Stacker: An Autonomic Data Movement Engine for
Extreme-Scale Data Staging-Based In-Situ
Workflows

Pradeep Subedif, Philip Davis®, Shaohua Duan', Scott Klaskyi, Hemanth Kolla?, and Manish Parashar'
T{pradeep .subedi, philip.e.davis, shaohua.duan, parashar}@rutgers.edu
TRutgers Discovery Informatics Institute, Rutgers University, Piscataway, NJ
iklasky@ornl.gov
tOak Ridge National Laboratory, Oak Ridge, TN
§hnkolla@sandia.gov
§Sandia National Laboratories, Livermore, CA

Abstract—Data staging and in-situ workflows are being
explored extensively as an approach to address data-related
costs at very large scales. However, the impact of emerging
storage architectures (e.g., deep memory hierarchies and burst
buffers) upon data staging solutions remains a challenge. In this
paper, we investigate how burst buffers can be effectively used
by data staging solutions, for example, as a persistence storage
tier of the memory hierarchy. Furthermore, we use machine
learning based prefetching techniques to move data between
the storage levels in an autonomous manner. We also present
Stacker, a prototype of the proposed solutions implemented
within the DataSpaces data staging service, and experimentally
evaluate its performance and scalability using the S3D
combustion workflow on current leadership class platforms.
Our experiments demonstrate that Stacker achieves low latency,
high volume data-staging with low overheads as compared to
in-memory staging services for production scientific workflows.

Index Terms—Extreme Scale Data Staging, Machine Learning,
Data Prefetching, High Performance Computing

I. INTRODUCTION

End-to-end scientific =~ workflows include coupled
simulations along with data handling/processing services
such as analysis and visualization. Running at
extreme-scales, these workflows can produce insights into
complex phenomenon with increasing fidelity. However, the
execution of these simulations on leadership class systems
present significant data management challenges due to the
increasing volume of data that has to be managed and
moved. This data can be in the order of petabytes [3], [24].
For example, the XGCIl gyrokinetic particle-in-cell
simulation workflow can generate up to 100PB of data [15],
[20] in a single run on Titan, the leadership-class Cray
System at ORNL. Moving this data between the simulation
and analysis components of the workflow quickly becomes a
serious bottleneck. In-situ and in-transit data processing
solutions have been proposed to address the data movement
and analysis challenges [3], [13], [24]. Many of these
approaches use data staging, leveraging memory at staging
nodes to hold data as it moves between the components of
the workflow [1], [3], [19]. However, emerging architectural
trends indicate a decrease in the amount of DRAM memory
per core as well as a slower rate of increase in the storage

SC18, November 11-16, 2018, Dallas, Texas, USA
978-1-5386-8384-2/18/$31.00 ©2018 IEEE

bandwidth as compared to the computational throughput
[19], [32]. These trends will severely limit the effectiveness
of memory-based staging solutions, which enable in-situ
workflow execution and allow applications to tolerate slower
disk latencies.

The rate of data generation is just one challenge putting
pressure on in-memory staging solutions for in-situ workflows.
Even if the simulation application is not generating data at an
extremely high rate, coupling or data analysis may require data
accumulation over multiple simulation iterations causing the
data flowing between the components of the workflow to grow
quickly. With limited memory sizes, this intermediate data will
have to be offloaded from in-memory staging, possibly to the
parallel file system (PES). However, the increasing latency gap
between disks and memory makes this solution undesirable.

Systems at the leadership computing facilities are
increasingly augmenting the hardware and I/O middleware
layers to better handle applications with bursty /O by
attaching a set of on-node NVMe SSDs (often called
burst-buffers) [22]. Emerging NVM technologies have
smaller access latencies and better throughput as compared
to the PFS, and can therefore be used as an intermediate tier
of the memory hierarchy. This tier of on-node NVMe SSDs
can enable data staging services to offload data from staging
memory [19], [28] without incurring the performance penalty
associated with moving it to the PFS. While these burst
buffers are designed to act as a write-behind cache for HPC
storage systems, integrating them as a part of the memory
hierarchy for data staging presents new challenges. Although
burst buffers have higher throughput than conventional disks,
they have much longer access latencies and a lower
throughput as compared to main memory. In an application
workflow, if a component of the workflow must access data
offloaded to the burst buffer tier it will experience a higher
latency, which can significantly impact the performance of
the application.

Intelligent data prefetching based on access patterns can
hide this disk access and data transfer latency by moving the
data to DRAM before it is requested [S5], [11]. The
effectiveness of such prefetching, however, depends upon the

ability to recognize data access patterns and identify
appropriate data to be prefetched. Existing prefetching
approaches for coupled scientific HPC applications have
been based on user-defined hints [19]. While this works well
for simple applications, as application workflows become
more complex, this approach quickly becomes infeasible.
Furthermore, access patterns can change at runtime, the
workflow may include third party libraries where the access
pattern is not know to the user, and staging resources may be
shared between multiple application workflows [3], [10],
[13], [38]. These factors make it likely that user-defined
hints will be of little use or even detrimental to performance
in complex application workflows, since prefetching the
wrong data due to incorrect hints degrades performance due
the additional data movement. An alternate prefetching
approach is based on spatial and/or temporal locality,
analogous the approaches used for CPU caches [26]. While
locality-based prefetching can work well for regular accesses
within a single application, it is not as effective for more
complex access patterns (e.g., variable strided access) or
cross-component data access in an application workflow
[16], [19], [29].

The goal of this paper is to explore machine learning
based approaches to capture the data access patterns between
components of staging-based in-situ application workflows,
and to use these learned access patterns to move data
between the storage layers of the staging service in an
autonomous manner. Specifically, in this paper we present
the design of Stacker, an autonomous staging-based data
management runtime. Rather than modeling individual
applications and their access patterns, in Stacker we model
the data accesses between multiple components of
application workflows. We do this because, in the case of
application workflows, access patterns of the different
components applications that make up the workflow (and
from different workflows sharing the staging resources) can
be interleaved at the staging servers, and as a result
accurately modeling an individual application’s access
pattern is not sufficient.

Stacker uses various n-gram [4] models to dynamically
manage and optimize data movement across multiple layers
of the storage hierarchy. Specifically, incoming read requests
to the data staging servers are tracked at runtime to build
n-gram models. These models are used to anticipate future
requests for prefetching data objects from SSDs to DRAM.
This reduces application perceived SSD access overheads
and improves the overall data read time. We implemented
and deployed Stacker using DataSpaces [13] framework on
Calibrun Supercomputer [31] and Titan Cray XK7 system.
Since Titan is not equipped with SSDs, we mimicked data
read/write behaviors of Intel SSD DC P4600 SSD [7] by
introducing appropriate latencies for every read/write
requests.

In this paper, we make following contributions:

« We design Stacker, a multi-tiered data staging system,

which is based on DataSpaces and utilizes on-node SSD

': Data Staging Service Analysis Applications
User Files /Applications Analysis 1 .
Simulation Applications In-memory Data Staging —
” Analysis 2
Simulation 1 . ;.
“e—— .
Simulation 2 l
————— @ Analysis N .
:] —
Simulation N .
“— Deep Memory
Hierarchy (SSDs)

Fig. 1. A typical data staging framework with in-memory data staging. Each
of the data staging nodes/servers is equipped with SSDs. Simulations and
other applications put/get data to/from staging service. Analysis applications
analyze the data and produce intermediate data.

and DRAM to enable high capacity data staging for in-
situ workflows, while maintaining low overheads.

