
ADAPT: Algorithmic Differentiation Applied to
Floating-Point Precision Tuning

Harshitha Menon∗, Michael O. Lam†, Daniel Osei-Kuffuor∗, Markus Schordan∗,
Scott Lloyd∗, Kathryn Mohror∗, Jeffrey Hittinger∗

∗Center for Applied Scientific Computing,
Lawrence Livermore National Laboratory

Email: {harshitha,oseikuffuor1,schordan1,lloyd23,kathryn,hittinger1}@llnl.gov
†James Madison University
Email: lam2mo@jmu.edu

Abstract—HPC applications use floating point arithmetic op-
erations extensively to solve computational problems. Mixed-
precision computing seeks to use the lowest precision data type
that is sufficient to achieve a desired accuracy, improving perfor-
mance and reducing power consumption. Manually optimizing
a program to use mixed precision is challenging as it not only
requires extensive knowledge about the numerical behavior of the
algorithm but also estimates of the rounding errors. In this work,
we present ADAPT, a scalable approach for mixed-precision
analysis on HPC workloads using algorithmic differentiation to
provide accurate estimates about the final output error. ADAPT
provides a floating-point precision sensitivity profile while in-
curring an overhead of only a constant multiple of the original
computation irrespective of the number of variables analyzed.
The sensitivity profile can be used to make algorithmic choices
and to develop mixed-precision configurations of a program. We
evaluate ADAPT on six benchmarks and a proxy application
(LULESH) and show that we are able to achieve a speedup of
1.2x on the proxy application.

I. INTRODUCTION

Floating-point arithmetic remains the predominant means
for real-valued computation in high-performance computing.
As computation scales to exascale and beyond, the challenges
of using floating-point arithmetic effectively will only in-
crease [1], [2]. Computer architectures support multiple levels
of precision for floating-point data and arithmetic operations.
The standard IEEE floating-point precision choices for compu-
tation are 32 bits (single-precision), 64 bits (double-precision),
128 bits (quad-precision, usually implemented in software),
as well as 16 bits (half-precision), which is now available
on certain platforms such as NVIDIA GPUs. The choice of
floating-point precision determines the magnitude of rounding
errors in the computation.

Although a higher precision may improve the accuracy
of the program output, it usually results in an increase of
application run time, energy consumption, memory pressure,
and interconnect usage. Often, programmers resort to the safer
option of uniformly applying higher precision (e.g., IEEE
double precision) throughout the program to ensure accuracy
of the simulation output at the expense of performance.
However, not all applications require higher precision, and for
some applications, their precision requirement is dependent on
the input. Ideally, applications should use the lowest precision

necessary to achieve the required accuracy in order to take
advantage of the performance and energy benefits of using
the lower precision.

One promising approach is the use of mixed- or variable-
precision arithmetic, i.e., using multiple levels of precision
in a single program, gaining the benefits of high-precision
arithmetic where necessary to maintain accuracy but using
lower-precision arithmetic where possible to improve perfor-
mance [3] and reduce energy usage [4]. However, developers
must take care to ensure that the errors introduced are within
the acceptable thresholds so as not to corrupt the output;
large errors can render results useless. Unfortunately, it is not
always easy to develop mixed-precision versions of large code
bases manually, as this not only requires extensive knowledge
of the numerical behavior of the algorithm but also requires
understanding of the subtle details of floating-point rounding
errors. This process becomes increasingly infeasible for larger-
scale HPC programs with multiple modules.

There have been many efforts to automate this process in
various ways [5], [6], [7], [8], [9], [10]. Some of this work
involves automatically discovering unstable floating-point ex-
ecutions [11], [12], [13] and accuracy-improving transforma-
tions based on a database of rewrite rules [10], [9]. However,
not all of these error-introducing operations propagate to the
final output. Dynamic automated search based approaches [5],
[6] evaluate different mixed-precision configurations of the
program to identify the best configuration that satisfies the
error threshold. The main drawback of these approaches is
that the state space to explore is exponential in the number of
variables; exploring even a subset is very time-intensive. The
search-based algorithms can also get trapped in local minima.
Various static analysis approaches [14], [7] use interval and
affine arithmetic or Taylor series approximations to analyze
stability and to provide rigorous bounds on rounding errors.
However, they do not scale very well and thus have not
been applied to HPC workloads. See Section VII for more
discussion of these existing tools.

We propose an approach, implemented in a tool called
ADAPT (Algorithmic Differentiation Applied to Precision
Tuning), that uses algorithmic differentiation [15] (a method
for numerically computing the derivative of computer pro-

SC18, November 11-16, 2018, Dallas, Texas, USA
978-1-5386-8384-2/18/$31.00 c©2018 IEEE

grams) to analyze floating-point precision sensitivity of vari-
ables and operations in a program. We then use the results
to develop a mixed-precision version of the program. Our
techniques enable the scaling of rigorous precision analysis
techniques to benchmarks and proxy applications, which is
an important step toward the application of mixed-precision
analysis to full-scale HPC applications and the realization of
the many benefits mentioned earlier.

The primary contributions of this paper are as follows:
• ADAPT, an approach using algorithmic differentiation

to estimate the output error due to lowering the precision
of variables. It provides accurate output error estimates
while scaling better than previous mixed-precision efforts
and thereby being more applicable to HPC workloads.

• A greedy algorithm for lowering the precision of variables
and operations to achieve the specified accuracy.

• A floating-point precision sensitivity profile construction
tool using ADAPT. This tool can be used for an ap-
plication to guide programmers in the development of a
mixed-precision version.

• Application of ADAPT to compare the sensitivities of
algorithms to floating-point precision errors and identify
the critical regions.

• An evaluation of our approach on different benchmarks
and mini-applications achieving a 1.2x on LULESH, a
proxy HPC application.

II. OVERVIEW

Consider the example of numerical anomalies introduced in
[16] and [6] of using Simpson’s rule to evaluate the integral
of an input function f on a given interval (a, b) (for a given
n, h is defined as h = b−a

2n):

∫ b

a

f(x)dx =
h

3
[f(a) + 4f(a+ h) + 2f(a+ 2h)

+ 4f(a+ 3h) + · · ·+ 4f(a+ (2n− 1)h) + f(b)].

The corresponding C program to evaluate
∫ 1

0
sin(πx2)dx =

2
π for n = 1000000 is shown in Figure 1. This implementation
uses the non-IEEE 80-bit long double precision provided
by the C language (usually implemented using the x87 instruc-
tion set) and produces the answer 1.999999999999959. This
program is subject to numerical anomalies due to cumulative
rounding error where a large numbers of small values are
added. When using IEEE double precision instead of long
double precision, the answer is 2.000000000067576 with an
error of 6.7e− 11. As demonstrated in [6], a mixed-precision
version could use long double precision only for the two
variables s1 and x, with the rest of them stored in double
precision to achieve a 1.6x speedup over the original version
while maintaining the same final accuracy.

Another interesting point is that the rounding errors, which
are due to adding two numbers with different numerical scales,
start to accumulate in the later part of the iterations when the
value of s1 and x increase. This situation gives us another

1 #include <time.h>

2 #include <stdarg.h>

3 #include <inttypes.h>

4 #include <math.h>

5 #include <stdio.h>

6

7 long double pi = 3.14159265358979311600e+00;

8

9 long double fun(long double x) {

10 long double pix = pi * x;

11 long double result = sin(pix);

12 return result;

13 }

14

15 int main(int argc, char **argv) {

16 int l, i;

17 const int n = 1000000;

18 long double a = 0.0, b = 1.0, s1 = 0.0;

19 long double h, x, tmp;

20 h = (b - a) / (2.0 * n);

21 x = a;

22 s1 = fun(a);

23 for(l = 0; l < n; l++) {

24 x = x + h;

25 s1 = s1 + 4.0 * fun(x);

26 x = x + h;

27 s1 = s1 + 2.0 * fun(x);

28 }

29 s1 = s1 + fun(b);

30 tmp = h * pi / 3;

31 s1 = s1 * tmp;

32 printf("ans: %.15Le\n", s1);

33 return 0;

34 }

Figure 1: Computer program to evaluate integral of a
function using Simpson’s rule for numerical quadrature.
This program is subject to numerical anomalies. The tuned
program with mixed precision uses long double only for
the variables s1 and x and double for the rest to achieve
the same final accuracy. There is another opportunity for
optimization where s1 and x can be computed in lower
precision in the initial iterations and then transitioning to
higher precision in the middle of the execution.

opportunity to improve the performance by computing s1
and x in lower precision in the beginning iterations and then
transitioning the variables to higher precision in the middle of
the execution.

