Topology-Aware Space-Shared Co-Analysis of
Large-Scale Molecular Dynamics Simulations

Preeti Malakar*!, Todd Munson*, Christopher Knight*, Venkatram Vishwanath*, Michael E. Papka**

*Argonne National Laboratory
pmalakar@cse.iitk.ac.in

Abstract—Analysis of scientific simulation data can be con-
currently executed with simulation either in time- or space-
shared mode. This mitigates the I/O bottleneck, however it results
in either stalling the simulation for performing the analysis
or transferring data for analysis. In this paper, we improve
the throughput of space-shared in situ analysis of large-scale
simulations by topology-aware mapping and optimal process
decomposition. We propose node interconnect topology-aware
process placement for simulation and analysis to reduce the data
movement time. We also present an integer linear program for
optimal 3D decompositions of simulation and analysis processes.
We demonstrate our approach using molecular dynamics simu-
lation on Mira, Cori and Theta supercomputers. Our mapping
schemes, combined with optimal 3D process decomposition and
code optimizations resulted in up to 30% lower execution times
for space-shared in situ analysis than the default approach. Our
mappings also reduce MPI collective I/O times by 10-40%.

Index Terms—MD simulation; analysis; optimization; mapping

I. INTRODUCTION

Supercomputers have enabled high-throughput computational
science simulations in several domains such as cosmology,
material science and climate. Such simulations have helped
scientists to better understand the underlying complex physics
in phenomena such as earthquakes, combustion and blood flow
in the human body [1]-[5]. These applications solve several
complex equations on large domains for high fidelity and
produce terabytes of data [6]. This data subsequently needs to
be analyzed and visualized to gain a complete understanding of
the simulated phenomena. Analysis is typically performed after
the simulation has completed, once the entire data is available
on stable storage. However, the network bandwidth of modern
interconnects are in the range of Gigabytes/s, whereas one
can achieve more than a Teraflop/s compute speed per node
[7]. Therefore, writing terabytes of data for post hoc analysis
not only increases the simulation time due to high I/O times,
but also increases the lag between the time when data was
generated and when it is analyzed. Thus, with the growing size
of output data and the widening gap between I/O bandwidths
and processing speeds, there have been increasing efforts to
develop in situ analysis techniques [8]-[13] to gain faster
insight into simulations. Overlapping I/O with computation [14]
may not enable fast analysis of large data [15] due to overheads
in writes and subsequent reads. It also incurs significant time
in writing large data, as well as requires dedicated I/O servers.

There are a number of ways to perform in situ analysis [16]—-
[19]. Tightly-coupled (or time-shared) analysis alternately runs

SC18, November 11-16, 2018, Dallas, Texas, USA
U.S. Government work not protected by U.S. copyright

!Indian Institute of Technology Kanpur Northern Illinois University
{tmunson, knightc, venkat, papka}@anl.gov

on the same process as the simulation. Loosely-coupled analysis
can be executed as the same job (space-shared) or as a different
application on a different cluster; in both cases, simulation
transfers data to the analysis. In the latter case, the two jobs
need to run simultaneously for inter-process data transfer, and
may require certain features in the cluster workload manager.
Simulation and analysis run on the same core in case of time-
shared analysis. This affects the runtime due to compulsory
or capacity cache misses from two different execution flows
and stalls the simulation when analysis executes. Also, the
scalability of simulation and analysis can be drastically different.
We empirically found that time-shared performs worse than
space-shared co-analysis due to the above reasons.

In this work, we consider the space-shared co-analysis
workflow, where simulation and analysis run as a single
application. Co-analysis can be performed on a subset of
MPI processes by splitting the global MPI communicator
for simulation and analysis [19]-[22]. Simulation being more
compute-intensive runs on a larger fraction of the allocated
nodes. This is a viable approach to in situ analysis, especially
in today’s era which is marked by continued growth in
number of cores/node [23]-[26]. Faster parallel analysis can
be accomplished by sparing a few cores per node, because
increasing cores/node do not necessarily scale the applications
[27]. We noted that by using all the 64 cores of Intel KNL [28]
for simulation of 10° atoms on 8 nodes, there is no noticeable
speedup, whereas by sparing 8 cores for analysis, it can be
done almost for free. It is challenging to determine the optimal
ratio of simulation and analysis processes for co-analysis. This
depends on a number of factors such as the simulation and
analyses computation profiles, their communication and scaling
characteristics, the system architecture, including the number
of cores/node, etc. Here, we do not focus on determining the
optimal number of simulation and analysis processes. Our
work focuses on reducing the overall execution time by better
process mapping, given a particular ratio of simulation and
analysis tasks. The experimental results are shown with an
empirically determined process ratio (from experiments with
various ratios on multiple systems, see Appendix).

Space-shared mode incurs data movement overhead, espe-
cially when simulation and analysis nodes are several hops
away. This occurs with default mapping of processes, where
simulation is mapped on processes 0:M-1 and analysis mapped
to processes M:N-1 (N is the total number of processes, M
is the number of simulation processes). Additionally, since

the number of simulation processes are larger than analysis,
there is more congestion at cores running analysis due to
multiple simultaneous data transfers. In this work, we study
executions of simulation and analysis on the same node,
which avoids inter-node data transfers. This also mitigates
application scalability saturation bottlenecks [29] when running
on several cores per node. We further investigate several
process mappings that leverage the intra-node interconnect more
efficiently for data transfer between simulation and analysis.
Efficient mappings are able to avoid congestion within a node,
by placing analysis processes on cores that are physically closer
to the cores running the simulation. Some of our node-aware
mappings are generic, and some are specifically tailored to
commonly available networks on chip, such as 2D mesh and
ring interconnects [28], [30], [31]. We show that execution
times can be reduced by 30% with better process placements in
a node. We demonstrate scalability using a scientific simulation
code and an MPI collective I/O benchmark on Intel Haswell,
Intel Knights Landing (KNL) and IBM PowerPC processors.