« We implement an autonomous data movement runtime in
Stacker to enable efficient data movement and placement
across the multiple layers of the staging memory/storage
hierarchy without a priori knowledge of application data
access pattern or user inputs/hints.

o« We evaluate Stacker on current leadership computing
systems using S3D combustion workflow running on up
to ~32K cores and demonstrate that it can reduce read
response time by up to 54% in comparion to
no-prefetching.

The rest of the paper is organized as follows. Section 2
provides background and a motivating example. Section 3
describes the design and implementation of Stacker. In
Section 4, we evaluate Stacker and compare its performance
with other staging-based data prefetching approaches.
Section 5 includes a discussion of related work and Section
6 presents concluding remarks.

II. BACKGROUND AND MOTIVATION

In this section, we provide a background on data staging
and then describe some of the challenges present in scientific
HPC workflows. We then investigate why the traditional
mechanisms of integrating the deep memory hierarchy are
not efficient in supporting HPC workflows with dynamic
data access patterns. We then introduce new techniques
which alleviate such problems.

A. Data Staging and In-situ Workflows

A sophisticated data staging workflow couples multiple
simulation applications with analysis applications to enable
efficient data sharing across the workflow. Figure 1 illustrates
a coupled simulation workflow, where the simulation
applications generate data by ingesting various user input
files or data from other simulation applications. Different
simulation applications may run at different rates and with
different resource requirements. This heterogeneity is evident
in the generation of intermediate and output data products as
these data become available at different times through the
lifetime of the workflow. These output data are stored in

dedicated memory of some intermediary nodes (often called
staging nodes/servers.) Multiple analysis applications also
connect to these dedicated nodes via the data staging service
to consume the data and produce prompt insight.

Data staging techniques leverage dedicated resources in
the HPC platform to store and process data as it flows from
one component to another. In-memory data staging
approaches, such as DataSpaces [13] offer a virtual
shared-space abstraction that can be accessed in a transparent
manner by various components of in-situ/in-transit
workflows. The data movement between the workflow
components is usually supported via RDMA-based
asynchronous data transport mechanisms. This allows live
data to be extracted and analyzed, which makes timely
insights from data possible. It should be noted that
simulation/analysis applications and staging processes can
also be co-located on the same node. Using a staging
process allows the coupling to be loose so that coupled
applications need not be heavily modified.

While in-memory data staging techniques are very useful
for improving workflow performance, they naively store all
of the data in the DRAM of the dedicated staging nodes.
Increasing data volume and non-uniform data production and
consumption in extreme-scale can easily result in situations
where data volumes exceed available DRAM resource in the
staging area. In such situations, data must be pushed to the
lower levels of memory hierarchy, such as on-node SSDs or
burst buffers.

B. Deep Memory Hierarchy and Data Prefetching

Integrating various levels of deep memory hierarchy into
data staging provides a larger shared-space abstraction, but
does not come without caveats. Although pushing data to
lower levels frees up DRAM capacity, access to the data
being stored at lower levels of deep memory hierarchy incurs
extra access latency and lower data throughput. The artifact
of longer access latency comes not from the data staging
framework design, but rather from the system hardware. In
general, SSDs and burst buffers are several orders of
magnitude slower than DRAM in terms of access latencies
and these technologies do not support RDMA data transfers.
Even if RDMA were available for such devices, the access
latency variation across different storage devices affects the
application perceived latency, because data still needs to be
moved from the SSD to the consumer application. Thus,
analysis applications will see an increase in data access time
when the requested data is stored in SSDs. To alleviate such
problems, data must be prefetched from SSDs to DRAM,
with the expectation that the prefetched data is highly likely
to be accessed in the near future.

There are several different approaches to identifying which
data should be prefetched. One of the methods explored in
[19] involves a user providing hints about the data access
pattern. While providing hints on the likely data access
pattern seems feasible for a small application, it can be
almost impossible to determine these patterns a priori in a

more complex workflow, since dynamic data-driven HPC
analysis applications evolve based wupon earlier
simulation/analysis results. To provide hints for a data
staging service, a user is required to have a detailed
understanding of the underlying simulation and analysis
applications to capture the access patterns. It is not
reasonable to expect a user of a large scale HPC workflow to
understand the minutiae of the (potentially dynamic) data
exchange patterns of their workflow well enough to provide
generally optimal hints. This makes a solution dependent on
user hints undesirable.

A second approach, locality-based prefetching, is widely
used in compiler architectures [26]. While locality-based
prefetching methods are good for applications that read data
on a contiguous tile-by-tile pattern, they suffer from a higher
rate of misprediction for applications that perform variable
strided data access. The reason for this is that locality-based
data prefetches data stored near current requests and if the
stride length is larger than prefetch length, there will be a
misprediction. These more frequent mispredictions increase
the perceived latency of the workflow. Additionally, HPC
workflows typically involve multiple processes or
applications concurrently reading datasets. When these
applications issue requests in parallel for data access, the
requests are interleaved and actual data access pattern from
the perspective of the storage server will be very different
from that of a single application/process. In this case,
locality-based prefetching tends to work quite poorly.

As an illustrative example, consider the case in which
applications A and B are reading from datasets that consist
of variables « and 3, respectively, from a staging server. Let
us assume that A reads dataset « sequentially and B reads
dataset 5 in the same way. If A and B issue requests such
that data staging server sees requests in the pattern of
{a, 5, a, (...}, then locality-based prefetching will have a
very high rate of misprediction. When some data from
variable « is requested, locality-based prefetching copies
extra data of variable o into memory. When a request for
variable [arrives next, the data of $ must be copied into
memory. Since memory is limited, the prefetched data from
« is evicted and the request for S by B is served along with
locality-based prefetch of some different portion of variable
B. This misprediction, with the subsequent avoidable
prefetch and eviction, continues in every subsequent request,
which directly affects the workflow’s perceived latency. In
this example, we want to point out that effective data
prefetching techniques should not only capture an individual
application’s pattern, but should also consider the
inter-application data access pattern. In short, a prefetching
algorithm should also predict the variable or dataset likely to
accessed, in addition to the request offsets or access
boundaries for the next request.

The inefficacies of user-based hints and locality-based
prefetching warrant an autonomous data movement engine
between multiple layers of the memory/storage hierarchy.
One of the potential solutions to the problem of

characterizing evolving data patterns is to use an Artificial
Neural Network (ANN) [39] to capture the ever-changing
data access pattern. While this solution might be able to
capture dynamic pattern, most of these methods are designed
for offline training. When these networks are trained over
offline data sets, it will lead to these algorithms to behave
poorly on new, dynamic datasets. Even if these algorithms
are ported to perform online training, it requires a prohibitive
amount of time to train the network (for example, ~ 50% of
the total execution time is required in [34] to model the I/O
performance in Titan Supercomputer). Even if the network is
trained, when significant numbers of mispredictions occur,
retraining of the network becomes necessary, which again
takes significant time. In this paper, to address the above
mentioned concerns about autonomic data prefetching while
capturing dynamic data access patterns, we present the
Stacker staging platform. Stacker uses n-gram models that
are updated with every incoming read request to perform
data access prediction.

