ct,i
associated with the task-machine pair. Each configuration
c ∈ Ct,i has a power requirement p(c) (beyond the machine’s
idle power) and an execution time t(c) representing the
power/performance trade-off of running task t on machine
i in configuration c. Let P denote the power cap: the total
power beyond idle that the running tasks can consume at
any time point. There are two special configurations: the
fastest race configuration, i.e. cracet,i = argminc∈Ct,i t(c),
and the most energy-efficient pace configuration, i.e. cpacet,i =
argminc∈Ct,i t(c)p(c). In the rest of the paper, we assume that
the machines are identical, so the configuration set depends
only on the task and is denoted as Ct. A feasible schedule
needs to choose a configuration c ∈ Ct for each task t, dedicate
p(c) amount of the power budget to it, and run t on one of
m machines for t(c) amount of time without interruption (i.e.
we do not allow preemption).

Our formulation yields an optimization problem with two
objectives: maximize power utilization and maximize energy
efficiency (of individual configurations). We propose a unify-
ing principle that optimizes these objectives simultaneously:
to concurrently schedule tasks with similar completion times
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Fig. 1. The intermediate schedule (right) obtained in the first step by D&C-
DAG Schedule from the DAG (left). The intermediate schedule satisfies
the DAG dependencies, but not necessarily the power constraints. D&C-
Recursive takes this intermediate schedule and groups and schedules the tasks
crossing its mid-point (orange) in parallel. It then recursively obtains schedules
for the tasks remaining on the first half and second half of the intermediate
schedule.

in their pace configuration. In this section, we give a high-
level overview of our divide-and-conquer algorithm, explain
why it is an excellent candidate for implementing this unifying
principle, and provide pseudocodes for its main subroutines.
The algorithm works in two steps: 1) D&C-DAG Schedule
and 2) D&C-Recursive.

B. The Divide-and-Conquer Algorithm

Subroutine 1 D&C-DAG Schedule(T ,m,G, time(·))
Input: A set of tasks T with execution times time(·), a DAG

G = (T , E) on these tasks, and m machines.
Output: An intermediate schedule IS of the tasks respecting

the DAG.
1: ReadyTasks← {t ∈ T : @t′ ∈ T s.t. (t′, t) ∈ E}
2: ReadyMachines← {i : 1 ≤ i ≤ m}
3: time← 0
4: while T 6= ∅ do
5: if ReadyTasks 6= ∅ and ReadyMachines 6= ∅ then
6: t← ReadyTasks[1] and i← ReadyMachines[1]
7: Assign task t on machine i:
8: IS ← IS ∪ {(t, i, time, time+ time(j))}
9: ReadyTasks← ReadyTasks \ {t}

10: ReadyMachines← ReadyMachines \ {i}
11: else
12: (endT, endM, beg, end)← argmin

(t,i,s,f)∈IS : f≥time
f

13: ReadyMachines← ReadyMachines ∪ {endM}
14: T ← T \ {endT}
15: ReadyTasks← {t ∈ T : @t′ ∈ T s.t. (t′, t) ∈ E}
16: time← end
17: end if
18: end while
19: return IS

D&C-DAG Schedule (Subroutine 1) produces an interme-
diate schedule satisfying the DAG dependencies. We take
the task run-times in their pace configurations and produce
a schedule with no restrictions on the power or available
machines. This intermediate schedule may have more than m
tasks running in parallel and it is essentially a “schedule repre-
sentation” of the DAG with respect to the pace configurations.

Figure 1 illustrates the DAG of a small example on the left
and the respective intermediate schedule on the right.

Subroutine 2 D&C-Recursive(T,m, P, {Ct}t, IS, beg, end)
Input: A set of tasks T ⊆ T each with its configuration

space Ct, m machines, a power cap P , and an intermediate
schedule IS with beginning and end time points beg, end.

Output: A schedule S of the tasks respecting the DAG and
the power cap.

1: if T is ∅ then
2: return Empty schedule
3: end if
4: Let mid be a time-point s.t. |Tbef | ≤ |T |/2 and |Taft| ≤
|T |/2 w.r.t. definitions below

5: Tbef ← {t ∈ T : beg < ISt.s < ISt.f ≤ mid}
6: Tmid ← {t ∈ T : beg < ISt.s ≤ mid < ISt.f ≤ end}
7: Taft ← {t ∈ T : mid < ISt.s < ISt.f < end}
8: Sbef ← D&C-Recursive(Tbef ,m, P, {Ct}t, IS, beg,mid)
9: time← maxt∈Tbef

Sbef (t).f
10: Smid ← Schedule-Independent(Tmid,m, P, {Ct}t)
11: Offset the times in Smid by time.
12: time← maxt∈Tmid

Smid(t).f
13: Saft ← D&C-Recursive(Taft,m, P, {Ct}t, IS,mid, end)
14: Offset the times in Saft by time.
15: return Sbef ∪ Smid ∪ Saft

D&C-Recursive (Subroutine 2) converts the intermediate
schedule into a final schedule satisfying the power constraints.
This algorithm considers the tasks crossing the mid-point of
the intermediate schedule. These tasks have similar run-times
and will be scheduled in parallel separate from the rest of
the tasks in the final schedule. Since the precedence-aware
intermediate schedule has all these tasks running in parallel
at the mid-point, they cannot have dependences among them.
Thus, what remains is to satisfy the power constraints when
scheduling this subset of tasks. D&C-Recursive then applies
the same technique on the remaining tasks by two recursive
calls on two halves of the intermediate schedule.