Next, we study optimal process decomposition for simu-
lation and analysis, where both require a 3D process grid
decomposition for execution. Mapping a 3D grid onto the
physical processor topology is an NP-hard problem [32];
mapping two 3D grids in the most communication-efficient
layout on any given network is more challenging. We identify
a few constraints to solve this in an optimal way using a
mixed integer linear program. Using our 3D decompositions,
we are able to reduce the execution times by up to 22%
due to fewer network stalls and lower communication times
across many systems with different network topologies. Finally,
we also optimize the LAMMPS molecular dynamics (MD)
simulation co-analysis code execution flow and are able to
reduce the overall runtime. MD codes typically distribute sub-
domains of particles across processes. For co-analysis, it is
important to maintain some degree of synchronicity between
sub-domains in simulation and analysis processes, thus frequent
data transfers might be implied to produce correct results.
We profiled the co-analysis execution flow and found several
bottlenecks impeding concurrent executions of simulation and
analysis. We modified the code and the sequence of steps in
analysis to better overlap with computation, which reduced
synchronization costs between simulation and analysis due
to lower data transfer overheads. For typical long-running
simulations, our code optimizations and co-analysis execution
can help to significantly reduce runtimes and improve disk
utilization, saving precious core-hours and storage space.

Our node interconnect topology-aware mapping schemes,
combined with optimal 3D process decomposition and code
optimizations resulted in up to 30% lower execution times for
space-shared in situ analysis of molecular dynamics simulations,
as compared to the default approach. The mappings result in 20—
70% lower network stalls, indicating lesser network congestion
due to reduced data movement. Our mappings are applicable
to other coupled codes (such as [33], [34]) and also reduce
MPI collective I/O times. We achieved 10—40% reduction in
I/O times of up to 2 TB shared files on Theta and Cori.

II. RELATED WORK

There have been several application-driven efforts to develop
in situ analysis of simulations to meet the science needs [9],
[12], [19], [21], [35], [36]. Data from large-scale simulations is
too large to store and analyze with conventional post hoc
analysis [10], [15]. More than 1000x savings in time is
possible by doing in situ analysis [37], [38]. Researchers in
[21] presented an in situ/co-analysis framework for the HACC
cosmological simulation code. They executed a few analyses
in time-shared mode and others in space-shared mode. In [19],
space-shared analysis for molecular dynamics code was studied
to optimize the frequency of the analysis computation. The
authors in [12] combined in situ and in-transit analyses to
perform topological analyses and generate descriptive statistics.
In this case, certain analyses were performed in an in-situ
mode and the intermediate results were transferred to staging
nodes using DataSpaces [39] for further analysis. In this work,
we developed a scalable space-shared in situ analysis for
molecular dynamics simulation that optimizes the placement of
the simulation and analysis processes as well as improves the
3D grid decomposition for both the simulation and analysis.
Our work is directly applicable in cases where the job partition
is shared among simulation and analysis processes [20], [21].

Several in situ infrastructures have been developed [40]-[46].
Damaris [47] uses a few dedicated cores on each node to do
asynchronous I/O and analysis. Our mappings can improve its
performance. Paraview Catalyst [44] couples simulation and
in situ visualization/analysis tasks. VisIt’s Libsim [45], an in
situ visualization library, requests data from simulation code as
needed. Dreher et al. [22] assemble processing components of
analysis workflow in a dataflow graph to deploy the workflow.
SENSEI [46] is a generic in situ interface used to instrument a
simulation code, which can use other infrastructures to transfer
data between simulation and analysis that run as different jobs.
Our approach can be leveraged by these infrastructures to
optimize the placement of analysis and simulation processes.
Also, we exploit application domain knowledge to reduce
synchronization overhead and better scale in situ analysis, and,
thus the overall execution of MD simulations.

Deciding an optimal task/process placement is an NP-
complete problem. There are several efforts to improve appli-
cation performance using topology-aware mappings [48]-[53].
Generic mapping schemes that use application traces [53] lack
the ability to distinguish between a simulation’s communication
from that of the analysis. Graph algorithms [49] have been
proposed to use process affinity and communication matrices
for process binding. However, in our case, we have coupled
simulation and analysis executions within a job, each with their
own set of MPI communications and scalabilities, which makes
it more challenging to apply the above methods. We consider
node interconnect-level congestion to decide the mappings that
minimize performance impact on both simulation and analysis.
Furthermore, we incorporate dimensionality constraints in our
integer linear program formulation to minimize the overall
execution times on any given system. Aupy et al. [29] use cache

partitioning to maximize performance of multiple iterative
applications co-scheduled on the same node. In our work, we co-
schedule two different execution flows of the same application
using NoC-aware mappings to reduce data movement times.