We present a dynamic approach, implemented as a tool
called ADAPT, that uses Algorithmic Differentiation (AD), an
approach for computing the derivative of computer programs,
to analyze floating-point precision sensitivity of variables and
operations in a program. AD views a computer program as
a composition of a sequence of arithmetic operations, and
we use this to capture the propagation of errors through
the data flow graph of the computation. ADAPT performs
aggregation and analysis on this data along with the original
computation to determine the floating-point sensitivity of all
the variables and operations in the program. ADAPT also pro-
vides mixed-precision recommendations that satisfy a specified
error threshold without requiring any search-based strategies.

III. BACKGROUND

A. Floating Point Representation

IEEE floating-point arithmetic as standardized in 1985 (and
subsequently revised in 2008 [17]) has become the primary
implementation of real-valued arithmetic on digital comput-
ing platforms. Although it has well-known weaknesses (e.g.,
rounding error and cancellation), it is widely used in scientific

computing because it provides a wide dynamic range and can
be implemented efficiently in hardware.

Within a fixed-sized bit field, there are three parts: 1)
the sign bit, 2) a biased exponent, and 3) a fractional part
(sometimes called the significand or mantissa) with an implicit
leading digit. The value stored is (−1)sign·1.frac·2exp. Using
more bits provides more precision, but increases storage costs
and computation time.

Rounding error occurs when a real number with infinite
possibilities is approximated with a finite number of bits in a
floating-point format. The relative rounding error of a value
x in a specific precision is bounded by 1

2p where p is the
number of mantissa bits, because the error is bounded by the
value represented by the least mantissa bit. The absolute error
is bound by |x| × 2−p.

B. Algorithmic Differentiation

Algorithmic differentiation (AD), also known as “auto-
matic” differentiation, is a chain-rule based technique to
evaluate numerically the derivative of a function specified
as a computer program [15]. Alternative methods for com-
puting the derivatives include 1) hand-coding the derivatives,
2) symbolic differentiation, and 3) numerical differentiation.
Although hand-coding derivatives can be more efficient, they
tend to be tedious and error prone. Symbolic differentiation,
available through systems such as Maple [18], requires the
computer program to be represented as a single expression,
which is difficult or impossible for reasonable-sized pro-
grams, especially in the presence of loops and complex data
structures. Numerical differentiation using finite differences
suffers from numerical instability due to rounding errors in
discretization process.

Algorithmic differentiation considers a computer program as
a sequence of elementary arithmetic operations and functions,
applying the chain rule of differentiation to compute the
derivatives. For a given function y = f(u), where u = g(x),
application of chain rule gives us: dy

dx = dy
du ×

du
dx .

AD has been applied to sensitivity analysis of a simulation
to its input parameters as well as to optimization problems in
the fields of fluid dynamics, engineering design, and climate
modeling.

There are two modes of operation for AD: the forward mode
and the reverse mode. The forward mode is also known as the
“tangent linear” mode, and the reverse mode in known as the
“adjoint” mode. In the forward mode, derivatives are computed
using the chain rule, tracking the original computation. In the
reverse mode, there is a forward sweep to collect information
about the computation and a reverse sweep where chain
rule is applied in the reverse order starting from the output.
Forward-mode is preferred when there are larger number of
outputs compared to inputs whereas reverse mode is preferred
when there are large numbers of inputs. In the reverse mode,
computation of the derivatives can be done at a small constant
multiple of the original computation irrespective of the number
of inputs [19].

y=b+a

b=sin(x) a=x*z

x

Y

!"
!#

!"
!$∗

!$
!&!"

!#∗
!#
!'

y = sin(x) + x * z

!"
!'=

!"
!#∗

!#
!'+

!"
!$∗

!$
!'

!"
!$

z

!"
!$∗

!$
!'

!"
!& =

!"
!$∗

!$
!&

Figure 2: An example of the reverse mode of automatic
differentiation. The elementary operations are shown in cir-
cles and the edges represent data flow path. The dashed edges
represent the computation of the derivatives, also referred to
as adjoint, in the reverse mode. We can see that it computes
the partial derivative of the output y with respect to all the
inputs along the computation path.

Algorithmic differentiation is automated using tools that
work by either code transformation or operator overloading.
Source code transformation tools such as Tapenade [20],
ADIC [21], ADIFOR [22] and OpenAD [23] take the source
code and carry out a series of transformations to produce a
final program that generates the derivatives. Other tools such
as CODIPACK [24] and Adept [25] use operator overloading
(often with expression templates for efficiency) to embed the
derivative calculations into the given program. CODIPACK
is designed for HPC applications and has support for MPI
communication. We use CODIPACK for C++ programs and
and Tapenade for C and Fortran programs, and we use the
reverse mode of AD because we consider all variable values
to be inputs so there is a high number of inputs compared to
outputs.

IV. MIXED PRECISION TUNING

The main goal of ADAPT is to provide mixed-precision
analysis by accurately estimating the output error due to
changes in the precision of program variables. We propose
an output error estimation model that is used to construct a
mixed-precision version of the program if possible. In this
section we describe how ADAPT estimates the output error
using an error model based on algorithmic differentiation. We
then go into the details of how ADAPT constructs the mixed-
precision configuration that satisfies a specified error threshold.
Finally, we describe the implementation details for the tool.

A. Output Error Estimation Model

We view the program as a function of inputs and various
intermediate variables that uses compositions of elementary
operations to compute some output. We are interested in the

changes in the output as a result of small changes in various
variables due to rounding errors. We construct our error model
by using a first-order Taylor series approximation of the
program, where the error in output is assumed to be linear
in the rounding error. Let x be the input or the intermediate
variable in the program and y be the target output variable
given by y = f(x), which signifies that y is a function of
x and represents the part of the program that performs this
operation. The first-order Taylor series approximation of the
function f(x) at x = a is

y = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + . . . ,

≈ f(a) + f ′(a)(x− a). (1)

We use Equation 1 to estimate the error in the output, ∆y,
due to an error ∆x in x:

∆y = |f(a+ ∆x)− f(a)|,
≈ |f(a) + f ′(a)(a+ ∆x− a)− f(a)|,
= |f ′(a)(∆x)|. (2)

This can be extended to consider the output y as a function
of several inputs,

y = f(x1, x2, . . . , xn),

With x = {xi} as a vector of multiple inputs and generalizing
Equation 2, we obtain the following estimated output error
∆y due to error in the inputs at x = a, where xi = ai, i ∈
{1, . . . , n}:

∆y ≈ |f ′x1
(a)∆x1|+ · · ·+ |f ′xn

(a)∆xn|, (3)

=
∑
i

|f ′xi
(a)∆xi|, (4)

= |f ′(a)T∆x|. (5)

Here f ′xi
(a) represents the partial derivative with respect to

xi evaluated at x = a and the bars represent the vector form.
Equation 5 is a linear approximation that uses only first order
partial derivatives (one for each variable) as computed via
the chain rule on the dependency graph. As a result, in the
case of simultaneous errors in multiple variables we ignore
the dependencies between these variables, treating them as
independent variables, and compute the total change as a sum
of individual changes. Our approach relies on the assumption
that the resultant change in any variable is small enough such
that the corresponding partial derivative is still valid. This is
a reasonable assumption in our case because we expect any
change of precision to result in small errors.

For a specific precision, the absolute error due to rounding
in variable x is less than |x|ε, where ε = 2−p and p is the
number of bits in the mantissa for that precision. We use this
as a measure of error and define a metric E to capture the
sensitivity of any input or intermediate variable to rounding
errors:

Ex = |f ′(x)× x|. (6)

The error metric in Equation 6 captures both the sensitivity
of the variables based on the adjoint information as well as the
impact of rounding errors. In addition, it provides a relative
measure of sensitivity between the variables in a program; a
variable with a larger error metric is more sensitive to roundoff
and has a larger contribution to the final output error. We
use this metric to identify instability in programs, to compare
different algorithms, and to construct a floating-point precision
sensitivity profile.

B. Mixed Precision Allocation

To identify a set of variables that can be changed to lower
precision without violating a given error threshold, we begin
by evaluating the output error due to lowering the precision at
every dynamic instance of each variable. We then aggregate
the output error estimates at the assignment statement level as
well as at the source variable and function level.

For every dynamic instance of variable x (denoted xi), we
compute the output error contribution ∆yxi resulting from
conversion to lower precision as

∆yxi
= f ′(xi)∆xi,

= f ′(xi)(xi − xloweri). (7)

Here, ∆xi is the estimated error introduced in xi due to
lowering the precision. The aggregated error over all the
dynamic instances of the variable is then defined as follows:

∆yx =

n∑
i=1

∆yxi
. (8)

Using Equation 5 we can say that the output error, as a result
of change in precision of multiple variables, can be computed
by taking a summation over their individual contribution given
by Equation 8. We use this as the basis of our mixed-precision
allocation and describe a greedy approach used to create
mixed-precision configuration (see Algorithm 1).