D&C-DAG Schedule’s intermediate schedule may have
more than m tasks crossing the mid-point. D&C-Recursive
uses another subroutine Schedule-Independent that sorts
these tasks in order of their execution times and schedules
them to run in this order in groups of at most m. (We
describe Schedule-Independent in detail in Section III-C.)
Thus, the algorithm has two main tools for grouping tasks
with similar execution times. First, it is more likely that a
point in the middle of the intermediate schedule will be crossed
by relatively “longer” tasks than by a diverse group of tasks
containing, in particular, both “short” and long tasks. Second,
these tasks are sorted with respect to execution times and
considered for groups in this particular order to separate long
tasks from the shorter ones as much as possible. To justify
the first point, that it is more likely for a longer task to cross
a point in the middle, suppose we place a long and a short
task uniformly at random within a finite time horizon. For an
ε close to 0 and smaller than the lengths of these tasks, the



Algorithm 1 D&C(T , G,m, P, {Ct}t)
Input: A set of tasks T each with its configuration space Ct,

a DAG G, m machines, and a power cap P
Output: A schedule S of the tasks respecting the DAG and

the power cap
1: Get pace configurations cpacet ∈ Ct for each task t
2: IS ← D&C-DAG Schedule(T , G, |T |, {t(cpacet )}t)
3: end← maxt∈IS IS(t).finish
4: S ← D&C-Recursive(T ,m, P, {Ct}t, IS, 0, end)
5: return S

probabilities that each of these tasks will cross the time point ε
are equal and independent of the lengths of the tasks. However,
the probability that such a randomly placed task will cross a
point in the middle of the time horizon (sufficiently far from
the both endpoints) is proportional to the task’s length. Thus, a
greedy algorithm—that increments the time-line starting from
0—will encounter a variety of tasks in each time increment,
whereas our divide-and-conquer method is more likely to first
cut the longer tasks in the first call and cut relatively shorter
and shorter tasks deeper in the recursion.

Consider the example in Figure 1. A greedy algorithm
starting with task 1 would next schedule task 2—the shortest
task—together with 3 and 4—the longest task. While a greedy
algorithm will often co-schedule both short and long tasks,
it is more likely that a point sufficiently far from both ends
of the intermediate schedule will be crossed by relatively
longer tasks. Note that the remaining tasks’ lengths become
shorter with deeper recursion on both sides. Thus, the first
level of the recursion cuts mostly the relatively longer tasks,
and the recursive calls on the lower levels of the recursion tree
work on the smaller tasks contained in tiny fragments of the
intermediate schedule. Finally, we get a fine-grained grouping
of the tasks with respect to the length of their pace execution
times. Note that D&C-DAG Schedule and D&C-Recursive
take the pace configurations as the point of reference (either
for execution time or for power) because, in the end, we would
like to schedule all the tasks close to (or ideally in) their pace
configurations as energy efficiency is one of the objectives for
minimizing the total run-time under a power-cap.

D&C (Algorithm 1) is the main subroutine which uses
D&C-DAG Schedule and D&C-Recursive to obtain the final
schedule. It first calls D&C-DAG Schedule to obtain an
intermediate schedule. Then D&C calls D&C-Recursive with
the full set of tasks T , number of machines m in the original
problem, the power cap P , the intermediate schedule IS,
and the beginning and end times of IS. D&C-Recursive
recursively schedules the tasks respecting the power cap and
returns this schedule.

C. An O(log n) Approximation Algorithm

We complete the algorithm given in Section III by describ-
ing Schedule-Independent and prove that our algorithm is
always within a 2 + log n factor of the optimal solution by
selecting configurations that are close enough to the configura-

tions employed in an optimal solution. We modify and extend
the DHK proof that solves the problem for fixed configurations
[6] by carefully adapting a method (inspired by [39]) to argue
that the configurations chosen by our algorithm are comparable
to the configurations in an optimal solution.

The DHK algorithm has fixed configurations (and, therefore,
execution times), so its intermediate schedule is recursively
partitioned around the mid-point of the intermediate schedule’s
length. This strategy guarantees that the algorithm recurses on
equally partitioned halves so the recursion depth is bounded by
O(log n). D&C-Recursive, however, cannot follow the same
steps because the length of the intermediate schedule obtained
using the pace configurations is not necessarily a lower bound
on the optimal schedule length—which may use configurations
other than pace for the same tasks.

Thus, we use another method to limit the depth of the
recursion. Instead of equally partitioning with respect to inter-
mediate schedule length, D&C-Recursive partitions the tasks
with respect to the number of tasks left on each side. This
goal motivates the particular definition in Line 4 of D&C-
Recursive. Now, we prove that the intermediate schedule has
at least one point that guarantees that both sides contains at
most half of all tasks.

Lemma 1. There is at least one time point mid such that,
when D&C-Recursive partitions the tasks in intermediate
schedule around mid, |Tbef | ≤ |T |/2 and |Taft| ≤ |T |/2.

Proof: Consider a sweep starting from the end point of the
intermediate schedule towards its starting point and the first
critical point cp where |Tbef | ≤ |T |/2. Immediately to the
right of cp, let the size Tbef be b|T |/2c + i for some i ≥ 1.
On cp, |Tmid| ≥ i and |Tbef | = b|T |/2c + i − |Tmid|. Then,
|Taft| = |T | − |Tmid| − |Tbef | = |T | − |Tmid| − b|T |/2c − i
+|Tmid| = d|T |/2e−i ≤ |T |/2. Since there are O(|T |) critical
points, such a sweep can be done efficiently.