III. CHALLENGES OF MD SIMULATION CO-ANALYSIS

Molecular dynamics (MD) simulations help to understand the
physics and chemistry governing a vast array of systems such as
liquids, biomolecules and materials [54]. Particle trajectories in
MD are generated by integrating Newton’s equations of motion
propagating them forward in time using the forces derived from
interaction potentials. The integration time step is sufficiently
small to adequately sample the highest frequency motions in
the system, typically 0.5-2 femtoseconds for atomistic models.
Thus, sufficiently long trajectories resulting from multi-million
step simulations are necessary in order to sample physically
relevant timescales (e.g. nanoseconds), with significantly longer
simulations required (e.g. microseconds) in order to explore
increasingly more complex phenomena (e.g. protein folding,
polymer entanglement). When combined with the relatively
large length scales required to properly address some scientific
questions, large-scale MD simulations requiring multi-million
particle systems can be computationally expensive.

Co-analysis requires two groups of processes (MPI commu-
nicator split) to perform simulation and analysis — simulation
usually runs on the larger partition. We focus on space-shared
co-analysis because time-shared performs ~ 20% worse than
space-shared. MD analysis consists of computation of per-
atom, or local and global properties of groups of atoms, such
as mean square displacement, kinetic energy etc. Thus, the
simulation partition sends particle positions, velocities and
tags to the analysis partition for analyses. The simulation
processes maintain neighbor lists that provide lists of those
nearby particles within a specified cutoff distance that are most
likely to contribute to short-range interactions. These lists are
periodically updated and it is at this time that particles are
also exchanged between neighboring processors if they have
traveled beyond the local sub-domain of a process (see below).
When these exchanges occur, additional per-atom data, such as
property histories and bond partners, are also communicated
to the neighboring processors. This implies that the analysis
partition also needs to exchange particles in sync with the
simulation partition to correctly keep track of the per-atom
data unique to each particle, in the most general of cases.
Thus, both partitions are required to update neighbor lists
and exchange particles within their respective partitions at the
same time step. We found using the CrayPat tool [55] that
this constraint leads to significant synchronization bottlenecks.
Our code optimizations to improve performance of the overall
execution of simulation and analysis are detailed in §IV.

Scientific simulations decompose simulation data into 2D/3D
sub-domains distributed across many MPI processes (virtual
process topology). Each sub-domain consists of a portion of the
input domain. For E.g., in cosmological and MD simulations,
each sub-domain consists of a number of particles. In MD,
each MPI rank computes key tasks for all owned particles,

such as computing interactions with nearby particles and
integrating equations of motion [56]. Since the sub-domains
are spread across hundreds of nodes, communication consumes
a non-trivial percentage of total execution time [57]. The
virtual process topology directly affects execution time on
a system with a certain network topology. The virtual process
decomposition determines the layout of sub-domains on the
physical processors. There are multiple communications in a
time step between neighboring processes in MD simulations.
The MPI process layout on physical process grid determines
the number of network links (hops) between two neighbors
on virtual process topology [53]. This affects communication
times, thus process mapping is crucial to minimize the impact of
inter-node communications. Placement for co-analysis is more
challenging, because communication occurs among simulation
processes as well as between simulation and analysis processes,
and among the analysis processes. Thus, it is important to
determine the optimal process mapping and decomposition.

IV. CODE OPTIMIZATIONS IN LAMMPS

We now highlight the optimizations that we developed in
LAMMPS to reduce the execution time by mitigating synchro-
nization overheads between simulation and analysis partitions.
Figure 1A (left workflow) depicts the main simulation phases
of LAMMPS (Verlet algorithm), the names of which are loosely
based on function names in LAMMPS. The first simulation
step is an initial integration method to update velocities by a
half-step, and coordinates by a full step (S1) [58]. Next, the
neighbor_build() method (S2), representing several functions
in LAMMPS, determines whether neighbor lists are rebuilt
and particles exchanged in the current time step. If requested,
the processes exchange particle data, insert/delete atoms from
data structures, and update neighbor lists. To ensure that
simulation and analysis partitions remain synced with per-atom
information, it is necessary for the simulation partition to inform
the analysis partition that particle exchange was attempted.
However, this synchronization is only required in steps where
particle exchange actually occurs. We observed significant

A) S1: Initial_integrate() B)| S1: Initial_integrate()

|
| o
| [Syncl sZa _comm() ww“ﬂ Syncl: s2a comm() | { Syncl: s2a_comm() }— = -’ Syncl: s2a_comm()]
| [SZ neighbor_build() ‘ [Al neighbor_build() If . 523 " 5 LYE . |
I I I{ i r_buil i r.
o o c
§| [Sync2: s2a_setup() J— ——[Sync2: s2a_setup() J E| [Sync2: s2a_setup()]—w—m—v Sync2: s2a_setup()]
[=
: [53 compute_| force() : [$3: neighbor_build()] A2: neighbor_build()]
| | s4: final mtegrate() | | s4: compute_force()]
| g —
1 (swmes: s2a_commtl ==l synes:sza_commi) | | [[s5:finalLintegrate() |
1 [S5: end_of_step() J { A2: end_of_step() 1 { S6: end_of_step() J A3: end_of_step() J

Fig. 1: A) Original and B) optimized simulation and analysis workflows. There is reduced
synchronization and improved computation overlap in the optimized workflow.

performance bottlenecks, using CrayPat, due to unnecessary
forceful synchronizations in steps where particle exchanges
are not attempted. We modified the algorithm to instead
perform particle exchange and neighbor list rebuilds at a pre-
defined frequency neigh_sync_freq (based on the nature of the
simulation and minimum analysis frequency). The simulation
processes then compute the forces using updated particle

coordinates (S3), complete the second half of integration by
updating velocities a second half-step (S4), and next, finalize
any tasks needed at the end of a simulation step (S5).