First, the algorithm iterates over all the dynamic instances of
variables, vars, and aggregates error over all the dynamic in-
stances of variable var in OutputError(var). Next, the variables
are sorted in increasing order of their contribution to the final
output given by Equation 8. Finally, variables are assigned to
lower precision if converting them does not violate the error
threshold.

This algorithm converts as many variables as possible to
lower precision. We provide two variations of this greedy
approach in ADAPT. The first one lowers the precision of
variables in increasing order of error per dynamic count.
That means, in the case of two variables with the same
output error, this approach gives priority to the variable that
has more dynamic instance (an indication of it being more
expensive). The second variation iterates over the functions
in increasing order of the output error contribution and lowers
the precision of variables that don’t violate the error threshold.
This grouping can sometimes be beneficial in reducing the
number of implicit as well as explicit cast operations.

input : A list of variables vars
input : TolError
output: S containing variables in lower precision
begin

for var ∈ vars do
InputError ← var.value− var.value_lower
OutputError(var)← OutputError(var) +
var.adjoint× InputError

end
sort OutputError in increasing order
var ← RemoveMinOutputError()
while var 6= null and
TolError − |OutputError(var)| ≥ 0 do
TolError ← TolError−|OutputError(var)|
S ← S + {var}
var ← RemoveMinOutputError()

end
end

Algorithm 1: Greedy mixed-precision allocation algorithm

C. Implementation Details

There are two stages in ADAPT: 1) evaluation of adjoints
using an AD tool and 2) mixed-precision allocation.

Traditionally, AD tools have been applied in sensitivity
analysis, where the adjoints are computed for the inputs with
respect to the output. Here, we consider all the variables and
their intermediate results as potential points for optimization.
Therefore, we need to obtain the adjoints at every location we
want to analyze, which is typically at every assignment opera-
tor. We use an AD tool (CODIPACK or Tapenade) to compute
the partial derivative ∂y

∂xi
for all the input and intermediate

variables xi with respect to an output y. CODIPACK provides
support for C++ programs, while Tapenade supports C and
Fortran codes. ADAPT interfaces with the user program and
these AD tools by providing APIs to register the variables and
assignment statements of interest. Regardless of the backend
used, we modify the original program’s source to label the
variables of interest using a simple ADAPT API.
CODIPACK: When using CODIPACK as the AD backend,
ADAPT registers the variables of interest with the CODIPACK
tool at runtime. Because CODIPACK employs operator over-
loading and template expressions to obtain the partial deriva-
tives, the program must also be converted to use AD_real
instead of floating point types. We provide macros to assist
with this conversion.
Tapenade: When using Tapenade as the AD backend, the
ADAPT API calls are processed during the source-to-source
transformation to produce code that calculates the partial
derivatives. The transformed program is then executed with a
representative input to obtain adjoints of all dynamic instance
of the input as well as the intermediate variables in the
program.

For both tools, an API callback retrieves the adjoint (the
partial derivative) as well as the value of the variable, which

1 #include <stdio.h> /* printf */

2 #include <math.h>

3

4 double fn(double Sn, int n) {

5 double e = Sn*Sn;

6 double tmp = sqrt(4 - e);

7 double Sn1 = sqrt(2-tmp);

8 return Sn1;

9 }

10

11 int main(int argc, char* argv[]) {

12 if (argc < 2) {

13 printf("Provide #n\n");

14 return -1;

15 }

16 int count = atoi(argv[1]);

17 double Sn;

18 Sn = sqrt(2);

19 int i;

20 double pi;

21 double n = 4;

22 for (i = 1; i < count; i++) {

23 Sn = fn(Sn, i);

24 n = 2*n;

25 }

26 pi = n*Sn/2;

27 printf("Value of pi %.15e\n", pi);

28

29 return 0;

30 }

(a) Flagged source of instability in algo-
rithm 1

1 #include <stdio.h> /* printf */

2 #include <math.h>

3

4 double fn(double Tn, int n) {

5 double e = Tn * Tn;

6 double tmp = sqrt(4 + e);

7 double Tn1 = 2* Tn / (2+tmp);

8 return Tn1;

9 }

10

11 int main(int argc, char* argv[]) {

12 if (argc < 2) {

13 printf("Provide #n\n");

14 return -1;

15 }

16 int count = atoi(argv[1]);

17 double Tn;

18 Tn = 2;

19 int i;

20 double pi;

21 double n = 4;

22 for (i = 1; i < count; i++) {

23 Tn = fn(Tn, i);

24 n = 2*n;

25 }

26 pi = n*Tn/2;

27 printf("Value of pi %.15e\n", pi);

28

29 return 0;

30 }

(b) No error flagged in algorithm 2

Figure 3: Illustration of two algorithms for approximating
π. Here we compare the sensitivity of two algorithms to
rounding errors. ADAPT flags the source of instability for
algorithm 1. Algorithm 2, which has been rewritten to avoid
inaccuracy, is not flagged.

is then used in the next step for mixed-precision allocation
described in section IV-B.
Usage: We run the ADAPT tool for a given program on a
given input with a specified error threshold. ADAPT generates
a report of floating-point precision sensitivity for every static
assignment statement using the error metric defined in Equa-
tion 6. It also generates a mixed-precision configuration using
the algorithm described in section IV-B. This configuration is
used as a guide by the developer to create mixed-precision
version of the program.

V. EVALUATION

We evaluate ADAPT on six benchmarks and one proxy
application. First we show the application of our approach
on the Archimedes despair problem, where we compare the
sensitivities of two algorithms to floating-point precision errors
and identify problematic regions of the code. Next, we evaluate
the capability of ADAPT in identifying variables that can be
in lower precision on four different benchmarks for different
error thresholds. We also use our approach to construct a
floating point precision sensitivity profile for HPCCG, a mini-
app in the Mantevo benchmark suite, as well as LULESH,
a proxy HPC application. We use these profiles to develop
mixed-precision versions of these benchmarks and to evaluate
performance gains. We ran all CPU experiments on Quartz,
a cluster containing Intel Xeon E5-2695 processors with 2.1
GHz cores and 128 GB of memory per node. We also use
Blue Waters supercomputer, a Cray machine at NCSA, for
the evaluation of LULESH. We use the XK7 nodes on Blue
Waters that include NVIDIA GPUs. We ran each experiment
five times and report the average time.

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

1e+01

1e+02

5 10 15 20 25 30

E
rr

o
r

M
e
tr

ic

n

Algorithm 1
Algorithm 2

(a) Error metric comparison.

-4e+00

-3e+00

-2e+00

-1e+00

0e+00

1e+00

2e+00

3e+00

4e+00

5 10 15 20 25 30

V
a
lu

e
 o

f
p
i

n

Algorithm 1
Algorithm 2

(b) Computed π value comparison.

Figure 4: ADAPT analysis on Archimedes problem. Results
indicate a rapid growth in the error metric with increasing n
for algorithm 1 compared to algorithm 2, suggesting instability
in algorithm 1. While algorithm 2 continues to converge to π,
algorithm 1 computes wrong result after 30 steps.

A. Archimedes Despair Problem

In order to demonstrate the capability of ADAPT to identify
stability issues in a numerical algorithm, we consider the
Archimedes despair problem [26]. The problem describes a
method for approximating π based on the length of the perime-
ter of a polygon inscribed in a circle. This method follows

the following recurrence: Sn+1 = 2n
√

2(1−
√

1− ε2) where
ε = Sn/2

n. For large n, Sn → π. However, ε becomes
very small and unrepresentable by the choice of floating
point precision. The result is an inaccurate evaluation of
the inner square root term (1 −

√
1− ε2) = γ, leading to

an unstable recurrence. Rewriting γ by rationalizing yields
a recurrence formula that is more accurately evaluated and
avoids this instability. Simplifying terms and following [26],
this recurrence takes the form: Tn+1 = Tn

2(1+
√
1−Tn)

where
Tn = (Sn

2)2.
Figure 3 gives an illustration of both algorithms. Using the

adjoint information and the corresponding computed absolute
error (see Equation 2) in the variables, the tool correctly
flags the intermediate variable tmp in line 6 of algorithm
1 as the source of instability. This is further highlighted
in Figure 4a, where the error metric, E , evaluated on the
two algorithms rapidly grows for algorithm 1 compared to
algorithm 2. Figure 4b illustrates the behavior of the different
algorithms as Sn → π. Here, we observe that the more stable
algorithm 2 progresses in its approximation of π, whereas

algorithm 1 drops to zero after about 30 steps.