A simple subroutine called NFDH—used and analyzed for
strip packing [5]—is directly adapted by DHK for scheduling
the independent tasks in Tmid. It greedily schedules the tasks
in Tmid in the order of non-increasing execution times on
“shelves” respecting the power cap. If the addition of the next
task in this order makes the current shelf violate the power
cap, the subroutine closes the current shelf and opens another
containing this next task. This subroutine guarantees a sched-
ule of length proportional to the sum of energy requirements of
the tasks in Tmid plus the maximum execution time among all
the tasks in Tmid. In our case, however, power and execution
time both depend on a task’s configuration. To use the same
subroutine to schedule independent tasks in Tmid, we need to
make the configuration selection carefully so that we can relate
the configurations our algorithm selects to the configurations
selected for the same tasks in an optimal solution.

Let t1, t2, · · · , tk be the tasks in Tmid. Let c∗1, c
∗
2, · · · , c∗k

be their corresponding configurations in an optimal solution
with a makespan of length OPT . Note that, in an optimal
solution, these tasks do not necessarily run together. We define
a procedure that produces a set of configurations {ci}1≤i≤k



for these tasks with two specific guarantees:
1) max

1≤i≤k
t(ci) ≤ max

1≤i≤k
t(c∗i )

2) t(ci)p(ci) ≤ t(c∗i )p(c∗i ), ∀1 ≤ i ≤ k
Note that these two guarantees correspond directly to the two
intuitive goals specified in the introduction. The first guarantee
corresponds to the desire to maximize power utilization and
minimize execution time (configure tasks for tall, narrow
rectangles). The second guarantee corresponds to the desire
to minimize each tasks’ energy (configure all tasks for their
pace configurations, for minimal area rectangles).

The procedure works iteratively, producing a different set
of configurations in each iteration by modifying those from
the previous iteration. It starts with the pace configurations
in the first iteration {c1i = argminc∈Cti

t(c)p(c)}1≤i≤k. In
iteration j ≥ 2, the configurations are kept the same as
the previous iteration cji = cj−1i for all tasks except that
with the longest execution time. The longest executing task
is assigned (if possible) a shorter configuration that mini-
mizes the energy among all such configurations. Formally, let
imax = argmax1≤i≤k t(cj−1i ) and, then,

cji =

 argmin
c∈Cti ,t(c)<t(cj−1

i )

t(c)p(c) if i = imax

cj−1i otherwise

The procedure produces a new set of configurations until there
is no shorter configuration for the longest task. Since we do
not know the configurations {c∗i }i in the optimal schedule, we
have no straightforward way of checking if both Conditions 1
and 2 are satisfied by {cji}i at some iteration j. Thus, we run
the procedure until no new iterations are possible.

Lemma 2. The above procedure produces at least one set of
configurations satisfying Conditions 1 and 2 at the same time.

Proof: The configurations of the first iteration {c1i }i
satisfy Condition 2 by definition. If the procedure never
produces a set of configurations violating Condition 2, then
the last set of configurations also satisfy Condition 1. This
condition is true because the longest running task has no other
shorter configuration which means the same task in an optimal
solution cannot get a shorter configuration either. Then, let
j be the first iteration to violate Condition 2. It is not hard
to see that the configurations {cj−1i }i of j − 1st iteration
satisfy Condition 1 as well. Let imax = argmax1≤i≤k t(cj−1i ).
Given the facts that t(c∗imax

)p(c∗imax
) < t(cjimax

)p(cjimax
)

and cjimax
= argmin

c∈Cti ,t(c)<t(cj−1
i )

t(c)p(c), it cannot be the case

that t(c∗imax
) < t(cj−1imax

) (because, otherwise, cjimax
would be

assigned c∗imax
). Then t(cj−1imax

) ≤ t(c∗imax
) ≤ max

1≤i≤k
t(c∗i ).

This procedure’s iteration count is limited by
∑

1≤i≤k |Cti |.
Schedule-Independent applies NFDH on the set of configu-
rations produced after each iteration and, in the end, outputs
the one resulting in the minimum schedule length for Tmid.

Let {c∗t }t∈T be the set of configurations of tasks in T ⊆ T
in the optimum solution and let OPT (T ) denote the length of

the shortest continuous time interval that fully contains all the
tasks in T in the optimum schedule. Note OPT (T ) is OPT
by definition.

Theorem 1. The length of the schedule returned
by D&C-Recursive on a set of tasks T is at most
2
∑
t∈T t(c∗t )p(c∗t )/P +OPT (T ) log |T |.

Proof: We prove this by induction on the size of T .
The base case is |T | = 0 and the inequality holds. The
total schedule length is the sum of the lengths of schedules
Sbef and Saft obtained recursively and Smid obtained by
applying NFDH on each set of configurations produced by
the procedure above and taking the shortest. Since Tmid is
not empty, we have the following guarantee on the lengths of
Sbef and Saft by the inductive hypothesis:

|Sbef | ≤ 2
∑
t∈Tbef

t(c∗t )p(c∗t )/P +OPT (Tbef ) log |Tbef |

|Saft| ≤ 2
∑
t∈Taft

t(c∗t )p(c∗t )/P +OPT (Taft) log |Taft|

Let {ct}t∈Tmid
be the set of configurations produced by the

procedure above resulting in the minimum length schedule
of Tmid and {c′t}t∈Tmid

be the configurations produced sat-
isfying Conditions 1 and 2 simultaneously as suggested by
Lemma 2. The length of Smid guaranteed by NFDH applied
repeatedly on the output configurations of the above procedure
is then bounded by

|Smid| ≤ 2
∑

t∈Tmid

t(ct)p(ct)/P + max
t∈Tmid

t(ct)

≤ 2
∑

t∈Tmid

t(c′t)p(c′t)/P + max
t∈Tmid

t(c′t)

≤ 2
∑

t∈Tmid

t(c∗t )p(c∗t )/P + max
t∈Tmid

t(c∗t ).