The right workflow of Figure 1A depicts the original
analysis workflow. The analysis processes require updated
atom coordinates from the simulation partition after the first
integration step to ensure particles are correctly exchanged
between neighboring processors and to ensure partitions remain
synced (steps within blue dotted line of Figure 1A). Rebuilding
neighbor lists on the analysis partition is necessary as they
are used by some analyses to efficiently compute properties
that involve pairwise distance computation, such as radial
distribution functions. It is more efficient (and simpler) to
request the analysis partition to rebuild neighbor lists as
opposed to communicating them between partitions. Each
analysis process also updates the expected number of atoms
as per their simulation process senders (Sync2) to validate
that partitions are correctly synced. After the final integration
step performs velocity Verlet updates in the simulation (S4),
analysis processes receive the updated velocities of their atoms
(Sync3). Analyses are then computed (A2) on time steps where

requested; this is where most time is spent by analysis partition.

Profiling revealed that time spent communicating per-particle
data between partitions is insignificant compared to rebuilding
neighbor lists. Since there are fewer analysis processes, each
analysis process owns a larger sub-volume of the system.
Therefore, time to rebuild neighbor lists on analysis processes
is longer (e.g. on BG/Q, it takes more than 3x time). Thus,
this execution flow requires simulation processes to wait for
the analysis processes at Sync2. Therefore, in our optimized
workflow (Figure 1B), we delay the actual neighbor list build
until after Sync2 (first optimization). In Verlet algorithm,
velocities are updated a second half-step using current forces.
The atomic coordinates were updated a full step during
initial_integrate() phase. For statistical analyses that are only
functions of atomic coordinates or velocities and not both, it
is sufficient to simply use half-step velocities for analyses and
forego the second s2a_comm() synchronization (Sync3). This
second optimization allows the two partitions to make progress
asynchronously; simulation partition computes simulation steps
and analysis partition builds neighbor lists and computes
analyses. The optimized workflow is shown in Figure 1B. The
two partitions sync up again at the next specified sync-step.

V. PROCESS MAPPING

In this section, we study process mapping strategies for
simulation and analysis that co-execute on allocated nodes.
Typically, simulation runs on processes 0:M/—1 and analysis
runs on processes M:N-1, where N is the total number of
processes, M is number of simulation processes and the ratio
r of simulation to analysis processes is NIL/[M. In the multicore
era, this implies that the default process mapping will place
several simulation and analysis processes on different nodes
(shown in Figure 2(a)). This approach has been used in prior
studies of in-transit analysis [19]-[21]. However, this does
not lead to optimal performance because the ratio r is usually

greater than 1. This leads to congestion at analysis nodes due to
simultaneous data transfers from multiple simulation nodes to
analysis nodes, limited node reception bandwidth and network
congestion on the global network links.Here, ranks 0:M—1 are
on nodes 0-2 and ranks M:N-1 are placed on node 3.

EEEE EEEE

(b) Simulation (blue) and anal-
ysis (cream) on same nodes.

(a) Simulation (blue) and anal-
ysis (cream) on different nodes.

Fig. 2: Placement overview of simulation and analysis.

We propose process mapping heuristics to place simulation
and analysis processes on the same nodes (Figure 2(b)). There
are tens of cores per node in today’s era, such as 68 cores/node
in Cori [25]. Therefore, simulation and analysis rank placements
within a node plays a crucial role. The on-chip interconnect
topology-aware mapping heuristics exhibit better performance.
Our proposed schemes leverage the network topology within a
node (NoC) and NUMA domains in a node. First, we give a
short overview of contemporary on-chip interconnects in §V-A
and then explain our mapping schemes in §V-B.

A. On-chip interconnects

Multicore architectures have different types of on-chip
interconnects or network-on-chip (NoC) topologies [59], [60].
Figure 3 shows a close approximation of different contemporary
representative on-chip interconnects, such as a central crossbar
switch (3(a)), ring interconnect (3(b)) and 2D mesh (3(c)).
These three classes of NoCs can be found in 15 out of 20 top
fastest supercomputers [23]. For example, the processing units
in an IBM Blue Gene/Q (BGQ) chip communicate via a central
crossbar switch [61]. The 16-core AMD Opteron processor
also uses crossbar for intra-node communication [62].

orET
B
OY—r— 0O

(a) Crossbar.

fad bad

(b) Ring. (¢) 2D mesh.
Fig. 3: Examples of on-chip (intra-node) interconnects.

Another class of processors (such as the Intel processor
family — Ivybridge, Haswell, Broadwell) have dual-sockets,
4-18 cores per socket and ring interconnect for on-chip
communication [63], [64]. They vary in die sizes, core counts,
QPI speed, DRAM bandwidth, L2 bytes/cycle etc. However,
they have similar on-chip ring interconnects, which yield lower
communication times than crossbar and bus-based NoCs. The
cores are partitioned into two equal-sized NUMA domains
[65]. These processors are also the building blocks for 7
out of top 20 fastest supercomputers, and 7 out of top 10
supercomputers in the Green500 list [66]. The latest Intel
Xeon Phi processor (“Knights Landing”/KNL) has a 2D mesh
interconnect connecting up to 36 tiles [28], with a YX routing
order. A tile in a KNL chip comprises of 2 cores, and a shared
1 MB L2 cache. These are used in 6 out of top 20 fastest
supercomputers [23]. 2D mesh interconnects have also been
used in several other academic and commercial processors [26],
[30], [67]-[70]. Next, we describe our mapping heuristics that

account for the various types of interconnects, which affect
the data transfer time from the simulation to analysis ranks.