B. Linear Solver with Preconditioner

In this section, we demonstrate the use of our tool to
evaluate the behavior of an iterative solver for solving a
linear system of equations. We consider a reservoir modeling
application characterized by the linear system matrix PORES3
from the University of Florida Sparse Matrix collection [27].
The matrix is real, nonsymmetric, and has a condition number
estimate of roughly 1.0e-05. The right-hand-side of the linear
system is generated artificially by assuming a solution of all
ones. The iterative method we consider is the generalized
minimal residual method (GMRES) [28]. The algorithm uses
the Arnoldi iteration to compute the minimal residual Krylov
subspace vector that approximates the solution to the linear
system. In this example, we select the quantity of interest to
be the solution error. Therefore, we assume convergence when
the error in the solution is reduced below 1.0e-10. We evaluate
the behavior of the iterative solver without preconditioning and
with (correct) preconditioning. For the case with precondition-
ing, we use the threshold-based incomplete LU factorization
preconditioner (ILUT) [29]. The fill-factor (or memory usage)
of the resulting preconditioner is approximately 1.5.

Evaluating the linear solver with ADAPT, we identified
regions of the algorithm with the largest error metric. The
results are presented in Table I. Here, “Res. Norm” refers to
the evaluation of the residual norm during each iteration of
the GMRES algorithm; “Modified GS” refers to the modified
Gram-Schmidt process within the Arnoldi step to compute
the Hessenberg matrix; “Hessenberg update” refers to the
transformation of the Hessenberg matrix into upper triangular
form by the use of plane rotations; and “Triangular solve”
refers to the solution of the upper triangular system to compute
the solution of the linear system.

The results indicate that the GMRES algorithm favors the
preconditioned linear system compared to the ill-conditioned
system, which is well-known in the literature. However,
ADAPT is able to identify key components of the algorithm
that are sensitive to ill-conditioning. Furthermore, we note
that, for this linear system, the preconditioner construction
(ILU factorization) and the preconditioner solve operations
produced an error metric on the order of 1.0e-15. This result
suggests that, while the preconditioner is important to improve
the behavior of the iterative solver, the preconditioning oper-
ations are less sensitive to numerical accuracy issues and are
quite stable for this problem. We note that this result pertains
only to this linear system and may be inapplicable to other
linear systems. However, this result aligns with the literature
in the context of mixed-precision linear solvers, where the
preconditioning operations are done in lower precision. For
example, half-precision arithmetic is used in [30] to accelerate
dense linear solvers.

C. Benchmarks

We evaluate ADAPT on four benchmarks: 1) arclength,
2) simpsons, 3) jetEngine and, 4) carbonGas. arclength and

Max. Error Metric No Preconditioner With Preconditioner
Res. Norm 3.56e-02 8.15e-05
Modified GS 7.14e+01 1.43e-03
Hessenberg update 2.41e-02 1.92e-05
Triangular Solve 1.57e+00 7.13e-04
Number of iters 1000 100

Table I: Error metric for different code regions of an
iterative solver. Lower value of metric corresponds to higher
stability. Our prediction of higher stability for the precon-
ditioned system agrees with the well-known result in the
literature that GMRES algorithm favors the preconditioned
linear system.

Program # vars Error # vars in Actual Estimated
Threshold lower prec Error Error

arclength 9 1e-12 9 1.7e-13 1.7e-13
simpsons 10 1e-12 9 4.5e-14 3.7e-14
jetEngine 28 1e-13 14 2.5e-13 8.4e-14
carbonGas 15 1e-10 7 1.0e-11 2.8e-11

Table II: Output error estimates and mixed-precision re-
sults for benchmarks using ADAPT. Here we show the
mixed-precision configuration as well as the output error esti-
mates given by ADAPT for different error threshold values.
ADAPT was able to accurately estimate the final output error.

simpsons were used in the evaluation of Precimonious [6],
a search-based method for mixed-precision tuning. jetEngine
and carbonGas were used in the evaluation of FPTuner [31].
Table II lists the results of our case studies. The initial configu-
ration for all the benchmarks is in long double, consistent
with their original publication. We choose an error threshold
for each benchmark, where the error threshold specifies the
absolute error difference with respect to the initial higher-
precision version of the program. Table II shows the estimated
as well as actual errors for mixed-precision configuration
suggested by ADAPT.

Table II shows that our approach is able to estimate the
final output error accurately and to identify mixed-precision
configurations within the specified error threshold for most of
the benchmarks. In the case of jetEngine, ADAPT slightly
underestimates, and therefore goes above the set threshold.
The analysis time is 17 seconds for arclength, 7 seconds for
simpsons and on the order of few microseconds for jetEngine
and carbonGas benchmarks.

In addition to the mixed-precision configuration of original
program variables, ADAPT provides the precision sensitiv-
ity of all the intermediate variables generated dynamically
throughout execution. This additional information enabled us
to explore alternative mixed-precision for the simpsons bench-
mark, where the variables were assigned double precision in
the initial 10000 iterations and then converted to higher preci-
sion (long double). Table III shows the speedup obtained
for these benchmarks at an error threshold of 1e-12. Even with
this tight error threshold, we are able to identify configurations
that yield a speedup of at least 1.1 for simpsons and arclength.

73

 int ncol = A->local_ncol;

74

75 double * r = new double [nrow];

76 double * p = new double [ncol]; // In parallel case, A is rectangular

77 double * Ap = new double [nrow];

78

79 normr = 0.0;

80 double rtrans = 0.0;

81 double oldrtrans = 0.0;

82

83 #ifdef USING_MPI

84 int rank; // Number of MPI processes, My process ID

85 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

86 #else

87 int rank = 0; // Serial case (not using MPI)

88 #endif

89

90 int print_freq = max_iter/10;

91 if (print_freq>50) print_freq=50;

92 if (print_freq<1) print_freq=1;

93

94 // p is of length ncols, copy x to p for sparse MV operation

95 TICK(); waxpby(nrow, 1.0, x, 0.0, x, p); TOCK(t2);

96 #ifdef USING_MPI

97 TICK(); exchange_externals(A,p); TOCK(t5);

98 #endif

99 TICK(); HPC_sparsemv(A, p, Ap); TOCK(t3);

100 TICK(); waxpby(nrow, 1.0, b, -1.0, Ap, r); TOCK(t2);

101 TICK(); ddot(nrow, r, r, &rtrans, t4); TOCK(t1);

102 normr = sqrt(rtrans);

103

104 if (rank==0) cout << "Initial Residual = "<< normr << endl;

105

106 for(int k=1; k<max_iter && normr > tolerance; k++)

107 {

108 if (k == 1)

109 {

110 TICK(); waxpby(nrow, 1.0, r, 0.0, r, p); TOCK(t2);

111 }

112 else

113 {

114 oldrtrans = rtrans;

115 TICK(); ddot (nrow, r, r, &rtrans, t4); TOCK(t1);// 2*nrow ops

116 double beta = rtrans/oldrtrans;

117 TICK(); waxpby (nrow, 1.0, r, beta, p, p); TOCK(t2);// 2*nrow ops

118 }

119 normr = sqrt(rtrans);

120 if (rank==0 && (k%print_freq == 0 || k+1 == max_iter))

121 cout << "Iteration = "<< k << " Residual = "<< normr << endl;

122

123

124 #ifdef USING_MPI

125 TICK(); exchange_externals(A,p); TOCK(t5);

126 #endif

127 TICK(); HPC_sparsemv(A, p, Ap); TOCK(t3); // 2*nnz ops

128 double alpha = 0.0;

129 TICK(); ddot(nrow, p, Ap, &alpha, t4); TOCK(t1); // 2*nrow ops

130 alpha = rtrans/alpha;

131 TICK(); waxpby(nrow, 1.0, x, alpha, p, x);// 2*nrow ops

132 waxpby(nrow, 1.0, r, -alpha, Ap, r); TOCK(t2);// 2*nrow ops

133 niters = k;

134 }

135

136 // Store times

137 times[1] = t1; // ddot time

138 times[2] = t2; // waxpby time

139 times[3] = t3; // sparsemv time

140 times[4] = t4; // AllReduce time

141 #ifdef USING_MPI

Figure 5: Output of ADAPT analysis highlighting lines
of code of HPCCG benchmark and their precision re-
quirement. Regions that are highlighted in red require higher
precision and those in green can be in lower precision. The
critical variables associated with the higher precision sections
are solution x, residual r, and the matrix-vector product Ap.

D. HPCCG

We evaluate our approach on HPCCG, a mini-application
from the Mantevo benchmark suite. It is a conjugate gradient
benchmark code for a 3D chimney domain with a problem
size of 20 × 30 × 160. Figure 5 shows a code highlight of
the critical sections of the algorithm that need to be evaluated
in higher precision as determined by ADAPT. The critical
variables associated with these sections are identified as the
solution x, the residual r, and the variable Ap, which is the
result of the matrix-vector product between the matrix A and
the search direction p. At each iteration of the algorithm, r and
Ap are used to compute the step-length to update the solution
x. However, perhaps more importantly, r and Ap are used to
ensure that the subsequent search directions are conjugate to
each other. As a result, inaccuracies in their calculation can
lead to an unstable conjugate gradient algorithm.