C. N-grams

An n-gram model is a type of probabilistic language
model for predicting the next item in a sequence which takes
the form of an (n — 1)-order Markov model [4]. An n-gram
is a subsequence of N consecutive tokens in a stream of
tokens. N-gram analysis has been heavily used in text
mining and natural language processing [4], [9], [36] and
also explored in various areas of speech recognition [17] and
URL prediction [30]. An n-gram distribution is generated by
sliding a fixed-size windows across a stream of tokens and
counting the occurrence of each gram. This gram frequency
is then used to build a probabilistic model and the model is
used to perform either prediction or pattern recognition. The
choice of the windows size (n) determines the computational
complexity and size of the frequency/probability table. A
larger value of n increases the size of the frequency table.
Rather than using a fixed size n for n-gram or single-order
Markov chains, Stacker builds hierarchical n-gram models
and uses a cascading approach to expand the search over
various length n-gram models for efficient prediction of
upcoming requests.

III. STACKER

Motivated by the decrease in the DRAM memory size per
core in HPC platforms and increasing availability of on-node
SSDs, we extend in-memory data staging solutions to span
across DRAM and SSDs/burst buffers. This allows us to
dramatically increase the amount of data that can be stored
in the staging area. To support autonomous data movement
across this multi-tier memory design, we present Stacker,
which uses n-gram models to learn and predict the next data
access request to enable data prefetching. Specifically, the
history of data access requests is stored in an n-gram
structure and that information is leveraged for selecting the
best candidate for prefetching. Stacker maintains hierarchical
storage between DRAM (top-layer) and on-node SSD

Staging Server
‘ Co-ordination Layer ‘
[}
¥
el T (e
Data Indexing Data Access Predictor Data Workflow
Access r1Client
Boutl::xlng- Variable History : Apphca‘uo‘nsr
) Predictor| | | Recorder/
Predictor Analyzer
‘ Dart/Data Communication Layer -
/

Fig. 2. Architecture of multi-tiered staging framework of Stacker. The Data
Placement Module and Data Object/Block Storage layer were implemented
on top of DataSpaces framework for Stacker.

(bottom-layer). While Stacker can be extended to include
network attached storage, the significant latency associated
with such storage devices makes them unsuitable for data
staging workflows. If the performance of network storage or
PFS was adequate, data staging would not be required.
Furthermore, leadership class HPC systems do not generally
have hard disks available for use on compute nodes, and as a
results disks are not considered as a staging storage resource
in this paper. While Stacker assumes that SSD’s are sitting at
a lower level than DRAM, this doesn’t limit the applicability
of Stacker to architectures where SSD’s are ‘in-parallel’
rather than ‘under’ DRAM in the memory hierarchy. In such
architecture, Stacker can be used to classify hot and cold
data based on the next-predicted sets of access requests and
make a dynamic decision on where such objects are to be
stored.

Figure 2 presents a schematic overview of Stacker. It is
built upon the DataSpaces framework and existing
components are leveraged to implement a complete data
staging framework spanning across multiple layers of the
memory hierarchy. While Stacker is implemented on top of
DataSpaces and it uses some of the underlying features of
DataSpaces, the key data prefetching technique can be used
for other data-staging designs. The key components of
Stacker include the Data Placement Module and the Data
Object/Block Storage Layer. These modules cooperate to
provide efficient data placement and early data retrieval to
facilitate data movement and sharing across HPC workflow
components.

A. Data Object/Block Storage Layer

The Data Object/Block Storage Layer implements a shared
space abstraction between DRAM and on-node SSDs. It
communicates with the Data Placement Module to make
appropriate data translation from in-memory objects to file
location in persistent storage. Any request going to SSDs
needs to have detailed information on the file-name and
which directory it is stored. In a complex workflow, the
number of data objects can scale substantially. When there
are thousands or even millions of files being staged, keeping

TABLE I
METADATA INFORMATION STORED BY THE DATA STAGING SERVER FOR
EACH STORED DATA OBJECT

[Metadata [Description]

DSG_ID | ID of the server storing the object

var_name | Name of the variable in HPC workflow
b Starting offset of the object in the global bounding box
ub Ending offset of the object in the global bounding box
ver Version number of the object

track of the requisite number of file-names severely increases
the metadata complexity and makes the data staging service
impossible to scale.

To overcome this problem, Stacker implements a name
conversion utility. When an object is stored in data staging
service, metadata information about these objects is stored in
the data indexing layer. This name conversion module
leverages this metadata information to programmatically
generate a unique file-name per object. As an example, when
an application is sent to the data staging server, the server
usually stores following metadata information: DSG_ID,
var_name, b, ub and ver, which are described in Table 1.
The b and ub represent the location of the object in the
global bounding box or the shared-space abstraction. A
bounding box is a geometric descriptor specifying the range
of data along each dimension of the application domain. All
of this information is concatenated into a string to create an
unique file-name for each object. This object is then written
as a file to the SSD using POSIX write APIs. When an
object stored in SSD is requested, the file-name is
functionally computed and appropriate data from that
specific file is sent to the requesting client.

In data staging solutions when a data is written in the
form of an n-dimensional Cartesian grid by an application, it
is converted into 1-dimensional space and stored in memory.
When this n-D object representation is offloaded to SSD, the
serialized representation is not altered. If only a portion of
the n-D object is requested by the client, this portion of n-D
object must be reconstructed by reading from various offsets
of the 1-D representation. There are two ways the
reconstruction can be done: /) First copy the whole object
into memory and reconstruct the requested portion. 2) Issue
multiple small reads to the SSDs to read only the data
necessary for reconstruction of the requested portion. In the
second case, multiple read requests are necessary since the
transformation from n-D to 1-D representation will alter the
data layout and thus a single sequential read request cannot
be issued. While Stacker allows choice of which way to
reconstruct, decision must be made prior to the deployment
of the staging service. We observed that the first method of
reconstruction is not scalable. If there are many reader
applications requesting portions of large data objects, each of
them will copy the large objects into already limited
memory. This will eventually cause the applications to fill
memory and stall until space becomes available.
Consequently, we implement the second option in all of our
test cases for serving data stored in SSD to reader

applications.

B. Data Placement Module

In a coupled simulation, when a simulation application
sends data to the staging service, the simulation application
moves forward. Since simulation applications are generally
producers of the data, they are rarely affected by choice of
the layer of the memory hierarchy for data placement. The
reason behind this is that staging service first receives data
into memory, reports to the producer that data has been
received and then internally schedules the data to be moved
to lower levels of memory hierarchy. Since this data
movement is decoupled from the data producer applications,
these applications are not affected by the introduction of
SSDs in the staging service. However, data
consumers/readers are directly affected if the data they
requested are stored in SSDs because the data needs to be
moved to memory before they can be sent to these
applications. This is where the efficient prefetching of data
plays a vital role.