B. NoC-aware Mapping Heuristics

Our NoC-aware mapping schemes place simulation and
analysis ranks on the same node to reduce inter-node com-
munications, which is useful for network topologies such as
dragonfly that suffer from job interference [71]. Thus, they
share on-chip memory, network and other resources depending
on where they are placed in the node. This affects the execution
time because of concurrent executions of two different codes
(simulation and analysis) on the same node, which in turn
affects the TLB misses, cache misses and on-chip network
contention. The extent of variation in a simulation’s execution
time due to an analysis kernel using shared resources depends
on memory hierarchy, cache sharing protocols, spatial locality,
execution sequence (computation and communication phases)
of the codes, and the NoC. The NoC topology determines how
cache misses will be fulfilled and the path along which the data
is routed from simulation to analysis processes. Furthermore,
the data transfer time from simulation to analysis processes
is also affected by the distance (number of hops) between
simulation and analysis processes. We designed process-to-
processor mapping schemes, with objectives to minimize (1)
cache sharing and pollution, and (2) data transfer time from
simulation to analysis processes. We considered a few different
architectures with different memory hierarchies and NoCs.

1) Contiguous: The simulation and analysis processes share
nodes, i.e. every node is divided into two groups of processes
(Figure 4(a)). We use the physical core numbering to divide
the cores. If the ratio of simulation to analysis processes is
r : 1, then the simulation processes are placed on core numbers
0: T_T_lN — 1 and the analysis processes are placed on core
numbers -5 N : N —1. This is a generic scheme and improves
performance in all multicore architectures.

0 3 5 0H1+2-0-3-4-5-1
e e e e el s sl il s s e
e e e e e e e e e e e e e
1|6*1[7*1|8—1|9—Z|0~2‘1~2‘2*2|3 12-13-14—-4 —15-16-17- 5

| | | | | | | |
oH1-H2-H3Ha-Hs-eH7 18-19-20— 6 —21-22-23— 7

(a) Contiguous. (b) Striped.

0-1-2-0 [67-8-2 036912151821
;~4—5~£ £~10~11~; 1*1*%—10*13716719 22
12-13-14-4 18-19-20— 6 ; n é — 8 -11-14-17-20-23
15-16-17-5 21-22-23-7 é*{—%*gfifé*é—;

(c) NUMA-aware. (d) Folded.

Fig. 4: Mapping heuristics to place simulation (blue) and analysis ranks (cream).

2) Striped: In this scheme, the two process groups are inter-
leaved (Figure 4(b)). Analysis processes are placed at a regular
interval, equi-distant from each other. If the ratio of simulation
to analysis processes is r : 1, then the analysis processes are
placed on every 7" core, and simulation processes are placed
on rest of the cores. This is a generic scheme, and improves
performance in all multicore architectures. It is more beneficial
for a chip like BG/Q, which has a central L2 cache.

3) NUMA-aware: This mapping benefits multi-socket pro-
cessors with multiple NUMA domains. Analysis processes

are spread on each socket so that sender and receiver ranks
are placed within a socket. Figure 4(c) shows a case where
cores communicate via ring interconnect in each socket. This
is applicable to Intel processor series, such as Ivybridge and
Haswell. We place simulation/analysis ranks such that traffic
to a receiver from its senders are contained within a ring.

4) Folded: This heuristic is specific to 2D mesh intercon-
nects on chip, such as Intel KNL [28] and TILE64 [30]. We
reorder the ranks in column-major order (Figure 4(d)) because
KNL has a YX routing policy. We modify the placement of
simulation and analysis so that traffic from senders to receivers
are contained within 1 or a few columns, depending on the
ratio r. In the figure, simulation ranks in rows 1 — 3 send data
to the analysis rank in the last row. This minimizes cross-traffic
in the links during data transfer phase due to internal routing
and because each row and column of the mesh is a half ring.

The contiguous and striped mappings apply to any architec-
ture, NUMA-aware is specifically tailored for ring interconnects,
and folded is intended for chips with 2D mesh interconnects.

VI. PROCESS DECOMPOSITION

Simulation and analysis require two process partitions, each
with its own 3D process grid decomposition. Let ps,, ps, and
ps, refer to x, y, z process grid dimensions for simulation.
Let pas, pay and pa, refer to x, y, z process grid dimensions
for analysis. Let s = ps, X psy X ps, and a = pa; X pa, X
pa, be the total number of simulation and analysis processes
respectively. It is challenging to determine the 3D grid sizes
because there are several constraints while determining the
optimal process decompositions. First, both 3D decompositions
have to be as cube-like as possible. This maximizes the number
of paths between communicating tasks [48], [51] and leads
to the difference between every pair of dimensions to be as
small as possible. A skewed decomposition leads to unbalanced
communication volume as well as unbalanced distribution in the
number of hops between communicating processes while cubic
decomposition minimizes the communication time for nearest-
neighbor communications due to more effective mapping.