Further analyses of the results reveal that initial iterates
are critical for accuracy. Figure 6 shows a plot of the critical
variables across different iterations. The results indicate that
after the first 20 iterations, the error in r and Ap are below
the 1.0e-10. Beyond 60 iterations, the error in the solution is
also below this threshold. These results are interesting as they
suggest the feasibility of performing lower precision arithmetic
in the later iterations for efficiency.

E. LULESH

LULESH is a proxy application developed at LLNL. It
approximates hydrodynamics equations discretely by partition-
ing the spatial problem domain into a collection of volumetric
elements defined by a mesh. We use ADAPT on LULESH 2.0
to create a precision sensitivity profile of the program. Figure 7
shows the call graph at the function level highlighting func-
tions that need to be in higher precision. The profile generated

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

Iterations

Ap
r

x
Va

ria
bl

e

13.5

12.0

10.5

9.0

7.5

Figure 6: Output error estimate given by ADAPT across
iterations for HPCCG. Result from the ADAPT analysis
reveals that initial iterates are critical (depicted in darker
shade) for accuracy. Beyond 60 iterations, the error in the
solution x is below the threshold of wer precision arithmetic
in the later iterations.

by ADAPT provides details at every variable assignment but,
because it is not feasible to show the entire code, we show
this aggregated metric at the function level.

According to our analysis, the function CalcTimeCon-
straintsForElems, which pertains to calculation of the time
step contraints, can be performed in lower precision. This
result is in accordance with our expectation, because the
time step variable is merely used to advance the simulation
and therefore needs to be accurate only to a few significant
digits. The routine CalcElemCharacteristicLength computes
the characteristic length of the element, which is later used
in CalcTimeConstraintsForElems to update the next time step.
As a result, it is not surprising that this operation can also be
performed in lower precision.

CalcElemShapeFunctionDerivatives computes the determi-
nant of the element Jacobian matrix, which is then used in
CalcElemVelocityGradient to compute the rate of distortion
of the element volume. This distortion variable is used as a
conditional to switch on artificial viscosity and is not used
directly in the computation of other intermediate variables in
the code. Note that, because conditional statements are non-
differentiable, the AD approach cannot evaluate the impact of
conditional variables. We discuss this further in Section VI.

We used the profile as a guide to develop a mixed-precision
version for a CUDA implementation of LULESH. The mixed-
precision version was within the error threshold specified
in [32], which resulted in a speedup of 1.2x.

F. Comparison with Existing Tools

In this section, we compare ADAPT with Precimonious [6]
and FPTuner [31]. Precimonious is a search based tool, and
FPTuner [31] is a rigorous error analysis method based on
symbolic taylor expansion and interval functions. Note that
CRAFT [5] is another search based tool that we evaluated.
However, CRAFT is not directly comparable with ADAPT
because ADAPT analyzes variables while CRAFT analyzes

 main

 |__ TimeIncrement

 |__ LagrangeLeapFrog

 |__ LagrangeNodal

 | |__ CalcForceForNodes

 | | |__ CalcVolumeForceForElems

 | | |__ InitStressTermsForElems

 | | |__ IntegrateStressForElems

 | | |__ CollectDomainNodesToElemNodes

 | | |__ CalcElemShapeFunctionDerivatives

 | | |__ CalcElemNodeNormals

 | | | |__ SumElemFaceNormal

 | | |__ SumElemStressesToNodeForces

 | | CalcHourglassControlForElems

 | | |__ CollectDomainNodesToElemNodes

 | | |__ CalcElemVolumeDerivative

 | | | |__ VoluDer

 | | |__ CalcFBHourglassForceForElems

 | |__ CalcAccelerationForNodes

 | |__ ApplyAccelerationBoundaryConditionsForNodes

 | |__ CalcVelocityForNodes

 | |__ CalcPositionForNodes

 |__ LagrangeElements

 | |__ CalcLagrangeElements

 | | |__ CalcKinematicsForElems

 | | |__ CollectDomainNodesToElemNodes

 | | |__ CalcElemVolume

 | | | |__ CalcElemVolume

 | | |__ CalcElemCharacteristicLength

 | | | |__ AreaFace

 | | |__ CalcElemShapeFunctionDerivatives

 | | |__ CalcElemVelocityGradient

 | |__ CalcQForElems

 | | |__ CalcMonotonicQGradientsForElems

 | | |__ CalcMonotonicQForElems

 | | |__ CalcMonotonicQRegionForElems

 | |__ ApplyMaterialPropertiesForElems

 | | |__ EvalEOSForElems

 | | |__ CalcEnergyForElems

 | | | |__ CalcPressureForElems

 | | |__ CalcSoundSpeedForElems

 | |__ UpdateVolumesForElems

 |__ CalcTimeConstraintsForElems

 |__ CalcCourantConstraintForElems

 |__ CalcHydroConstraintForElems

Figure 7: Output of analysis from ADAPT highlighting
precision requirements of different functions in LULESH.
Functions in LULESH highlighted in red require higher
precision whereas the ones in green can be in lower precision.
ADAPT analysis indicates that the function CalcTimeCon-
straintsForElems, which pertains to the calculation of time
step constraints, can be performed in lower precision. Func-
tions CalcElemShapeFunctionDerivatives and CalcElemVeloc-
ityGradient, which compute the rate of distortion of the
element volume, can also be evaluated in lower precision.

instructions. Moreover, CRAFT searches took significantly
longer (e.g., over two minutes for arclength and over three
minutes for simpsons, even with 36-way parallelism).

Table IV shows the overhead of Precimonious, FPTuner and
ADAPT for some of the benchmarks. FPTuner is applicable to
benchmarks written in real-valued expression language. There
is no real-valued expression language version of LULESH and
HPCCG and it is not trivial to convert them to that form. Since
ADAPT supports only C and C++, we use C version of the

Program Error Threshold Output Error Speedup
HPCCG 1e-10 2.8e-15 1.10
arclength 1e-12 1.7e-13 1.11
simpsons 1e-12 4.5e-14 1.13
jetEngine 1e-13 2.5e-13 1.40
carbonGas 1e-10 1.0e-11 1.57
Lulesh (GPU) 1e-08 1.8e-11 1.20

Table III: Performance speedup using mixed-precision con-
figuration suggested by ADAPT. Analysis from the ADAPT
was used to create mixed-precision version of the program
which shows speedup for many of the programs evaluated.
LULESH benefits most from the mixed-precision optimiza-
tion with a speedup of 1.2x.

Program Error App Precimon- FPTuner ADAPT
Threshold Time (s) ious (s) (s) (s)

HPCCG 1e-10 3.3e-1 3.6e+2 - 3.7e+1
arclength 1e-12 2.0e-1 1.1e+2 - 1.7e+1
simpsons 1e-12 5.2e-2 4.2e+1 - 8.5e+0
jetEngine 1e-13 7.0e-8 5.2e+1 7.3e+1 1.2e-6
carbonGas 1e-10 3.3e-7 2.7e+1 2.0e+1 2.0e-5

Table IV: Comparison of Precimonious, FPTuner and
ADAPT. This shows the analysis time for Precimonious,
FPTuner and ADAPT as well as the application time. ADAPT
is orders of magnitude faster than Precimonious and FPTuner.

programs (carbonGas and jetEngine) generated by FPTuner.
Precimonious doesn’t work well with C++ dynamic memory
allocation, causing it to crash. Therefore, we are unable to get
the comparison results for LULESH. Precimonious doesn’t
have support for changing the type of dynamic memory alloca-
tion variables. Therefore, in the case of HPCCG, Precimonious
search didn’t explore 50% of the variables in the program.

Table IV shows the comparison of Precimonious with
ADAPT for a specified threshold. Precimonious explored
800 configurations for HPCCG, around 100 configurations for
arclength, simpsons, and jetEngine, and 60 for carbonGas.
The analysis time of Precimonious and FPTuner was orders of
magnitude more than that of ADAPT. In the case of jetEngine
and carbonGas, high analysis time of Precimonious is at-
tributed to high overhead of executing LLVM pass to transform
the LLVM bitcode based on the search configuration. For ar-
clength and simpsons, Precimonious and ADAPT selected the
same set of variables to convert to lower precision to maintain
the specified error threshold. However, for HPCCG the mixed-
precision versions were different. The mixed precision version
generated using analysis from ADAPT factored in precision
requirement across iterations and used lower precision as
iterations progressed to give 1.1x speedup. This level of fine-
grained information is not available with Precimonious and
therefore the configuration suggested by it did not result in
any speedup.

VI. DISCUSSION

In this section, we summarize the capabilities of ADAPT
for mixed-precision analysis, discuss the current limitations of
our work, and suggest possible directions for future work.