Since some identifiable, repeated access pattern is a
requisite of being able to accurately prefetch, a prefetching
algorithm should be capable of identifying the spatial
correlation of the data access behavior. In this context,
Lofsted et. al. [23] have demonstrated that understanding the
read patterns of 2-D and 3-D domain decomposition in HPC
workflows helps to increase the I/O performance of the
end-to-end application. While this work follows a similar
trend in trying to find the read access pattern, we aim to
learn these patterns of spatial correlation dynamically.

While sequential locality-based prefetching is default
behavior in most of operating systems, it is a special case of
spatial locality: strided data access patterns will not be
captured by this mechanism. In addition to the identification
of spatial attributes, temporal attributes of the application
should be identified. Stacker aims to capture both temporal
and spatial attributes of the application’s data access pattern
in order to predict an upcoming sequence of I/O requests. In
contrast to predicting only the next set of read offsets,
Stacker also predicts next set of variables likely to be
accessed. Motivated by the n-gram model’s capability of
efficient prediction with minimal training, Stacker utilizes
Algorithm 1 to leverage hierarchical n-grams stored as hash
tables for dynamic prefetching of variables. While the
n-gram model being used in Stacker is similar to regular
n-grams, Stacker maintains a hierarchical structure of
variable length n in n-grams. A n-gram model of higher
length gets higher priority over a shorter length n-gram
model. This enables Stacker to quickly adapt to dynamic
data access patterns and immediately start predicting without
a need to wait for predetermined number of requests to
occur for building the prediction model.

In Algorithm 1, we show only the prediction of a variable.
A very similar algorithm is also utilized for predicting the
lower and upper bounds of the predicted variable. Each data
staging server maintains a global list of past n requests. When

a new read request arrives, n-grams to uni-grams are created
from the sequence of past n requests and the current request.
These grams are stored as a hash table in each staging server.
As an example, let us suppose the first request is « and next
request is . In this case, a 1-gram is created with « as the
current state and 3 as the successor state with a frequency of
1. When the next request, for ~, arrives, in addition to 8 as
the current state with + being the successor state in a 1-gram,
a 2-gram is also created with o for the current state and -y
as successor state with frequency 1. When the same state is
repeated from n to 1 grams, frequencies are increased. Thus
for any incoming request, we search for its occurrence in the
history table and in a decreasing fashion from n-gram to 1-
gram. The candidate successor state with highest frequency
will be the predicted value. Thus, we grant higher priority
to higher grams rather than lower grams. Specifically, if a
sequence of & — 8 — v — ¢ is found for a current request
of ~ with past request of & — 3, then we predict next request
will be §, even if 5 — v — € is present. The reason is that
Stacker provides higher priority over the longer sequence of
access history.

Once a variable is predicted, we also predict the bounding
box of accesses. To facilitate that, we maintain n-grams for
each variable where inputs are a sequence of lower and
upper bounding box boundaries. We then mark the objects
that fall within the predicted bounding box of the predicted
variable as targets for prefetching. In one dimension, this is
analogous to a standard block-based caching system, where
the block granularity is variable and determined by the size
of the data objects in staging. In an N-dimensional data
domain, defining locality beyond the object granularity is
complex. Fetching all neighboring blocks can be very
expensive, while choosing a subset of blocks require an
arbitrary choice of which dimensions are more important to
locality. When Stacker prefetches, it does so at the
granularity of the object that was written into the underlying
object store. Since this object is a continuous n-dimensional
bounding box, Stacker inherently preserves and maximizes
the sequential data locality inside the object, while
spatial/temporal locality across objects is captured by the
n-gram.

When the staging server starts, it starts with 2 extra threads,
where each individual thread is assigned the task of either
prefetching or evicting data from memory. When a target for
prefetching is identified by the staging server, the information
is sent to the prefetching thread. This thread communicates
with the block storage layer and performs data prefetching
asynchronously. Since the prefetching happens in a separate
thread, prefetching has a minimal impact on the serving of
data, rather than if these tasks were interleaved by a single
thread.

Stacker performs a logical partition of the memory for
storing prefetched data and other data. When memory starts
to become full, some prefetched data is targeted for eviction
if the total data size of prefetched objects is larger than the
remaining prefetch partition size. Since this is a logical

Algorithm 1: Hierarchical Prediction Algorithm

1 Global: Past sequence of requests [n,n —1,n —2,...1]
2 function Predict (A);
Input : Requested variable(A)
Output: B
3 create n to 1 grams from [n-1,n-2,...1,A] requests;
4 for i =n to 1 grams do

5 c=2;

6 search for occurrence of [n-c,n-c-1, n-c-2,...,1,A]
sequence;

7 if Sequence found then

Return the next variable with highest

8
occurrence frequency;

9 else
10 Cc++;
11 i—;
12 end
13 end

14 Return null;

partition, a staging server can use this partition to store data
from write requests if necessary. A first-in-first-out (FIFO)
queue is maintained for the prefetch partition, so the target
for eviction is the oldest data that was prefetched. Since all
of these tasks happen asynchronously and in separate
threads, all operations of serving the data to the client,
prefetch to memory, and eviction from memory can be
overlapped. These operations allow Stacker to have a
minimal overhead as compared to all in-memory storage
while enabling a larger volume of data being stored in the
staging area. As mentioned earlier, Stacker also needs to
store the records of access history. We store these records in
a hash-table as < string, < string,value >> key-value
pairs. To analyze the maximum number of key-value pairs in
this table, let’s assume that we use a max of n grams and
there are k reader cores and each reader issues 1 read
request in each time-step. In the worst case, there will be
n X k unique key-value pairs in one time-step. To avoid an
exponential growth in number of records, we periodically
scrub the hash-table to limit its memory size, i.e., we remove
the key-value pairs with lowest frequencies after every
certain number of time-steps.

IV. EVALUATION

In this section, we evaluate Stacker using synthetic codes,
which simulate various read patterns. We also perform large
scale tests on a real scientific workflow, using the combustion
DNS-LES simulation/analysis from the S3D combustion and
analysis workflow [6].

Synthetic experiments were performed using the Caliburn
Supercomputer at the Rutgers Discovery Informatics Institute
[31]. Caliburn consists of 560 nodes, each containing Dual
Intel Xeon E5-2695v4, 18-Core processors with 256 GB of

RAM and a 400GB Intel NVMe drive per node. Experiments
using the real scientific workflow were performed on Titan
Cray XK7 system. It has 18,688 compute nodes and each
node is equipped with 16-core AMD 6200 series Opteron
processor and 32 GB memory. Since the nodes of the Titan
system are not equipped with SSDs, we emulated an INTEL
SSD DC P4600 [7] series device by reserving a part of
DRAM and introducing artificial delays for read/write
requests going to this reserved area. A P4600 SSD has a
read latency of 85usand 15us write latency. It can achieve a
read throughput of 3200MB/s and a write throughput of
1325MB/s. We used these numbers for the introduction of
artificial delays for read/write requests to emulated SSD. All
of the tests in subsequent sections are performed 3 times and
the average result is reported.