A crucial observation is that the fragments in any feasible
schedule containing the tasks in Tbef and the tasks in Taft
are disjoint because they are separated by the mid point of
the intermediate schedule. Thus, all tasks in Taft have at
least one predecessor in Tbef , implying that OPT (Tbef ) +
OPT (Taft) < OPT (T ). Given |Tbef | ≤ |T |/2, |Taft| ≤
|T |/2 from Lemma 1 and max

t∈Tmid

t(c∗t ) ≤ OPT (T ) from the

definition of OPT (T ), we have

|Sbef |+ |Smid|+ |Saft| ≤
2

P

∑
t∈T

t(c∗t )p(c∗t )

+ (OPT (Tbef ) +OPT (Taft)) log (|T |/2) +OPT (T )

≤ 2

P

∑
t∈T

t(c∗t )p(c∗t ) +OPT (T ) (log (|T |/2) + 1)

=
2

P

∑
t∈T

t(c∗t )p(c∗t ) +OPT (T ) log |T |

Since
∑
t∈T t(c∗t )p(c∗t )/P is a lower bound on the length

of any schedule running tasks in configurations {c∗t }t∈T , the



length of the schedule returned by D&C-Recursive on the
initial set of tasks T is at most 2

∑
t∈T t(c∗t )p(c∗t )/P +

OPT (T ) log |T | ≤ 2OPT +OPT log |T |. This completes
the proof that our algorithm is always within (2 + log |T |)-
factor of the optimum solution.

D. A More Efficient Randomized Algorithm

We note that finding a point mid exactly as described in
D&C-Recursive and having Schedule-Independent repeat-
edly apply NFDH on each set of configurations as described
in Section III-C both seem to be required only to overcome the
technical challenges in proving Theorem 1. We replace these
methods with more efficient ones that also reinforce the main
principle of the divide-and-conquer algorithm: scheduling
tasks with similar run times in pace configurations together.
We take mid to be the point maximizing |Tmid| among several
random picks within a reasonable range around the mid point
of the intermediate schedule (in terms of its length). This
definition is consistent with the principle above since a large
Tmid often means better grained set of mid-tasks and more
degree of freedom for Schedule-Independent to match similar
tasks together. Moreover, we let Schedule-Independent apply
NFDH on only the pace configurations ({c1i }i) of Tmid. Since
NFDH schedules these tasks in shelves greedily and shelves
are always kept disjoint, there is still room for improvement
within the individual shelves. In each shelf, we first use
up all the unused power budget by choosing a shorter—
higher power—configuration for the longest task. We do this
incrementally because the longest task may not be the longest
anymore after using a portion of the available power budget.
Then, similarly, we take power away from the shortest task—
making it longer—and use this freed power to make the longest
task shorter until no more improvements are possible. These
operations essentially try to make the tasks running in a shelf
start at the same time, use almost all of the power budget all
throughout their execution, and finish around the same time. If
we have already matched tasks that have very similar execution
times in their initial pace configurations, then the deviation
from the pace configurations is minimum and we achieve high
power budget utilization with energy efficient configurations.
The implemented D&C in the rest of the paper refers to
this version with randomized mid selection and improved
Schedule-Independent.

IV. GREEDY ALGORITHMS

A. Greedy Strategies

The problem we study and the solution we offer with the
divide-and-conquer algorithm is not about the intricacies of
scheduling introduced in the systems level such as data locality
or network delays, but it is about the essentials of scheduling
a DAG under a power-cap. (It could also be argued that some
of these additional complexities are easier to deal with in
a greedy algorithm and some are easier for a divide-and-
conquer algorithm.) For this reason, we compare our algorithm
to greedy algorithms that form the basis of today’s state-of-
the-art schedulers.

One such algorithm for DAG scheduling under a power
cap is obtained by extending existing DAG schedulers to take
the power cap into account. The list scheduling algorithm
proposed initially by Graham [11] has been the essential
DAG scheduling algorithm. There is, in fact, a hardness of
approximation result [40] stating that one cannot get a better
generic algorithm for DAG scheduling. In the list scheduling
algorithm, the DAG is extended to a total order (a list) and,
as soon as a machine is available, the next task in this list
is scheduled on this machine. The analysis in [11] states
that an arbitrary extension to a total order is as good as any
extension for DAG scheduling. However, with the introduction
of the power cap and requirements, we note that this extension
can have an effect on the algorithm’s performance. Thus we
consider two greedy variants differing in the choice of the next
tasks to be scheduled among all tasks whose predecessors are
all completed:
• G1: Always take the next task to be the one whose

dependencies completed the first.
• G2: Take the “best fit” among the tasks whose de-

pendencies are completed. We define the best fit to be
the task whose power requirement in its most energy
efficient configuration is closest to the free power budget.
This definition aims to minimize the deviation from pace
configurations in the final schedule.

We let G3 refer to a greedy algorithm obtained by ex-
tending a power-cap-aware scheduler to also obey the DAG
dependencies. It employs the strategy of greedily scheduling
the tasks in the non-increasing order of their running time,
which is previously used and analyzed in the context of
strip packing, resource constrained scheduling, and malleable
task scheduling [5], [39]. Since the running time of a task
depends on the configuration selected for it, to be able to
compare tasks in terms of their run time before scheduling
them, G3 uses their run times in their most energy efficient
(pace) configuration. In order to make it also satisfy the DAG
dependencies, it only considers the tasks whose predecessors
all have been completed.