01|23
45|67
8119|1011

Node0: 0-11
Node 1:12-23
Node 2: 24 -35
Node 3: 36 —47

Fig. 5: Process mapping of 4 X 4 X 3 grid on 4 12-core nodes.

Second, ps;, ps, and ps, have to be multiples of pa,, pa,
and pa respectively due to implementation constraints for a
one-to-one mapping of simulation to analysis processes. Third,
simulation process dimensions have to be in decreasing order
so that the z dimension is the smallest. This ensures that more
neighbors (in x and y dimensions) can be packed on a single
node or consecutive nodes assigned to the job, since processes
are numbered in zyx order by default (see Figure 5). Note, the
most preferred numerical order between the simulation process
dimensions depends on the order of the process layout.

MILP for optimal process decomposition

Performance is affected by optimal process decomposition.
Finding the most cubic-like decompositions for s and a, while
satisfying the above constraints is a combinatorial optimization
problem. We formulate a mixed integer linear program (MILP)
to solve this. We use the prime factorization of s and a to
formulate a MILP that is quickly solvable. Let f; be the set
of prime factors of the number of simulation processes, s, and
number of analysis processes, a. For example, if s = 1536 =
29 % 3! and @ = 512 = 29, then f = {2,3}. Let Z be the set
of index of prime factors of s and a. In the above example,
7T = {1, 2} since there are 2 unique prime factors. s_z, s_y, s_z
and a_z,a_y,a_z are our decision variables. Then s_z;, s_y;
and s_z; are the number of occurrences of i*" factor in each
of the three dimensions z, y, z for decomposing s into a 3D
grid, where the sum s, + s, + s, has to match the required
multiplicity {9, 1} for each factor. Similarly, a_x;, a_y,; and
a_z; are the number of occurrences of " factor in each
of the three dimensions z, y, z for decomposing a into a
3D grid. Since ps, has to be a multiple of pa,, therefore
each element in s_z should be greater than or equal to the
corresponding element in a_x, and the same holds true for y
and z dimensions. For example, in the above case, one possible
solution is s_x = {4,0}, s_y = {2,1} and s_z = {3,0}, and
a_x ={4,0}, a_y = {2,0} and a_z = {3,0}. The 3D grid
can then be computed from these decision variables; in this
example s =16 X 12 x 8 and a = 16 x 4 x 8.

Note that ps,=[[,c7 fi"", psy=[l;ez fi*¥" and
ps.=[l;cz fi*~*. Similarly pa,, pa, and pa. can be
computed. It is preferable that simulation dimensions are
ordered in decreasing dimension size, leading to the constraints
DSz = psy > ps.. We do not enforce a strict ordering on the
dimensions of a. Our objective is to minimize the difference
between each pair of dimensions for both s and a, i.e. to
obtain cubic decompositions for both. For simulation, a
cube-like ordering is obtained by minimizing the mean
of the ratios (1,ps,/psy,pss/ps.) due to ordering of the
dimensions. For analysis, we determine pa,,q., the maximum
of pa;, pa, and pa., by adding constraints. The objective
function for analysis is then to minimize the mean of the ratios
(POmaz/PCz; PUmaz /Py, PAmaz/Paz). We use geometric
mean of all six ratios resulting in an objective of the form
L psy [pSy * Sz /PSz * PUmaz [Plz * PAmaz [Ply * DAmaz /PO
We then use logarithms to simplify the objective function to
Equation 1, where a_max; is the maximum of a_x;,a_vy,, a_z;
for the 7" prime factor and w is the weight. We use weighted
mean with w=2 to favor a cubic decomposition of the
simulation processes s. The simplified version using geometric
mean and logarithm reformulation is solvable quickly.

minimize Z log(fi) * (w* (2% s_x; — s_y, — S_2;)

s
+3xa_max; —a_x; —a_y;, —a_z;) (1)
ST+ sy, +szi=sprod;, Vi€l (2)

azr;+ay;, +az,=aprod; Vi €L (3)

Next, we describe the constraints. Equations 2 and 3 specify
correctness of total number of simulation and analysis pro-
cesses. s_prod; and a_prod; are the number of occurrences
of " prime factor (from Z) in s and a respectively. For
our example, where s=1536, and a=512, s_prod={9,1} and
a_prod={9,0}. Thus, s=[[, fi**"°% and a=[L;er fio-prod:
Thus, 1536=16 x 12 x 8:2g x (22 x 3) x 23=2% x 31, where
4+2+3=9. Equations 4-5 specify ordering constraints on the
grid dimensions for the simulation processes and equations 6—8
compute the maximum dimensions for the analysis processes.

> log (fi) sy <D log (fi) - s e

i€l ie1
> log (fi) -5z < log (fi) - sy ®)
i€z iez

> log (fi)-aw; <> log (f;) - a_maz; (6)

i€z =

> log (fi)-ay, < _log (fi) - a_maz; (7)

i€z =

> log (fi)-a_zi <Y _log (fi) - a_max; (8)

= =

Each dimension in the 3D grid for simulation and analysis
process decomposition is greater than one for the cases
considered here. Therefore there should be at least 1 factor
from f in each dimension, as specified in Equations 9-14.