A. Synthetic Experiments

Data read access rate and location of the data impacts the
performance of coupled simulation/analysis workflows. To
better understand the impact of various data access read
patterns upon Stacker, we selected four test cases similar to
[19]. In these cases, we assume that scientific applications
write/read data to/from a three-dimensional global space, i.e.
data domain. The data is assumed to be written over multiple
iterations or time-steps, and also read in the similar fashion.
We compare our results with three other methods of data
staging: In-Memory (data is stored in the memory only),
No-Prefetching (no data is prefetched, i.e., every read request
goes to SSD), and Locality-Based (prefetching from disk to
memory occurs based on the sequential locality of temporal
and spatial data attributes.) Since we are evaluating data
prefetching techniques and their impact, in order to make a
fair comparison we flush all of the data to the SSD prior to
issuing read requests. This is to prevent biasing results, as
there is no data in memory for the first read request. Data
movement between memory and SSD is then performed
based on the prefetching technique.

In our synthetic tests, we used two application codes,
namely readers and writers. As their names suggest, writers
write data to the staging servers and readers read data from
the staging servers. This generic end-to-end data movement
behavior emulates a coupled scientific simulation, where the
writer is producing intermediate simulation data and the
reader is performing some analysis on it. The data was
organized in a 3-dimensional Cartesian grid format with
X XY x Z scale. Table II details the experimental setup and
data volume shared via staging servers in our synthetic
workflow.

Each writer writes data across two variables, A and B, in
our test cases. Half of the readers read data from variable A,
while other half read data from variable B. For our tests, we
limited the memory partition for prefetching to a size of 500
MB. Once this partition becomes full, all other subsequent
prefetches must trigger data eviction from memory to the
SSD. In all of the synthetic test cases (Figure 3(a)-3(d)), we
limited the number of staging server cores to 4 and observed

TABLE I
EXPERIMENTAL SETUP CONFIGURATIONS OF NO. OF APPLICATION AND
STAGING CORES, SIZE OF THE STAGED DATA AND DATA DOMAIN
INFORMATION FOR SYNTHETIC TESTS.

Total No. of Cores 260

No. of Staging Cores (Nodes) 4 (1)

No. of Variables 2

No. of Parallel Writer Cores (Nodes) 128 (4)

No. of Parallel Reader Cores (Nodes) 128 (4)
Data Domain for Each Variable 64 x 64 x 32768
Memory Size Allocated for Prefetching 500 MB/Node
Total Staged Data Size (20 Time-steps) 40 GB

Max Value of n for n-grams 5

the impact of varying readers and writers. Since the staging
server is memory and network communication bound, it
doesn’t require substantial CPU resources. Using 4 staging
cores in our experimental-setup means that there are 4
staging process that are accepting read/write requests in
parallel. Since prefetching techniques attempt to capture the
read pattern, we varied readers from 4 to 128, while writers
were kept to either 64 or 128. In all cases, it was observed
that In-Memory data staging works best. This observation
was expected, since in the In-Memory case, staged data only
resides in memory and never incurs the overhead of SSD
access. As explained in earlier sections, we are interested in
workflows where keeping data in the DRAM is not an
option, and this leads us to compare these optimal - but
unachievable - results against various prefetching methods
such as Stacker, Locality-Based prefetching and
No-Prefetching techniques in order to evaluate advantages
and overheads associated with integrating deeper memory
hierarchy.

Figure 3(a) represents a case where reader applications
read the entire data domain of every time-step. This scenario
is representative of many analysis codes, e.g. visualizations
[24], where all of the data is read for full resolution analysis.
The average data read response time is unsuprisingly
smallest when data is stored in memory only. In contrast, the
read response time was largest for the data stored in the
No-Prefetching (i.e. SSD-only) technique due the SSD’s
large read access latency and slower data throughput
bandwidth than DRAM. For the case of 64 writers and 128
readers, we observed that locality-based prefetching can
reduce the percentage of total read requests going to SSD by
up to 40%, while for other cases of varying readers and
writers around 75% of read requests require SSD access.
Having higher numbers of readers than writers means that
multiple readers are reading data from the same data object
(each reader is reading a portion of the large object) and
prefetching one object will reduce the data access latency
across multiple readers. While a similar pattern is observed
for Stacker, up to 51% of total read requests were served
from memory instead of SSD. This reduction in SSD
accesses has the results of a reduction of up to 29.41% for
best case and 23.52% for worst case for read response time
in comparison to No-Prefetching, while Locality-Based
prefetching reduces the average read response time by up to

ZAIn-memory ~ EAStacker ELocality-Based

IS

N
oclrULNULWwHLAEGLOM

w
/7
e

i

=}

e

i
£
i
2

Read Time for a Time Step (Sec)

(b) Read entire data domain
over multiple time-steps

(a) Read entire data domain for all
time-steps

EANo-prefetching

(c) Read entire data domain every
10 time-steps

-o-Stacker Disk Access ~ -*+Locality-Based Disk Access

=

e

%
e gl

e

e

% of Read Requests going to Disk

(d) Randomly decide on which time-step
to read data.

Fig. 3. Read response time and % of read requests going to disks for varying read patterns in multiple time steps for synthetic applications. The X-axis
represents number of application core counts in the server:writer:reader format. Left Y-axis represents the read time while right Y-axis represents percentage

of disk access.
11.61% for best case and 3.8% for worst-case scenarios.

Various analyses such as trajectory visualizations and
feature tracking read data over multiple time-steps [37].
Figure 3(b) represents this case, where data is read for 20
consecutive time-steps out of every 30 time-steps. In this
case, Stacker is able to identify the pattern of changing
time-step immediately, while Locality-Based prefetching
makes mispredictions on time-step information, and so the
wrong data is prefetched. In addition to this, Stacker is also
able to capture the interarrival patterns of the read requests
from various reader applications, while Locality- Based
prefetching only takes into account the current read request
and prefetches surrounding data objects. Thus, Stacker is
able to reduce the average read response time by up to
27.71%, while Locality-Based reduced it by up to only
10.8%.

In figure 3(c), reader applications read the entire data
domain every certain number of time-steps. We use this case
as representative of interactive visualizations [27]. Such
applications require coarse temporal and spatial data
resolutions. Stacker is able to outperform both the
Locality-Based and the No-Prefetching techniques in all
cases of varying readers and writers. While Stacker reduces
read-response time by up to 26.41%, Locality-Based
prefetching reduces it by up to only 4.8%. It can be
observed that the Locality-Based technique is not able to
capture the coarse temporal read requests and so results in
the reader applications accessing SSD for around 80% of the
total requests.

We emulated the case of an irregular temporal read access
pattern in figure 3(d) by randomly choosing which time-steps
of data to read. Such read access patterns can be observed in
data-driven visualizations [18], [33], where applications
dynamically decide whether to read a certain set of data or
at run-time. Similar to previous observations, the
Locality-Based technique has a high degree of misprediction,
causing a higher number of SSD accesses than are strictly
necessary, while Stacker is able to predict read pattern across
various applications in the same time-step. The result is that

Stacker outperforms both Locality-Based and No-Prefetching
techniques.

In all of the above mentioned test cases, Stacker has the
fastest read-response time other than In-Memory data
staging. This advantage comes from the fact that, even in the
same time-step, Stacker is able to capture the read patterns
between variables A and B, i.e., it can predict whether
variable A will be accessed after B or vice-versa. This leads
Stacker to prefetch the optimal object. Since Locality-Based
prefetching is unable to infer this information, it has higher
rates of mis-prefetches and suffers from higher data access
latency. Stacker has low overheads in terms of read-response
time as compared to In-Memory data staging and for these
test cases there were ~ 800 total records in the hash-table
for each staging server during 20 time-step runs.