In all three algorithms described above, the next task is
scheduled on the available machine in a configuration that
will use the maximum amount of the free power budget.
This makes sure that all three algorithms work towards at
least one of two goals stated in Section I to achieve better
performance: maximize power budget utilization. Note that
G2 also makes the choice for the next task to achieve the
second goal simultaneously: maximize energy efficiency of
the individual task’s configurations.

B. State-of-the-art Schedulers

As mentioned in the introduction, the state-of-the-art in
scheduling is adapting greedy scheduling to practical im-
plementation concerns. For example, Spark is a distributed
workload management system that is precedence aware, but
not power-aware. Spark adapts a greedy scheduler to re-
duce IO overhead [41]. Cilk++—a language and runtime for
multi-threaded workloads—uses a sophisticated work-stealing



scheduler that distributes the scheduling load across all par-
ticipating processors, while maintaining the fundamentally
greedy strategy [9]. Several recent advances have dealt with
the practical reality that often precise power and performance
tradeoffs are not known, so they augment greedy schedulers
with machine learning to estimate the power and time of each
configuration and task [42]–[48] or to deal with tasks that
take longer than expected (also known as “stragglers”) [8],
[49]. Even modern power-aware schedulers use greedy strate-
gies, including both commonly deployed solutions [12] and
cutting-edge research solutions that deal with serious practical
concerns like unknown power/performance relationships [14],
manufacturing variability across super-computer nodes [15],
and balancing the needs of independent IO- and compute-
bound applications [13]. Our evaluation elides these practical
details to focus on the fundamental differences between greedy
strategies (as described above) and the divide-and-conquer
strategy presented in this paper.

V. EVALUATION AND RESULTS

We evaluate our divide-and-conquer algorithm on a mixture
of real and synthetic workloads, using a high-level simulator.
We compare our algorithm D&C against greedy strategies G1,
G2, and G3 on a variety of both random and real-world DAG
structures varying in size and parallelism depth. We compare
the four algorithms against a theoretical lower bound on
execution time. We show how different power caps impact the
algorithms and that the divide-and-conquer algorithm performs
especially well with more stringent power caps. Finally, we
show that the divide-and-conquer approach utilizes more of
the available power than greedy, and we demonstrate that our
approach scales well on large DAGs containing up to 10,000
nodes.

A. Experimental Setup

In this section we describe the simulator used in our
experiments, the DAG properties, and the power- and per-
formance measurements obtained. The simulator is a Python
package that can be used to implement and test any DAG
scheduling algorithm under power constraints. It takes a DAG,
power cap and number of machines as input and runs the
desired algorithm. The output is the schedule produced by the
algorithm and an optional visualization of the power utilization
over time.

Our algorithm is DAG-agnostic and can handle any shape
and size of the DAG. To demonstrate, we chose a diverse en-
semble of DAGs. We consider DAGs from real scientific appli-
cations and randomly generated DAGs (using DAGGEN [50]).
We consider two simple Swift/T [51] applications with DAGs
generated directly by Swift. We have also selected applications
from the Rodinia benchmark suite [52] and the NAS Parallel
Benchmarks (NPB) [53], whose DAGs were obtained by
combining compiler-generated callgraphs using LLVM [54].

The simulator takes a set of configurations for each DAG
node that correspond to real measurements of time and power
of whole applications obtained from a single machine. The

TABLE I
DESCRIPTION OF DAGS WITH NODE COUNT n AND HEIGHT h

Application Description n h
synth-lg-long random, generated 10, 000 701
synth-lg-wide random, generated 10, 000 7
swift1 sleep tasks called iteratively 461 3
swift2 iterative calls to Tcl 4, 195 3
npb-is NPB kernel: integer Sort 43 5
npb-dc NPB benchmark: data cube 188 7
backprop backpropagation algorithm 79 5
kmeans clustering algorithm 60 6
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Fig. 2. Percent overhead to theoretical lower bound.

mapping of configurations to DAG structures described above
is performed in a random fashion and is configurable. In
total we have power and performance measurements of 26
applications obtained from a real system. The applications are
a combination of Rodinia and MineBench [55] benchmarks.
Power and performance of each application were measured
on a dual-socket Linux 3.2.0 system with a SuperMICRO
X9DRL-iF motherboard and two Intel Xeon E5-2690 proces-
sors. Each processor has 8 cores with hyperthreading, and
16 DVFS settings. In addition, each processor has its own
memory controller. Therefore, in total there are 1024 user-
accessible configurations (16 cores, 2 hyperthreads, 2 memory
controllers, 16 DVFS settings). This system’s idle power is
approximately 90 W. A user may wish to collect their own
power and performance measurements and use them in our
simulator instead.

B. Results

For each simulation, we obtain a theoretical lower bound
on the execution time. A schedule with all tasks in pace
configurations and with a perfect power utilization runs for∑
t t(cpacet )p(cpacet )/P time. This bound can be even smaller

than what is attainable by an algorithm because it does not
consider the precedence constraints imposed by the DAG.
Nevertheless, this lower bound on the execution time is the
best that any algorithm can get. We then obtain the additional
time of D&C, G1, G2, and G3 beyond this lower bound in
terms of percentages for each simulation. We refer to this
additional time as the overhead of the strategy compared
to the lower bound. With each combination of m, P and
DAG parameters, we run a hundred simulations and take the
geometric mean of the percent overheads.

Figure 2 shows the mean percent overheads of all four
algorithms with m = 10 machines under P = 200W power



TABLE II
PERCENT IMPROVEMENT OF D&C OVER THE BEST OF G1, G2, AND G3
IN EACH CASE WITH 10 AND 20 MACHINES AND VARIOUS POWER CAPS.