Yoswi=1 9

Za_mi >1 (12) ar, <sx;Viel

i€T i€T (15)
Sy, >100) »oay,>1(13) YiSsyViel
< iez (16)

azi <sz;Viel
Yszmz1() Y az>1 (14 - (17

i i€l
quelfltions 15-17 ensure integer divisibility of simulation
and analysis process dimensions. Equations 18-23 specify
bound constraints for each factor from f in each dimension.
Note that since s > a, the number of prime factors for s
may be more than a. Therefore, a factor may be present in
s and may not be present in a. Hence one or more terms
may be O (as shown in our example of 1536 and 512).

sx; >0vieI (18) axr; >0VieI (21)
sy, >0vieZ (19 ay; >0viel (22)

VII. EXPERIMENTS

We describe the simulation and analyses, the three systems
used for evaluation and the various experiments performed to
understand the efficacy of our approaches.

Application: We used the classical molecular dynamics simu-
lation code — Large-scale Atomic/Molecular Massively Parallel
Simulator (LAMMPS) [56] for most experiments. Lennard-
Jones model was used with a cutoff to compute pairwise
interactions and PPPM for long-range electrostatics [72]. We
evaluate in situ analysis performance using a problem that spans
a range of conditions explored in molecular simulations of

liquids, materials and biological systems. We simulated a box
of water molecules solvating two types of ions. We consider
the following representative analyses: two radial distribution
functions averaged over all molecules, three velocity auto-
correlation functions and mean squared displacements averaged
over each molecule and ion. We also used an MPI collective
I/O benchmark [73] for evaluation of our NoC-aware mappings.

Systems: We performed experiments on three supercomputers
with diverse NoCs (refer §V-A): (1) The IBM Blue Gene/Q
Mira [74] system has 48K 16-core nodes interconnected by
5D torus, each core has 16 KB L1 cachesand shared 32 MB
L2 cache per node (2) Intel Haswell partition of Cori [25] has
2388 32-core Intel Xeon nodes interconnected by Dragonfly,
each core has 32 KB L1 caches, 256 KB L2 cache, and shared
40 MB L3 cache per socket and (3) Intel KNL Theta [24] has
4392 64-core nodes interconnected by Dragonfly, each core
has 32 KB L1 caches, two cores share 1 MB L2 cache.

Results: We used our MILP solution to decide the optimal 3D
process grid for LAMMPS simulation and analysis. This was
specified in LAMMPS input configuration file via processors
command. The MILP was modeled in AMPL [75] and solved
using MINLP solver. Solve times were less than 0.08s.

The custom mappings on Mira were specified using
the RUNJOB_MAPPING environment variable. On Cori
and Theta, we used MPICH_RANK_REORDER_METHOD, a
Cray environment variable for process-mapping. In this
case, when it’s set to 0/1/2(0=default), system-defined(Cray)
placement schemes are used. To use our custom map-
file, we set MPICH_RANK_REORDER_METHOD=3 and use
MPICH_RANK_ORDER as mapfile. Examples can be found
in [76]. Custom mappings alter the locations of simulation
ranks (0:M-1) and analysis ranks (M:N-1) in the allocated
job partition. We also compared to other system mappings
(e.g. MPICH_RANK_REORDER_METHOD=0/1/2 on Theta and
Cori [77]). However, those did not perform well and are not
presented here. On Theta, the f1lat guad mode of execution
was used; it performed slightly better than other memory-cluster
modes and the results are representative of other modes. Next,
we show results for scalability, effect of our code optimizations,
process decomposition and mappings. LAMMPS was run for
1000 time steps, with analysis frequency of 50. The ratio of
the simulation to analysis processes was 7:1 on Theta, as it
has a larger number (64) of cores per node. We used a ratio
of 3:1 on Cori (Haswell) and Mira, which have 32 and 16
cores per node respectively. These ratios have been empirically
determined (Please refer to Appendix for the experiments to
determine these ratios). Performance modeling can also be
used [37]. We profiled a few configurations on Cori and Mira
for core utilization and synchronization between ranks. The
variation in instructions per cycle and number of average and
maximum cycles across all cores was less than 1%. We noted
a variation of 90% between synchronization time in simulation
and analysis ranks in the case of default mapping, whereas for
our NUMA-aware mapping, the variation across all cores was
less than 2% on Cori. The neigh_sync_freqg was set to
50 (see §IV). 4 threads were used on BG/Q and KNL, and

2 threads were used on Haswell. Comparison to time-shared
mode and overhead of co-analysis is shown in §VII-4.

1) Effect of Code Optimization: Figure 6 shows the effect
of our two optimizations to the original LAMMPS co-analysis
workflow (see §IV). The simulation and analysis execution
times of 12, 34 and 51 million atoms on 2048 Mira cores are
shown. For all data points, we achieved ~3% improvement with
reduced synchronization and additional ~4% by better overlap
of computations between simulation and analysis partitions
(consistent over 5 runs). Cori speedup was ~7% with reduced
synchronization and further 5% with computation overlap for
34M atoms. Speedup on Theta was ~7% with reduced syn-
chronization and further 12% with computation overlap for 6M
atoms. This is because the simulation and analysis can progress
faster without unnecessarily syncing up too frequently. The
impact on analysis results with and without these optimizations
are statistically insignificant; typical differences occur after the
6t decimal place. Typically, scientists simulate millions of
time steps for complex problems and these code optimizations
could lead to significant savings in time-to-solution.