B. Real Scientific Workflow

To evaluate the effectiveness of Stacker, we performed
large-scale tests of a lifted hydrogen combustion simulation
workflow wusing S3D [6]. We use “direct numerical
simulations” (DNS) and “large eddy simulations” (LES)
components of the S3D workflow for simulation and analysis
purposes, respectively. DNS generates data and is sent to
staging servers and LES reads and analyzes the stored data.
The experimental configurations of our large-scale tests is
listed in Table III. Our evaluations using S3D was performed
with 4K, 8K and 16K analysis and simulation cores. The
grid domain sizes were chosen such that each core was
assigned a spatial sub-domain of size 64 x 64 x 64. The
earlier synthetic tests can be considered strong scaling, as
the data size was kept the same across different core counts.
In contrast, we keep the same data volume per DNS/LES
core in following tests to perform weak scaling tests. We
measured the cumulative read time for reading data over 20
time-steps.

In Figure 4(a), we show the results of increasing the
numbers of data staging servers, while keeping the ratio of
DNS/LES cores to servers fixed. It was observed that the
percentage of read requests going to disk remains relatively

ZAIn-memory ~ EAStacker ELocality-Based

127 - 90 25 -

[
o

20 |

~
o

% of Read Requests goingto Disk

@
o

15 |
50 I

40

Cumulative Read Time for 20 Time Steps (Sec)
Cumulative Read Time for 20 Time Steps (Sec)

BN
256:4K:4K
No. of cores (Servers:DNS:LES)

(a) Constant ratio between servers

and DNS/LES cores. and DNS/LES cores.

EANo-prefetching

No. of cores (Servers:DNS:LES)

(b) Decreasing ratio between servers

-o-Stacker Disk Access

-+-Locality-Based Disk Access

100 Ly
20 |

15 {

% of Read Requests goingto Disk

% of Read Requests going to Disk
Cumulative Read Time for 20 Time Steps (Sec)

0
%
0
%
.
/

Nt 0 0 i

256:16K:16K

256:16K:16K 512:16K:16K 1024:16K:16K
No. of cores (Servers:DNS:LES)

(c) Increasing ratio between servers
and DNS/LES cores

Fig. 4. Cumulative read time for S3D workflow with DNS and LES coupling for varying numbers of staging servers and application core counts.

TABLE III
EXPERIMENTAL SETUP CONFIGURATIONS FOR LARGE-SCALE S3D
EXPERIMENTS
Total No. of Cores 33K
No. of Staging Cores (Nodes) 1K (64)
No. of Simulation Cores (Nodes) 16K (1K)
No. of Analysis Cores (Nodes) 16K (1K)

2048 x 2048 x 1024
500 MB/Node
640 GB

Data Domain
Memory Size Allocated for Prefetching
Data Size (GB)

constant for both Stacker and Locality-Based. This is
expected because total numbers of client applications
attached to each staging server remain constant. Since each
data server makes prefeteching decisions independent of the
other servers, increasing the client applications and servers in
the same ratio keeps the cumulative read response time and
disk access percentage fairly constant. While No-Prefetching
has the worst read performance, Stacker is able to reduce the
cumulative read-response time by ~ 49%. In contrast,
Locality-Based prefetching reduces the read-response time
by ~ 25% only. Table IV shows the total number of read
requests issued, total number of prefetches and hit-ratio for
the test case in Figure 4(a). We define hit-ratio as the ratio
of total read requests served from memory to total
prefetches. It can be seen that, while Locality-Based method
prefetches a greater number of objects, its hit ratio is
relatively low. In addition to prefetching the wrong data,
more prefetching leads to more evictions in a limited
memory environment, and this degrades the overall
performance of the workflow. As a specific example, the
Locality-Based method caused 18,273 total evictions from
memory to SSD, while Stacker only had 768 evictions for
the 256:4K:4K setup of Servers:DNS:LES cores.

To evaluate the impact of an increase in client processes
on Stacker, we increased the processes count of the DNS
and LES applications from 4K to 16K while keeping the
server core count to 256. Since the data-per-process size is
kept constant, i.e, weak scaling is done, the cumulative read
response time increases as we increase client cores. It can be

TABLE IV
TOTAL NUMBER OF PREFETCHES AND EVICTIONS OF 2MB OBJECTS FOR
EXPERIMENTAL SETUP IN FIGURE 4(A)

Setup Total Stacker Locality-Based
Requests | Prefetch | Hit-ratio | Prefetch | Hit-ratio
256:4K:4K 77824 64768 52.50% 82237 20.11%
512:8K:8K 155648 129522 | 52.79% 164653 20.19%
1024:16K:16K | 311296 259016 | 52.51% 327824 | 20.51%

seen that, in Stacker, ~ 60% of access is served from SSDs,
while Locality-Based prefetching causes ~ 80% of accesses
to go to SSDs. From this test, we can observe that Stacker is
scalable, while Locality-Based prefetching will degrades
with increasing scale, due to its inability to capture the
pattern between different application clients. As evidenced
by the results, Stacker can capture the interleaving pattern of
application cores for accessing data, while Locality-Based
approach only captures the sequential locality as perceived
by the staging server and thus has a relatively small
performance improvement vs No-Prefetching.

Figure 4(c) illustrates the case of the reduction in the
number of clients attached to each staging server. Since we
increase the number of servers while keeping DNS/LES
cores fixed at 16K, more requests are served in parallel and
we see a decrease in the cumulative read response time.
Stacker improves the read performance by ~ 40%, while
Locality-Based prefetching improves it by ~ 15% on average
for varying number of servers. It can be attributed to the fact
that Locality-Based has a high number of requests being
served through SSDs.

From our synthetic and real scientific workflow
simulations, we can infer that Locality-Based prefetching
does not have the capability to identify the read access
pattern spanning across multiple variables. Even in the case
of a single variable being accessed, the interleaving of read
requests from multiple applications changes the spatial
locality on every read request and makes Locality-Based
prefetching perform poorly. On contrary, Stacker is able to
tackle these cases easily and provide an improvement of up
to 55% read performance in comparison to No-Prefetching.

The hash-table size in Stacker primarily depends upon the
length of n in n-gram. Each hash-table in Stacker had a max
of around ~ 1.3K records during S3D experimental runs
with n set to 5. In summary, Stacker can effectively provide
high-performance data staging by effectively prefetching data
from high latency storage device to DRAM, with minimal
overhead of maintaining hash-table of access history.

V. RELATED WORK

The recent advancements in both in-situ and in-transit
paradigms have led towards the development of various data
staging solutions. Data staging frameworks, such as
DataSpaces [13], ActiveSpaces [12], DataStager [1], provide
services to support memory-based data staging solutions for
in-situ and in-transit HPC applications. These staging
frameworks use RDMA to achieve high data transfer
throughput from client applications to the staging servers.
Unfortunately, these frameworks utilize DRAM memory for
staging all data and processing. In contrast to these
frameworks, our solution uses an SSD-based data staging
solution, which performs intelligent and autonomous data
prefetching to guarantee high storage capacity with low
impact on the application performance.