 
 
 
 
 

 

m=10        

P=100W 60.3 60.0 67.4 64.6 63.9 72.0 32.7 

P=200 35.4 36.9 36.2 43.8 40.4 46.2 13.4 

P=300 5.8 18.5 9.9 15.5 4.5 3.6 5.0 

P=400 3.8 3.1 -7.2 11.8 -12.2 0.0 2.3 

P=500 -8.2 5.3 -15.7 -3.0 -14.3 2.4 -18.8 

m=20        

P=200W 62.3 61.5 59.8 72.8 74.6 64.3  

P=400 39.4 37.8 49.0 39.2 27.7 30.0  

P=600 2.3 12.9 -8.7 8.2 10.0 -13.2  

P=800 1.9 3.4 -27.2 5.6 6.8 -20.4  

P=1000 -25.5 -10 -15.5 -9.3 -2.3 -24.7  

cap. On the kmeans DAG, for example, D&C has on average
89% overhead to the theoretical lower bound whereas the best
out of three greedy algorithms, G3, has 141%. Thus, we can
consider D&C to have a (141−89)

141 = 36.9% improvement over
the best greedy algorithm in this setting.

Table II summarizes our main results in terms of percent
improvement of D&C over the best greedy algorithm in each
setting. When power is severely constrained (P ≤ 300 for
m = 10, P ≤ 600 for m = 20) we find that D&C
averages 35% improvement over the best of greedy algorithms.
When power constraints are loose D&C tends to have lower
performance because the problem starts to become more like
DAG scheduling with no power constraints for which the
greedy algorithms have been known to perform very well for
50 years [11].

Different global power cap settings impact the efficacy
of any DAG scheduling algorithm under power constraints.
When the power cap is too liberal, the problem reduces to
a DAG scheduling problem with essentially no power cap.
To avoid this, for each combination of graph and number
of machines, we set the power cap within a range of the
mean statistics of the pace configurations’ power requirements
because, as explained before, any such effective scheduling
algorithm should aim for the pace configurations.2

Table II demonstrates the superiority of our divide-and-
conquer method under strict power caps.3 Improvements get
to as high as 74.6% in the case of m = 20, P = 200W
on the swift1 DAG. Negative percentages indicate D&C un-
derperforming the best greedy algorithm in that case. D&C’s
performance over each of there greedy algorithm separately

2Mean power requirement of the pace configurations in different simula-
tions ranges from 15W to 20W above idle.

3As the DAG synth-lg-long is a “long” graph with very limited parallelism,
we only report m = 10 for synth-lg-long.

can be found in Table III. A self-evident pattern in these
results is the diminishing improvements of D&C as the power
cap gets bigger. In all experiments, there is a turning point
for the power cap where D&C performs significantly better
for power caps below this point and, when the power cap is
above this point, either one of the greedy algorithms starts to
perform better or all four algorithms tend to perform similarly
depending on the particular DAG. For example, npb-is DAG
on m = 20 machines has this turning point somewhere
between P = 800W and P = 1000W . As mentioned earlier,
DAG scheduling under power constraints starts to resemble
DAG scheduling with no power constraints as the power cap
increases. Since our divide-and-conquer method is particularly
designed for scheduling under power constraints, the observed
diminishing improvements of D&C as the power cap increases
are exactly what is expected.

We stated that the principle of concurrently scheduling
similar pace tasks gives our divide-and-conquer method an
edge in better managing the trade-off between conflicting
approaches of choosing energy efficient configurations and
utilizing the power budget. We also note that this trade-off
is biased towards the power budget utilization. Our results
for energy efficiency of the configurations chosen by all
four algorithms and for the power utilization attained by
them support this claim. In majority of the cases where
D&C outperforms greedy algorithms, it utilizes significantly
more power budget on average than these algorithms. In the
combinations of machine numbers, power caps, and DAGs
reported in Table II, greedy algorithms waste 44.2% of the
power budget on average whereas D&C’s non-utilized power
budget is only 30% of the total available budget. Still, these
values may seem considerably high for both algorithms. As
one would expect, both algorithms manage to utilize a much
bigger portion of the power budget when the power cap is
low compared to the cases when the power cap is high. On
the npb-dc graph with m = 10 machines, for example, G3
and D&C fail to utilize 10.9% and 3.8% when the power
budget is P = 100W , respectively, but these numbers get as
high as 36.6% and 32.8% when it is P = 500W . Neither
algorithm can significantly utilize a power budget set by a
high power cap, because of two reasons: applications have
realistic configuration sets in which arbitrarily increasing the
power requirements of a task—thereby speeding up the task—
is not possible, and all these DAGs have parts with insufficient
parallelism to utilize the whole power budget. Moreover, the
poor power utilization by both algorithms is another indicator
that the problem on high power caps starts to turn into DAG
scheduling with no power cap.

When D&C cannot utilize more power than the greedy
algorithms, it still has an advantage by scheduling tasks
closer to pace configurations than the greedy algorithms can.
On swift2 with m = 10 and P = 100W , for example,
D&C and G3 fail to utilize 3.4% and 1.3% of the power
budget, respectively, but D&C still manages to get better final
execution times by choosing configurations with total energy
only 4% more than the best possible with pace configurations.



TABLE III
PERCENT OVERHEAD OF G1|G2|G3|D&C, RESPECTIVELY, ON THE THEORETICAL LOWER BOUND. LOWER IS BETTER. FOR EACH ENTRY THE BEST

RESULT IS IN BOLD AND THE SECOND BEST IS ITALIC.