A. Summary of ADAPT’s Capabilities

ADAPT is able to highlight regions of code that are highly-
sensitive to floating-point precision as well as to identify
variables and operations that can be converted to lower
precision. This profile informed algorithmic choices in the
Archimedes despair program by capturing the stability issues
of particular operations. The error output estimates of the
mixed-precision configuration suggested by ADAPT closely
match the real output error and is well within the desired
error threshold. ADAPT provides a very detailed view of
precision sensitivity at every assignment statement as well
as across multiple iterations, enabling us to create mixed-
precision configurations that take advantage of inter-iteration
behavior. Finally, ADAPT is able to provide insights codes in
a scalable fashion, making it feasible to apply it to LULESH,
an HPC proxy application, to achieve a 1.2x speedup.

B. Current Limitations

While ADAPT provides a practical approach with accurate
estimates of output error for mixed-precision tuning, there are
still several limitations.
Analysis limited to the input used: Our approach does
not provide guarantees for all possible inputs. ADAPT is a
dynamic approach where the precision analysis is done on a
particular dataset. Often, application developers have model
datasets (e.g., benchmarks) that capture various characteristics
of different possible inputs. We can use these representative
datasets to provide a mixed-precision configuration for the
program in general.
Control flow divergence: The branches in a program are not
differentiable. Therefore, the analysis provided by ADAPT
cannot factor in the potential alteration to the control flow path
due to lowering of precision that can result in an erroneous
output. To the best of our knowledge, this is still an open
problem in AD and beyond the scope of this work. However,
we conjecture that a shadow-value tool such as [33] could
help identify instances of control flow divergence between two
precisions.
Non-differentiable functions: Many functions are not dif-
ferentiable at certain input values. For example, 1/x is not
differentiable at x = 0. In such cases, we could compute the
derivative using a small perturbation.
Memory requirements: The reverse mode of AD has the ad-
vantage that it can compute the adjoints in a constant multiple
of the original computation for any number of inputs. To do
this, it has to store the relevant intermediate computations
(often referred to as a “tape”). Depending on the algorithm
and the size of the input problem, storing the tape can be very
expensive. Periodic checkpointing could help to mitigate this
cost.
Overhead of type cast: Mixed precision assignment may re-
sult in implicit and explicit cast operations potentially leading
to degradation of performance. Therefore, while creating the
mixed-precision version of the program, we count the number
of casts using Intel’s XED2 library included in the Pin tool. We
use a simple cost model similar to the cost function in [10] that

takes into account the number of single and double precision
operations as well as the number of casts in order to compare
the performance of the transformed program.

VII. RELATED WORK

There have been various efforts to create mixed-precision
versions of an application manually both for CPU as well as
GPU codes [3], [34], [35], [4], [36]. These works have shown
the potential of mixed-precision for performance improvement
and energy savings. Manually creating mixed-precision config-
urations for an application requires extensive knowledge of the
numerical behavior of the algorithm and becomes challenging
or infeasible for a large programs with multiple modules
interacting with each other.

Floating-point error analysis has been studied extensively
in literature. Benz et al. [13] presented a dynamic analysis
approach for finding accuracy problems, where they store the
higher precision computation in a shadow value and report
a problem if it differs significantly from the original value.
Dynamic analysis has also been used by Lam et al. [37]
to detect cancellation errors. Bao et al. [11] and Nathan et
al. [12] propose an approach that monitors the application
to automatically discover unstable floating-point executions.
Several static analysis based rewriting approaches have been
proposed to minimize the rounding error [10], [8], [38], [9].

There have also been various static and sound approaches
proposed for floating-point source code to provide rigorous
bounds on the potential rounding error. Dinechin et al. [39]
presented a tool called Gappa based on interval analysis.
Magron et al. [40] proposed an optimization technique us-
ing semidefinite programming to provide formal rounding
error bounds, implemented in their tool called Real2Float.
Fluctuat [41] defines several abstract semantics to statically
track the error of a floating-point program. Solovyev et
al. [7] proposed FPTaylor, which models errors using symbolic
Taylor expansion and uses global optimization for rigorous
error bounds. FPTuner [31] uses a modified version of sym-
bolic Taylor expansion to study rounding error under generic
precision allocation. Darulova et al. [14] combined affine
arithmetic with SMT-solving to tune the precision of real-
valued expressions in Rosa and Daisy [42], [10]. These tools
provide rigorous guarantees of accuracy, often giving very
tight bounds on rounding error. However, they generally do
not scale well and are targeted towards smaller programs and
kernels that can be verified statically.

Algorithmic differentiation has been used to study the
effects of rounding errors [43]. Langlois [44] proposed a new
method called CENA which used AD to compute a correction
term for elementary rounding errors to improve the accuracy.
Gaffar et al. [45], [46] has used AD for bit-width optimization
for FPGAs. Similarly, Vassiliadis et al. [47] proposed a method
that combined interval analysis and algorithmic differentia-
tion for significance analysis. None of these efforts targeted
mixed-precision implementations directly, and neither effort
attempted to apply their work to HPC workloads.

Other approaches use some form of search-based optimiza-
tion for mixed-precision configurations. CRAFT [5], [48] de-
tects precision requirements for various program components,
providing guidance for building mixed-precision versions of a
program. Precimonious [6] uses a delta-debugging algorithm
to explore mixed-precision configurations. Precimonious was
further extended in HiFPTuner [49] to use dependence analysis
to improve the search algorithm. Graillat et al. [50] proposed
a similar approach for tuning, but used discrete stochastic
arithmetic (DSA). The main drawback of these approaches
is that exploring even a subset of the state space is very time-
intensive because the state space to explore is exponential in
the number of variables. The search-based algorithms can also
get trapped in local minima.

VIII. CONCLUSION

The primary goal of our work was to provide a scalable ap-
proach for mixed-precision analysis on HPC workloads while
providing more rigorous guarantees about the selected mixed-
precision configuration. We used algorithmic differentiation
(AD) to estimate the error in the final output due to lowering
the precision of variables. In contrast to the time-intensive
search-based approaches used for identifying valid mixed-
precision configurations, we used AD to provide floating-point
precision sensitivity of programs at a constant multiple of the
original computation, irrespective of the number of variables
explored. The precision sensitivity profile, which highlights
regions of the code that can potentially be converted to lower
precision, was used as a guide to study the stability of the
algorithm and to develop mixed precision configurations of
the program.

We evaluated ADAPT on six benchmarks and a proxy
application. We found that ADAPT is able to provide critical
information about the floating-point sensitivity of the code.
The profile was used to make algorithmic choices, as shown
in the case of Archimedes despair problem. It was also used
for identifying stability issues and was able to accurately
capture the operation causing the instability. ADAPT was
also used as a guide to build mixed-precision configurations
to achieve performance improvement. The estimates of the
output error for a mixed-precision configuration suggested by
ADAPT closely matches the real output error well within the
desired error threshold. Most importantly, ADAPT is able to
provide insights about the floating-point sensitivity of codes in
a scalable fashion, making it feasible to apply it to LULESH,
an HPC proxy application, to achieve 1.2x speedup.

ACKNOWLEDGMENTS

We thank Garrett Folks for his feedback on a draft of this
paper. We thank the anonymous reviewers for their suggestions
for improving this paper. In particular, we thank our shepherd
for working with us to get our paper ready for acceptance. This
work was performed under the auspices of the U.S. Depart-
ment of Energy by Lawrence Livermore National Laboratory
under Contract DE-AC52-07NA27344, via LDRD project 17-
SI-004. IM release number LLNL-CONF-748742.

REFERENCES

[1] J. Dongarra, P. Beckman, T. Moore, P. Aerts, G. Aloisio, J.-C. Andre,
D. Barkai, J.-Y. Berthou, T. Boku, B. Braunschweig, F. Cappello,
B. Chapman, X. Chi, A. Choudhary, S. Dosanjh, T. Dunning, S. Fiore,
A. Geist, B. Gropp, R. Harrison, M. Hereld, M. Heroux, A. Hoisie,
K. Hotta, Z. Jin, Y. Ishikawa, F. Johnson, S. Kale, R. Kenway,
D. Keyes, B. Kramer, J. Labarta, A. Lichnewsky, T. Lippert, B. Lucas,
B. Maccabe, S. Matsuoka, P. Messina, P. Michielse, B. Mohr, M. S.
Mueller, W. E. Nagel, H. Nakashima, M. E. Papka, D. Reed,
M. Sato, E. Seidel, J. Shalf, D. Skinner, M. Snir, T. Sterling,
R. Stevens, F. Streitz, B. Sugar, S. Sumimoto, W. Tang, J. Taylor,
R. Thakur, A. Trefethen, M. Valero, A. van der Steen, J. Vetter,
P. Williams, R. Wisniewski, and K. Yelick, “The International Exascale
Software Project Roadmap,” International Journal of High Performance
Computing Applications, vol. 25, no. 1, pp. 3–60, 2011. [Online].
Available: http://hpc.sagepub.com/cgi/doi/10.1177/1094342010391989

[2] G. Gopalakrishnan, P. D. Hovland, C. Iancu, S. Krishnamoorthy,
I. Laguna, R. A. Lethin, K. Sen, S. F. Siegel, and A. Solar-
Lezama, “Report of the HPC Correctness Summit, Jan 25–26,
2017,” Washington, DC, Tech. Rep., 2017. [Online]. Available:
http://arxiv.org/abs/1705.07478

[3] M. Baboulin, A. Buttari, J. Dongarra, J. Kurzak, J. Langou, J. Langou,
P. Luszczek, and S. Tomov, “Accelerating scientific computations with
mixed precision algorithms,” Computer Physics Communications, vol.
180, no. 12, pp. 2526–2533, 2009.