There have been several efforts, such as CloudCache [2]
and vCacheShare [25], to integrate flash-based devices as a
cache device for single/multiple nodes. There has been
increasing interest in using burst buffers in HPC systems for
optimizing the I/O path of data-intensive workflows. A
storage system for HPC to integrate a tier of solid-state burst
buffers into the storage system for absorbing application I/O
requests was explored in [22]. TRIO [35] explores on
efficiently moving large checkpointing datasets to PFS by
utilizing the burst buffers. Data Elevator [14] also utilizes
burst buffers as a fast persistent storage layer and
asynchronously transfers data to the final destination in the
background in order to enable autonomous data movement
across storage hierarchy layers. In contrast to these research
efforts that optimize the write path from the fast storage
layer to the slower storage layer, we strive to enable fast data
retrieval from SSDs for timely insight.

The use of Markov models to prefetch data from disks to
memory has been studied on Lynx [21]. Curewitz et al. [§]
have also studied the concept of data prefetching via data
compression using n-th order Markov chains. While Stacker
uses the concept of n-grams, which are similar to the n-th
order Markov Chains in Lynx [21] and prediction by partial
match (PPM) in [8], Lynx and PPM build a transition table
using a single n-th order Markov chain. In contrast, Stacker
uses a combined approach, where multiple higher-order
n-gram models are organized in a stepwise manner. Lynx
replaces the default sequential prefetching of the Linux
kernel, while Stacker sits at the application level. Stacker
prefetches large size objects, while Lynx and PPM prefetch
at the granularity of 4KB objects as they predict the next
page access. Stacker preserves the inherent sequential
locality of page access inside objects, while Lynx and PPM

breaks this locality because their predictions occur with page
size granularity. In addition, tracking and maintaining
information about individual pages at the application level
(i.e., in data staging) creates very large amounts of metadata
in a memory-constrained setting, which is not feasible.
While PPM and Lynx operate at the granularity of files and
pages, Stacker predicts at the granularity of object variables
and bounding boxes. In summary, Stacker is largely
orthogonal to Lynx and PPM.

Jin et al. [19] have explored utilizing both DRAM and
SSDs for data staging and aim to reduce the overhead of
reading data from the lower level of the memory hierarchy.
While the end goal is similar, [19] depends on user-provided
hints to identify the data access patterns, which is infeasible
for complex data-intensive workflows. The work stores
history information of each object being staged in data
staging to calculate its likelihood of access on next
time-step, which can become a serious bottleneck if there are
a large number of small objects in the staging area. On the
other hand, Stacker does not depend upon user inputs/hints
and only stores sequence of accesses rather than information
about individual objects.

VI. CONCLUSION AND FUTURE WORK

While data staging frameworks have emerged as effective
solutions for data management in in-situ and in-transit
workflows, they are designed for storing data in memory
only. In this paper, we designed Stacker, which tiers data
across SSD and DRAM to enable high capacity data staging.
Stacker also implements autonomous data movement across
these tiers by predicting the upcoming sequence of data
access requests. We implemented Stacker based on the
DataSpaces framework and evaluated it on the Caliburn at
Rutgers University and Titan Cray XK7 at OLCE. Our
experimental results, using both large-scale S3D experiments
and synthetic test cases, demonstrate that Stacker efficiently
prefetches data from SSDs to memory for a variety of data
access patterns. The source code of Stacker is available at
https://github.com/pradsubedi/Stacker.git. As future work, we
plan to expand Stacker to support multiple prefetching
algorithms and dynamically decide which algorithms to use
based on workflow requirements. We also plan to use such
algorithms for optimizing the write-paths of workflows.

ACKNOWLEDGEMENT

We would like to thank all of the reviewers for their
valuable feedback and comments. The research presented in
this paper is based upon work by the RAPIDS Institute
supported by the U.S. Department of Energy, Office of
Science, Office of Advanced Scientific Computing Research,
Scientific Discovery through Advanced Computing (SciDAC)
program and by the SIRIUS grant (number DE-SC0015160),
and by the National Science Foundation (NSF) via grants
number IIS 1546145. The research at Rutgers was conducted
as part of the Rutgers Discovery Informatics Institute
(RDI?).

https://github.com/pradsubedi/Stacker.git

[1]

2

—

[3]

[4]

[5

[t}

[6]

[7]
[8]

[9]
[10]

(11]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

REFERENCES

H. Abbasi, M. Wolf, G. Eisenhauer, S. Klasky, K. Schwan, and F. Zheng.
Datastager: scalable data staging services for petascale applications.
Cluster Computing, 13(3):277-290, 2010.

D. Arteaga, J. Cabrera, J. Xu, S. Sundararaman, and M. Zhao. Cloud-
cache: On-demand flash cache management for cloud computing. In
FAST, pages 355-369, 2016.

J. C. Bennett, H. Abbasi, P-T. Bremer, R. Grout, A. Gyulassy, T. Jin,
S. Klasky, H. Kolla, M. Parashar, V. Pascucci, et al. Combining in-
situ and in-transit processing to enable extreme-scale scientific analysis.
In Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, page 49. IEEE Computer
Society Press, 2012.

P. F. Brown, P. V. deSouza, R. L. Mercer, V. J. D. Pietra, and J. C.
Lai. Class-based n-gram models of natural language. Comput. Linguist.,
18(4):467-479, Dec. 1992.

P. Cao, E. W. Felten, A. R. Karlin, and K. Li. Implementation and per-
formance of integrated application-controlled file caching, prefetching,
and disk scheduling. ACM Transactions on Computer Systems (TOCS),
14(4):311-343, 1996.

J. H. Chen, A. Choudhary, B. De Supinski, M. DeVries, E. R. Hawkes,
S. Klasky, W.-K. Liao, K.-L. Ma, J. Mellor-Crummey, N. Podhorszki,
et al. Terascale direct numerical simulations of turbulent combustion
using s3d. Computational Science & Discovery, 2(1):015001, 2009.

I. Corporation. Intel ssd dc p4600 series, 2018.

K. M. Curewitz, P. Krishnan, and J. S. Vitter. Practical prefetching
via data compression. In Proceedings of the 1993 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’93, pages
257-266, New York, NY, USA, 1993. ACM.

M. Damashek. Gauging similarity with n-grams: Language-independent
categorization of text. Science, 267(5199):843-848, 1995.

E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good. The
cost of doing science on the cloud: the montage example. In High
Performance Computing, Networking, Storage and Analysis, 2008. SC
2008. International Conference for, pages 1-12. Ieee, 2008.

X. Ding, S. Jiang, F. Chen, K. Davis, and X. Zhang. Diskseen: Exploiting
disk layout and access history to enhance i/o prefetch. In USENIX
Annual Technical Conference, volume 7, pages 261-274, 2007.

C. Docan, M. Parashar, J. Cummings, and S. Klasky. Moving the code
to the data-dynamic code deployment using activespaces. In Parallel &
Distributed Processing Symposium (IPDPS), 2011 IEEE International,
pages 758-769. IEEE, 2011.