 
 
 
 
 

 

 

 

m=10        

P=100W 73|100|78|29 115|172|128|46 46|64|46|15 149|215|127|45 36|46|41|13 26|39|25|7 60|90|55|37 

P=200 148|163|130|84 168|205|141|89 62|65|58|37 197|216|176|99 47|50|47|28 26|26|26|14 182|280|149|129 

P=300 178|193|155|146 228|255|195|159 94|111|81|73 329|323|245|207 45|44|44|42 29|29|28|27 293|394|221|210 

P=400 201|206|182|175 227|234|195|189 83|88|77|83 378|397|321|283 37|37|36|41 35|35|33|33 280|339|215|210 

P=500 319|361|259|282 372|427|323|306 118|129|113|134 304|356|262|270 62|62|60|70 43|43|42|41 351|429|277|341 

m=20        

P=200W 224|315|220|83 252|403|281|97 92|136|100|37 383|491|398|104 67|92|67|17 29|39|28|10  

P=400 247|247|213|129 378|416|328|204 123|124|104|53 558|630|492|299 74|95|65|47 31|32|30|21  

P=600 420|491|344|336 471|565|412|359 180|194|137|150 508|525|379|348 85|83|70|63 33|33|33|38  

P=800 480|563|429|421 659|725|527|509 156|176|134|184 832|985|709|669 117|132|313|109 44|44|43|54  

P=1000 513|499|369|495 728|780|583|648 361|410|288|341 924|971|708|781 127|131|137|130 58|59|58|77  

backprop kmeans npb-dc npb-is swift1 swift2 synth-lg-long 

TABLE IV
PERCENT OVERHEAD OF G1|G2|G3|D&C, RESPECTIVELY, ON THE

THEORETICAL LOWER BOUND.

 
 
 
 
 

 

m=50    

P=500W 132|165|93|69 34|46|36|18 29|43|28|32 

P=800 219|450|399|120 43|47|44|32 36|48|38|53 

P=1000 317|605|260|161 41|50|42|41 43|66|36|74 

P=1500 541|927|746|259 32|33|32|53 58|88|41|123 

P=2000 535|846|515|270 54|55|54|97 50|57|42|124 

m=100    

P=500W 124|141|82|60 31|38|39|14 29|37|40|33 

P=800 215|441|292|114 40|55|49|27 48|92|45|67 

P=1000 312|574|271|154 52|85|58|41 48|86|45|71 

P=2000 613|897|612|252 62|101|66|82 97|119|66|103 

P=3000 925|1153|916|349 46|43|41|96 180|212|125|217 

swift1 swift2 synth-lg-wide 

In the same setting, G3, the best greedy algorithm among
all three in this particular setting, chooses configurations with
total energy 24% more than the energy of pace configurations.
Thus, in this case D&C is saving significant energy compared
to the best greedy approach.

In addition to improvement of D&C over the best greedy
algorithm in each case presented in Table II, we present each
algorithms’ overhead to theoretical lower bound in Table III.
In Table IV, we provide additional results in support of the
scalability of our algorithms. We present the settings with
m = 50 and m = 100 on the DAGs that are large enough
and that have enough parallelism to benefit from the increase
in the number of machines. One might consider increasing the
range of power caps proportional to the number of machines
m. However, a power cap set this way for m = 100 machines
to P = 6000W , for example, will reduce the problem to
essentially a DAG scheduling with no power cap at all times
when the DAG cannot utilize all 100 machines. Also recent
research indicates it may be more efficient overall to more

severely cap large systems and make more use of parallelism
than speed of individual nodes [33], [34]. We report in
the range 500 − 2000W for 50 machines and in the range
500−3000W for 100 machines. We observe the same behavior
of D&C having diminishing improvements as we increase the
power cap. We note that the size of any particular DAG does
not change in our simulations as we increase m from 10 to
100 and P from 100W to 3000W ; i.e., we are simulating
strong scaling results.

VI. CONCLUSION

This paper addresses the problem of scheduling parallel
workloads (represented as DAGs) under power constraints on
distributed systems with configurable resources. We present
a novel divide-and-conquer algorithm that finds and concur-
rently schedules similar tasks to maximize the power utiliza-
tion while keeping energy efficiency high. We prove that our
algorithm is always within O(log n) factor of the optimum
solution. We also present three variations on greedy algorithms
that form the basis of todays state-of-the-art schedulers. We
show that under strict power caps (which are expected to
become common in the next generation of exascale supercom-
puters) the divide-and-conquer algorithm’s ability to achieve
both high power utilization and high energy efficiency results
in much lower runtimes for a number of DAG workloads.
Furthermore, this algorithm scales up to work on DAGs with
10,000 nodes. The divide-and-conquer algorithm presented
here extends the best known algorithm for scheduling under
both precedence and power constraints by incorporating the
practical concern of considering configurable resources. There-
fore, we believe this algorithm has the potential to significantly
impact future scheduler implementations for HPC systems.
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aggressive scheduling techniques for power-aware real-time systems,” in
RTSS, 2001.

[24] S. Albers and A. Antoniadis, “Race to idle: new algorithms for speed
scaling with a sleep state,” in SODA, 2012.

[25] N. Bansal, H.-L. Chan, T. W. Lam, and L.-K. Lee, “Scheduling for speed
bounded processors,” in ICALP, 2008.

[26] N. Bansal, D. P. Bunde, H.-L. Chan, and K. Pruhs, “Average rate speed
scaling,” Algorithmica, vol. 60, no. 4, 2011.

[27] H.-L. Chan, J. W.-T. Chan, T. W. Lam, L.-K. Lee, K.-S. Mak, and
P. W. H. Wong, “Optimizing throughput and energy in online deadline
scheduling,” ACM Transactions on Algorithms, vol. 6, no. 1, 2009.