[4] R. Medhat, M. O. Lam, B. L. Rountree, B. Bonakdarpour, and S. Fis-
chmeister, “Managing the Performance/Error Tradeoff of Floating-point
Intensive Applications,” in Proceedings of the International Conference
on Embedded Software (EMSOFT’17). ACM, 2017.

[5] M. O. Lam, J. K. Hollingsworth, B. R. de Supinski, and M. P. LeGendre,
“Automatically adapting programs for mixed-precision floating-point
computation,” in Proceedings of the 27th international ACM conference
on International conference on supercomputing. ACM, 2013, pp. 369–
378.

[6] C. Rubio-González, C. Nguyen, H. D. Nguyen, J. Demmel, W. Ka-
han, K. Sen, D. H. Bailey, C. Iancu, and D. Hough, “Precimonious:
Tuning Assistant for Floating-Point Precision,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis on (SC’13). New York, New York, USA: ACM
Press, nov 2013, pp. 1–12.

[7] A. Solovyev, C. Jacobsen, Z. Rakamarić, and G. Gopalakrishnan,
“Rigorous estimation of floating-point round-off errors with symbolic
taylor expansions,” in International Symposium on Formal Methods.
Springer, 2015, pp. 532–550.

[8] N. Damouche, M. Martel, and A. Chapoutot, “Intra-procedural
Optimization of the Numerical Accuracy of Programs,” in Proceedings
of the 20th International Workshop on Formal Methods for Industrial
Critical Systems, FMICS 2015, vol. 9128, 2015, pp. 31–46. [Online].
Available: http://link.springer.com/10.1007/978-3-319-19458-5{_}3

[9] P. Panchekha, A. Sanchez-Stern, J. R. Wilcox, and Z. Tatlock,
“Automatically improving accuracy for floating point expressions,”
Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation - PLDI 2015, pp. 1–11,
2015. [Online]. Available: http://dl.acm.org/citation.cfm?doid=2737924.
2737959

[10] E. Darulova, E. Horn, and S. Sharma, “Sound mixed-precision
optimization with rewriting,” in Proceedings of the 9th ACM/IEEE
International Conference on Cyber-Physical Systems, ser. ICCPS ’18.
Piscataway, NJ, USA: IEEE Press, 2018, pp. 208–219. [Online].
Available: https://doi.org/10.1109/ICCPS.2018.00028

[11] T. Bao and X. Zhang, “On-the-fly detection of instability problems in
floating-point program execution,” in ACM SIGPLAN Notices, vol. 48,
no. 10. ACM, 2013, pp. 817–832.

[12] R. Nathan, H. Naeimi, D. J. Sorin, and X. Sun, “Profile-driven automated
mixed precision,” arXiv preprint arXiv:1606.00251, 2016.

[13] F. Benz, A. Hildebrandt, and S. Hack, “A dynamic program analysis
to find floating-point accuracy problems,” ACM SIGPLAN Notices,
vol. 47, no. 6, pp. 453–462, 2012.

[14] E. Darulova and V. Kuncak, “Sound compilation of reals,” in Acm
Sigplan Notices, vol. 49, no. 1. ACM, 2014, pp. 235–248.

[15] U. Naumann, The art of differentiating computer programs: an introduc-
tion to algorithmic differentiation. Siam, 2012, vol. 24.

[16] D. H. Bailey, “Resolving numerical anomalies in scientific computation,”
Tech. Rep., 2012. [Online]. Available: http://www.davidhbailey.com/
dhbpapers/numerical-bugs.pdf

[17] IEEE, “IEEE Standard for Floating-Point Arithmetic (IEEE 754-2008),”
IEEE, New York, Tech. Rep., aug 2008.

[18] B. W. Char, G. J. Fee, K. O. Geddes, G. H. Gonnet, and M. B. Monagan,
“A tutorial introduction to maple,” Journal of Symbolic Computation,
vol. 2, no. 2, pp. 179–200, 1986.

[19] A. Griewank, “On Automatic Differentiation,” in
Mathematical Programming: Recent Developments and
Applications. Kluwer Academic Publishers, 1989, vol. 6,
pp. 83–108. [Online]. Available: http://www.researchgate.
net/publication/2703247{_}On{_}Automatic{_}Differentiation/file/
9c96052529013aed9e.pdf

[20] L. Hascoët and V. Pascual, “The Tapenade Automatic Differentiation
tool: Principles, Model, and Specification,” ACM Transactions On
Mathematical Software, vol. 39, no. 3, 2013. [Online]. Available:
http://dx.doi.org/10.1145/2450153.2450158

[21] C. Bischof, L. Roh, and A. Mauer-Oats, “Adic: an extensible automatic
differentiation tool for ansi-c,” Urbana, vol. 51, p. 61802, 1997.

[22] C. Bischof, A. Carle, G. Corliss, A. Griewank, and P. Hovland, “Adifor–
generating derivative codes from fortran programs,” Scientific Program-
ming, vol. 1, no. 1, pp. 11–29, 1992.

[23] J. Utke, U. Naumann, M. Fagan, N. Tallent, M. Strout, P. Heimbach,
C. Hill, and C. Wunsch, “Openad/f: A modular open-source tool
for automatic differentiation of fortran codes,” ACM Transactions on
Mathematical Software (TOMS), vol. 34, no. 4, p. 18, 2008.

[24] M. Sagebaum, T. Albring, and N. R. Gauger, “High-performance deriva-
tive computations using codipack,” arXiv preprint arXiv:1709.07229,
2017.

[25] R. J. Hogan, “Fast reverse-mode automatic differentiation using
expression templates in c++,” ACM Trans. Math. Softw., vol. 40, no. 4,
pp. 26:1–26:16, Jul. 2014. [Online]. Available: http://doi.acm.org/10.
1145/2560359

[26] F. S. Acton, Real Computing Made Real: Preventing Errors in Scientific
and Engineering Calculations. Princeton, NJ, USA: Princeton Univer-
sity Press, 1996.

[27] T. A. Davis and Y. Hu, “The university of florida sparse matrix
collection,” ACM Trans. Math. Softw., vol. 38, no. 1, pp. 1:1–1:25, Dec.
2011. [Online]. Available: http://doi.acm.org/10.1145/2049662.2049663

[28] Y. Saad and M. H. Schultz, “Gmres: A generalized minimal residual
algorithm for solving nonsymmetric linear systems,” SIAM J. Sci. Stat.
Comput., vol. 7, no. 3, pp. 856–869, Jul. 1986. [Online]. Available:
http://dx.doi.org/10.1137/0907058

[29] Y. Saad, “Ilut: A dual threshold incomplete lu factorization,” Numerical
Linear Algebra with Applications, vol. 1, no. 4, pp. 387–402.
[Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/nla.
1680010405

[30] A. Haidar, P. Wu, S. Tomov, and J. Dongarra, “Investigating
half precision arithmetic to accelerate dense linear system solvers,”
in Proceedings of the 8th Workshop on Latest Advances in
Scalable Algorithms for Large-Scale Systems, ser. ScalA ’17. New
York, NY, USA: ACM, 2017, pp. 10:1–10:8. [Online]. Available:
http://doi.acm.org/10.1145/3148226.3148237

[31] W.-F. Chiang, M. Baranowski, I. Briggs, A. Solovyev, G. Gopalakr-
ishnan, and Z. Rakamari, “Rigorous Floating-Point Mixed-Precision
Tuning,” in Proceedings of the 44th ACM SIGPLAN Symposium on
Principles of Programming Languages (POPL’17). New York, NY,
USA: ACM, 2017, pp. 300—-315.

[32] I. Karlin, J. Keasler, and R. Neely, “Lulesh 2.0 updates and changes,”
Tech. Rep. LLNL-TR-641973, August 2013.