C. Docan, M. Parashar, and S. Klasky. Dataspaces: an interaction
and coordination framework for coupled simulation workflows. Cluster
Computing, 15(2):163-181, Jun 2012.

B. Dong, S. Byna, K. Wu, H. Johansen, J. N. Johnson, N. Keen, et al.
Data elevator: Low-contention data movement in hierarchical storage
system. In High Performance Computing (HiPC), 2016 IEEE 23rd
International Conference on, pages 152-161. IEEE, 2016.

E. F. D’Azevedo, J. Lang, P. H. Worley, S. A. Ethier, S.-H. Ku, and

C. Chang. Hybrid mpi/openmp/gpu parallelization of xgcl fusion
simulation code. In Supercomputing Conference 2013, pages 1441—
1441, 2013.

K. S. Grimsrud, J. K. Archibald, and B. E. Nelson. Multiple prefetch
adaptive disk caching. [EEE Transactions on Knowledge and Data
Engineering, 5(1):88-103, 1993.

A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen,
R. Prenger, S. Satheesh, S. Sengupta, A. Coates, et al. Deep
speech: Scaling up end-to-end speech recognition. arXiv preprint
arXiv:1412.5567, 2014.

M. C. Hao, U. Dayal, D. A. Keim, and T. Schreck. Importance-
driven visualization layouts for large time series data. In Information
Visualization, 2005. INFOVIS 2005. IEEE Symposium on, pages 203—
210. IEEE, 2005.

T. Jin, F. Zhang, Q. Sun, H. Bui, M. Romanus, N. Podhorszki, S. Klasky,
H. Kolla, J. Chen, R. Hager, et al. Exploring data staging across deep
memory hierarchies for coupled data intensive simulation workflows. In
Parallel and Distributed Processing Symposium (IPDPS), 2015 IEEE
International, pages 1033-1042. IEEE, 2015.

S. Ku, C. Chang, and P. Diamond. Full-f gyrokinetic particle simu-
lation of centrally heated global itg turbulence from magnetic axis to
edge pedestal top in a realistic tokamak geometry. Nuclear Fusion,
49(11):115021, 2009.

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]
[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

A. Laga, J. Boukhobza, M. Koskas, and F. Singhoff. Lynx: A learning
linux prefetching mechanism for ssd performance model. In Non-
Volatile Memory Systems and Applications Symposium (NVMSA), 2016
5th, pages 1-6. IEEE, 2016.

N. Liu, J. Cope, P. Carns, C. Carothers, R. Ross, G. Grider, A. Crume,
and C. Maltzahn. On the role of burst buffers in leadership-class storage
systems. In Mass Storage Systems and Technologies (MSST), 2012 IEEE
28th Symposium on, pages 1-11. IEEE, 2012.

J. Lofstead, M. Polte, G. Gibson, S. Klasky, K. Schwan, R. Oldfield,
M. Wolf, and Q. Liu. Six degrees of scientific data: reading patterns
for extreme scale science io. In Proceedings of the 20th international
symposium on High performance distributed computing, pages 49-60.
ACM, 2011.

K.-L. Ma. In situ visualization at extreme scale: Challenges and
opportunities. IEEE Computer Graphics and Applications, 29(6):14—
19, 2009.

F. Meng, L. Zhou, X. Ma, S. Uttamchandani, and D. Liu. vcacheshare:
Automated server flash cache space management in a virtualization
environment. In USENIX Annual Technical Conference, pages 133-144,
2014.

T. C. Mowry, M. S. Lam, and A. Gupta. Design and evaluation of a
compiler algorithm for prefetching. In ACM Sigplan Notices, volume 27,
pages 62-73. ACM, 1992.

P. Pebay, D. Thompson, and J. Bennett. Computing contingency statistics
in parallel: Design trade-offs and limiting cases. In Cluster Computing
(CLUSTER), 2010 IEEE International Conference on, pages 156—165.
IEEE, 2010.

M. Romanus, F. Zhang, T. Jin, Q. Sun, H. Bui, M. Parashar, J. Choi,
S. Janhunen, R. Hager, S. Klasky, et al. Persistent data staging services
for data intensive in-situ scientific workflows. In Proceedings of the
ACM International Workshop on Data-Intensive Distributed Computing,
pages 37-44. ACM, 2016.

V. Seshadri, T. Mullins, A. Boroumand, O. Mutlu, P. B. Gibbons,
M. A. Kozuch, and T. C. Mowry. Gather-scatter dram: in-dram address
translation to improve the spatial locality of non-unit strided accesses. In
Proceedings of the 48th International Symposium on Microarchitecture,
pages 267-280. ACM, 2015.

Z. Su, Q. Yang, Y. Lu, and H. Zhang. Whatnext: A prediction system
for web requests using n-gram sequence models. In Web Information
Systems Engineering, 2000. Proceedings of the First International
Conference on, volume 1, pages 214-221. IEEE, 2000.

R. University. Caliburn user guide, 2018.

J. S. Vetter and S. Mittal. Opportunities for nonvolatile memory systems
in extreme-scale high-performance computing. Computing in Science &
Engineering, 17(2):73-82, 2015.

I. Viola, A. Kanitsar, and M. E. Groller. Importance-driven feature en-
hancement in volume visualization. IEEE Transactions on Visualization
and Computer Graphics, 11(4):408-418, 2005.

L. Wan, M. Wolf, F. Wang, J. Y. Choi, G. Ostrouchov, and S. Klasky.
Analysis and modeling of the end-to-end i/o performance on olcf’s
titan supercomputer. In IEEE 19th International Conference on High
Performance Computing and Communications, pages 1-9. IEEE, 2017.
T. Wang, S. Oral, M. Pritchard, B. Wang, and W. Yu. Trio: Burst buffer
based i/o orchestration. In Cluster Computing (CLUSTER), 2015 IEEE
International Conference on, pages 194-203. IEEE, 2015.

X. Wang, A. McCallum, and X. Wei. Topical n-grams: Phrase and topic
discovery, with an application to information retrieval. In Data Mining,
2007. ICDM 2007. Seventh IEEE International Conference on, pages
697-702. IEEE, 2007.

J. Wei, H. Yu, R. W. Grout, J. H. Chen, and K.-L. Ma. Dual
space analysis of turbulent combustion particle data. In Visualization
Symposium (PacificVis), 2011 IEEE Pacific, pages 91-98. IEEE, 2011.
M. C. Wiedemann, J. M. Kunkel, M. Zimmer, T. Ludwig, M. Resch,
T. Bonisch, X. Wang, A. Chut, A. Aguilera, W. E. Nagel, et al. Towards
i/o analysis of hpc systems and a generic architecture to collect access
patterns. Computer Science-Research and Development, 28(2-3):241—
251, 2013.

G. Zhang, B. E. Patuwo, and M. Y. Hu. Forecasting with artificial neural
networks:: The state of the art. International journal of forecasting,
14(1):35-62, 1998.

	Introduction
	Background and Motivation
	Data Staging and In-situ Workflows
	Deep Memory Hierarchy and Data Prefetching
	N-grams

	Stacker
	Data Object/Block Storage Layer
	Data Placement Module

	Evaluation
	Synthetic Experiments
	Real Scientific Workflow

	Related Work
	Conclusion and Future Work
	Acknowledgement
	References