[28] N. Bansal, H.-L. Chan, and K. Pruhs, “Speed scaling with an arbitrary
power function,” ACM Transactions on Algorithms, vol. 9, no. 2, 2013.

[29] K. Pruhs, R. van Stee, and P. Uthaisombut, “Speed scaling of tasks with
precedence constraints,” in WAOA, 2006.

[30] D. P. Bunde, “Power-aware scheduling for makespan and flow,” in SPAA,
2006.

[31] N. Kappiah, V. W. Freeh, and D. K. Lowenthal, “Just in time dynamic
voltage scaling: Exploiting inter-node slack to save energy in mpi
programs,” in SC, 2005.

[32] A. Marathe, P. E. Bailey, D. K. Lowenthal, B. Rountree, M. Schulz,
and B. R. de Supinski, “A run-time system for power-constrained hpc
applications,” in ISC, 2015.

[33] T. Patki, D. K. Lowenthal, A. Sasidharan, M. Maiterth, B. L. Rountree,
M. Schulz, and B. R. de Supinski, “Practical resource management
in power-constrained, high performance computing,” in HPDC, 2015.
[Online]. Available: http://doi.acm.org/10.1145/2749246.2749262

[34] O. Sarood, A. Langer, L. Kale, B. Rountree, and B. de Supinski,
“Optimizing power allocation to cpu and memory subsystems in over-
provisioned hpc systems,” in CLUSTER, 2013.

[35] P. E. Bailey, A. Marathe, D. K. Lowenthal, B. Rountree, and M. Schulz,
“Finding the limits of power-constrained application performance,” in
SC, 2015.

[36] R. Lepère, D. Trystram, and G. J. Woeginger, “Approximation algo-
rithms for scheduling malleable tasks under precedence constraints,” in
Proceedings of the 9th Annual European Symposium on Algorithms, ser.
ESA ’01, 2001, pp. 146–157.

[37] K. Jansen and H. Zhang, “An approximation algorithm for scheduling
malleable tasks under general precedence constraints,” ACM Trans.
Algorithms, vol. 2, no. 3, pp. 416–434, Jul. 2006.

[38] ——, “Scheduling malleable tasks with precedence constraints,” Journal
of Computer and System Sciences, vol. 78, no. 1, pp. 245 – 259, 2012,
jCSS Knowledge Representation and Reasoning.

[39] J. Turek, J. L. Wolf, and P. S. Yu, “Approximate algorithms scheduling
parallelizable tasks,” in Proceedings of the Fourth Annual ACM Sym-
posium on Parallel Algorithms and Architectures, ser. SPAA ’92, 1992,
pp. 323–332.

[40] O. Svensson, “Conditional hardness of precedence constrained schedul-
ing on identical machines,” in Proceedings of the Forty-second ACM
Symposium on Theory of Computing, ser. STOC ’10. New York, NY,
USA: ACM, 2010, pp. 745–754.

[41] S. Venkataraman, A. Panda, G. Ananthanarayanan, M. J. Franklin, and
I. Stoica, “The power of choice in data-aware cluster scheduling,” in 11th
USENIX Symposium on Operating Systems Design and Implementation,
OSDI ’14, Broomfield, CO, USA, October 6-8, 2014., 2014.

[42] C. Delimitrou and C. Kozyrakis, “Paragon: Qos-aware scheduling for
heterogeneous datacenters,” in ASPLOS, 2013.

[43] ——, “Quasar: Resource-efficient and qos-aware cluster management,”
in ASPLOS, 2014.

[44] N. Mishra, J. D. Lafferty, and H. Hoffmann, “Esp: A machine learning
approach to predicting application interference,” in ICAC, 2017.

[45] N. Mishra, H. Zhang, J. D. Lafferty, and H. Hoffmann, “A probabilistic
graphical model-based approach for minimizing energy under perfor-
mance constraints,” in ASPLOS, 2015.

[46] N. Mishra, C. Imes, J. D. Lafferty, and H. Hoffmann, “CALOREE:
Learning Control for Predictable Latency and Low Energy,” in ASPLOS,
2018.



[47] H. Zhang and H. Hoffmann, “Maximizing Performance Under a Power
Cap: A Comparison of Hardware, Software, and Hybrid Techniques,” in
ASPLOS, 2016.

[48] ——, “Performance & energy tradeoffs for dependent distributed appli-
cations under system-wide power caps,” in ICPP, 2018.

[49] N. J. Yadwadkar, B. Hariharan, J. E. Gonzalez, and R. Katz, “Multi-task
learning for straggler avoiding predictive job scheduling,” Journal of
Machine Learning Research, vol. 17, no. 106, pp. 1–37, 2016. [Online].
Available: http://jmlr.org/papers/v17/15-149.html

[50] “DAGGEN: A Synthetic Task Graph Generator,” 2013. [Online].
Available: https://github.com/frs69wq/daggen

[51] J. M. Wozniak, T. G. Armstrong, M. Wilde, D. S. Katz, E. Lusk, and
I. T. Foster, “Swift/t: large-scale application composition via distributed-
memory dataflow processing,” in CCGrid, 2013.

[52] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in IISWC, 2009.

[53] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,
L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.
Schreiber et al., “The nas parallel benchmarks,” International Journal
of High Performance Computing Applications, vol. 5, no. 3, pp. 63–73,
1991.

[54] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong
program analysis & transformation,” in Code Generation and Optimiza-
tion, 2004. CGO 2004. International Symposium on. IEEE, 2004, pp.
75–86.
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