[33] M. O. Lam and B. L. Rountree, “Floating-Point Shadow Value Analysis,”
in Proceedings of the 5th Workshop on Extreme-Scale Programming
Tools, ser. ESPT ’16. Piscataway, NJ, USA: IEEE Press, 2016, pp.
18–25. [Online]. Available: https://doi.org/10.1109/ESPT.2016.10

[34] A. Buttari, J. Dongarra, J. Kurzak, P. Luszczek, and S. Tomov, “Us-
ing mixed precision for sparse matrix computations to enhance the
performance while achieving 64-bit accuracy,” ACM Transactions on
Mathematical Software (TOMS), vol. 34, no. 4, p. 17, 2008.

[35] X. S. Li, J. W. Demmel, D. H. Bailey, G. Henry, Y. Hida, J. Iskandar,
W. Kahan, S. Y. Kang, A. Kapur, M. C. Martin et al., “Design,
implementation and testing of extended and mixed precision blas,” ACM
Transactions on Mathematical Software (TOMS), vol. 28, no. 2, pp.
152–205, 2002.

http://hpc.sagepub.com/cgi/doi/10.1177/1094342010391989
http://arxiv.org/abs/1705.07478
http://link.springer.com/10.1007/978-3-319-19458-5{_}3
http://dl.acm.org/citation.cfm?doid=2737924.2737959
http://dl.acm.org/citation.cfm?doid=2737924.2737959
https://doi.org/10.1109/ICCPS.2018.00028
http://www.davidhbailey.com/dhbpapers/numerical-bugs.pdf
http://www.davidhbailey.com/dhbpapers/numerical-bugs.pdf
http://www.researchgate.net/publication/2703247{_}On{_}Automatic{_}Differentiation/file/9c96052529013aed9e.pdf
http://www.researchgate.net/publication/2703247{_}On{_}Automatic{_}Differentiation/file/9c96052529013aed9e.pdf
http://www.researchgate.net/publication/2703247{_}On{_}Automatic{_}Differentiation/file/9c96052529013aed9e.pdf
http://dx.doi.org/10.1145/2450153.2450158
http://doi.acm.org/10.1145/2560359
http://doi.acm.org/10.1145/2560359
http://doi.acm.org/10.1145/2049662.2049663
http://dx.doi.org/10.1137/0907058
https://onlinelibrary.wiley.com/doi/abs/10.1002/nla.1680010405
https://onlinelibrary.wiley.com/doi/abs/10.1002/nla.1680010405
http://doi.acm.org/10.1145/3148226.3148237
https://doi.org/10.1109/ESPT.2016.10

[36] H. Anzt, B. Rocker, and V. Heuveline, “Energy efficiency of mixed
precision iterative refinement methods using hybrid hardware platforms,”
Computer Science-Research and Development, vol. 25, no. 3-4, pp. 141–
148, 2010.

[37] M. O. Lam, J. K. Hollingsworth, and G. Stewart, “Dynamic Floating-
Point Cancellation Detection,” Parallel Computing, vol. 39, no. 3, pp.
146–155, mar 2013.

[38] E. Schkufza, R. Sharma, and A. Aiken, “Stochastic optimization of
floating-point programs with tunable precision,” ACM SIGPLAN No-
tices, vol. 49, no. 6, pp. 53–64, 2014.

[39] F. De Dinechin, C. Q. Lauter, and G. Melquiond, “Assisted verification
of elementary functions using gappa,” in Proceedings of the 2006 ACM
symposium on Applied computing. ACM, 2006, pp. 1318–1322.

[40] V. Magron, C. Verimag, G. Constantinides, and A. Donaldson,
“Certified Roundoff Error Bounds Using Semidefinite Programming,”
ACM Trans. Math. Softw. Article, vol. 43, no. 34, 2017. [Online].
Available: http://dx.doi.org/10.1145/3015465

[41] E. Goubault and S. Putot, “Static analysis of finite precision computa-
tions,” in International Workshop on Verification, Model Checking, and
Abstract Interpretation. Springer, 2011, pp. 232–247.

[42] E. Darulova and V. Kuncak, “Towards a Compiler for Reals,” ACM
Transactions on Programming Languages and Systems (TOPLAS),
vol. 39, no. 2, pp. 8:1—-8:28, 2017.

[43] M. Iri, “History of automatic differentiation and rounding error estima-
tion,” Andreas Griewank and George Corliss, editors, pp. 3–16, 1991.

[44] T. Braconnier and P. Langlois, “From rounding error estimation to
automatic correction with automatic differentiation,” in Automatic dif-
ferentiation of algorithms. Springer, 2002, pp. 351–357.

[45] A. A. Gaffar, O. Mencer, W. Luk, P. Y. Cheung, and N. Shirazi,
“Floating-point bitwidth analysis via automatic differentiation,” in Field-
Programmable Technology, 2002.(FPT). Proceedings. 2002 IEEE Inter-
national Conference on. IEEE, 2002, pp. 158–165.

[46] A. A. Gaffar, O. Mencer, and W. Luk, “Unifying bit-width optimisa-
tion for fixed-point and floating-point designs,” in Field-Programmable
Custom Computing Machines, 2004. FCCM 2004. 12th Annual IEEE
Symposium on. IEEE, 2004, pp. 79–88.

[47] V. Vassiliadis, J. Riehme, J. Deussen, K. Parasyris, C. D. Antonopoulos,
N. Bellas, S. Lalis, and U. Naumann, “Towards automatic significance
analysis for approximate computing,” in Code Generation and Optimiza-
tion (CGO), 2016 IEEE/ACM International Symposium on. IEEE,
2016, pp. 182–193.

[48] M. O. Lam and J. K. Hollingsworth, “Fine-grained floating-point
precision analysis,” The International Journal of High Performance
Computing Applications, p. 1094342016652462, 2016.

[49] H. Guo and C. Rubio-González, “Exploiting community structure for
floating-point precision tuning,” in Proceedings of the 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis.
ACM, 2018, pp. 333–343.

[50] S. Graillat, F. Jézéquel, R. Picot, F. Févotte, and B. Lathuiliere,
“Promise: floating-point precision tuning with stochastic arithmetic,” in
Proceedings of the 17th International Symposium on Scientific Comput-
ing, Computer Arithmetics and Verified Numerics (SCAN), 2016, pp.
98–99.

http://dx.doi.org/10.1145/3015465

APPENDIX A
PROOF OF ANALYSIS ACCURACY

Given a set of inputs S ⊂ Rn for some continuously
differentiable function f : Rn → Rm, the following theorem
provides a guarantee on the accuracy of the results produced
by ADAPT for a given input x ∈ S.

Theorem: Let f : Rn → Rm be a continuously dif-
ferentiable function that takes as input the vector x ∈ S
and produces as output the vector f(x) ∈ Rm. Let y be a
lower precision representation of x such that ||x− y||1 ≤ ε
where 0 < ε ≤ ||x||1 × 2−p and where p is the number of
mantissa bits and ||x||1×2−p is the absolute error bound (see
Section III-A). Finally, let Jf denote the Jacobian matrix of f ,
which gives the partial derivatives of the output with respect
to the inputs. Then, there exists L = supt∈[0,1]‖Jf‖, such
that ‖f(x)− f(y)‖1 ≤ Lε, where Lε is the specified error
threshold (TolError in Algorithm 1).

Proof: By definition, f is locally Lipschitz and L is the
corresponding Lipschitz constant. Define Jf as the m × n
Jacobian matrix of f , given by:

∂f1
∂x1

. . . ∂f1
∂xn

...
...

∂fm
∂x1

. . . ∂fm
∂xn


where ∂fi

∂xj
is the partial derivative of the ith component of the

output with respect to the jth component of the input.
For some y ∈ Rn, define z(t) such that for x ∈ S, z(t)

satisfies z(t) = y + t(x − y), 0 ≤ t ≤ 1. Clearly, z(0) = y
and z(1) = x. From the fundamental theorem of calculus and
chain rule of differentiation, we have that

f(x)− f(y) = f(z(1))− f(z(0))

=

∫ 1

0

f ′(y + t(x− y))(x− y)dt

=

∫ 1

0

Jf (x− y)dt

It follows that

‖f(x)− f(y)‖ = ‖
∫ 1

0

Jf (x− y)dt‖

Using the triangle inequality for integrals, we get

‖f(x)− f(y)‖ ≤
∫ 1

0

‖Jf (x− y)‖dt

≤ sup
t∈[0,1]

‖Jf‖‖(x− y)‖
∫ 1

0

dt

≤ L‖x− y‖
≤ Lε

	Introduction
	Overview
	Background
	Floating Point Representation
	Algorithmic Differentiation

	Mixed Precision Tuning
	Output Error Estimation Model
	Mixed Precision Allocation
	Implementation Details

	Evaluation
	Archimedes Despair Problem
	Linear Solver with Preconditioner
	Benchmarks
	HPCCG
	LULESH
	Comparison with Existing Tools

	Discussion
	Summary of ADAPT's Capabilities
	Current Limitations

	Related Work
	Conclusion
	References
	Appendix A: Proof of Analysis Accuracy