2000

I Original Flow
1800 Reduced synchronization
1600 mmmOptimized Flow

12M 34M 51M
Number of atoms

Fig. 6: Execution times of simulation and analysis on 2048 cores of Mira.

2) Process Decomposition: Table 1 shows the utility of
our MILP to determine the optimal 3D process grids for
simulation and analysis (refer §VI). Column 2 shows 1.5
million atom simulation times on 256 nodes (8 ranks/node)
on BG/Q with various 3D process decompositions. Column
1 shows simulation (s) and analysis (a) process grids with a
ratio of 3:1. Row 1 shows the result from MILP. We compare
this with other decompositions (selected at random) in rows
2-4. The arithmetic mean of the ratios between the x,y,z
dimensions of the simulation grid are 1.61, 3.83, 11.67, 21.33
for rows 1, 2, 3, 4, respectively. Note that, larger the difference
between dimensions, longer is the execution time. The MILP
solution gives up to a 22% lower execution times than the
random decompositions considered. This is because we specify
the constraints of minimizing the difference between x, y, z
dimensions and ordering the dimensions in the formulation. Out
of the many different decompositions satisfying the constraints
mentioned in §VI, MILP outputs the best configuration.

Columns 3 — 5 show communication times for the most
time consuming MPI calls in LAMMPS on BG/Q. The times
were collected using IBM HPCT profiler [78]. Each row
depicts the average of maximum MPI time across all processes
from 4 independent runs. The maximum MPI time across all
processes represents the time taken by the slowest process,
which determines the overall execution times. Due to optimal
process decomposition, row 1 has lowest communication times.

We ran similar configurations on 2048 cores of Theta. The

TABLE I: Effect of 3D process decompositions on runtimes.

Process grids ‘Wallclock (s) Send (s) Alltoallv (s) Wait (s)
16 X 12 x 8 (s)

107.63 9.17 8.67 591
16 x 4 x 8 (a)
24 X 16 X 4 (s)

116.24 16.36 11.82 11.01
8 X 16 X 4 (a)
16 x 48 X 2 (s)

124.51 16.33 13.62 9.89
16 X 16 x 2 (a)
2 X 96 x 8 (s)

138.02 33.80 14.85 25.16
2 x 32 x 8(a)

number of network request and response stalls (from CrayPat
[55]) were 52% and 33% lower (averaged from 5 runs) for the
optimal decomposition. On Cori, the MILP solution resulted in
12% lower runtimes and incurred 23% lower L3 caches misses
than other 3D decompositions. This shows the importance of
MILP to quickly identify the best 3D decomposition as opposed
to semi-randomly sampling multiple decompositions in hope
of choosing that which yields the best runtime.

3) Strong Scaling: Figure 7 compares the default placement
of ranks to contiguous, striped and NUMA-aware mappings
on 768 — 4096 Haswell processors of Cori. The x-axis shows
the number of ranks and the y-axis shows the boxplot of
corresponding total execution time of simulation and analysis
of 21 million atoms using LAMMPS. The analysis runs on
one-fourth of the total number of processes in all cases. Each
group of boxplots in the x-axis compares the 4 mappings. Our
mappings always result in lower execution times for all 4
node counts because we avoid inter-node data transfers. The
contiguous and striped rank placements are 5% and 14% (mean

values) better than the default rank ordering (shown in red).

In the case of contiguous mapping, though the analysis ranks
are placed on the same node, they are all placed within the
same socket. In the case of striped, the simulation and analysis
rank ordering is interleaved. However, both mappings do not
consider the two ring interconnects in each Haswell socket.

— Default — Striped
— Contiguous — NUMA-aware

768 1024 1536
Number of MPI ranks

2048 4096

Fig. 7: Execution times of 21 million atom 1000-step LAMMPS simulation and analysis
(3:1 ratio) on 768 — 4096 ranks (24, 32, 48, 64, 128 nodes) of Cori Haswell.

The NUMA-aware heuristic (shown in green) outperforms
the other mappings in all cases. On average, the execution
time is reduced by 31% on all node counts compared to the
default rank placement. This approach tries to ensure that
the data transfer from each block of senders to each receiver
(analysis rank) does not interfere with the other concurrent data
transfers in the same socket/node. Clearly, mapping the ranks
in a way to avoid intra-node NoC congestion by leveraging

the ring interconnects in each socket (see Figure 4(c)) helps
in achieving the best performance. The consumed energy
(from the Slurm job scheduler accounting data on Cori)
for the default, contiguous, striped, NUMA-aware mappings
on 128 nodes were 5.74M, 4.66M, 5.10M, 3.87M Joules
respectively. Thus, NUMA-aware mapping is also the most
energy-efficient due to reduced data movement in NoC. These
mappings are also expected to benefit other coupled codes,
such as the verlet/split parallelization available in LAMMPS,
whereby long-range electrostatic interactions (involving 3D
FFTs and MPI_Alltoallv) are parallely computed with short-
range interactions on separate processor partitions [33]. We
noted 33% improvement for 21 million atom verlet/split
simulation on 768 ranks of Cori with NUMA-aware mapping.
This demonstrates the general applicability of our mappings.

We now summarize the strong scaling results from Theta.
The NoC-aware mappings reduced the execution time of 220
million atom simulation and co-analysis on 64, 128, 256, 512
nodes (with 64 ranks per node) by 132, 58, 39 and 10 seconds
on average compared to the default mapping. As data size
per core decreases, the data transfer time overhead reduces
too, and thus absolute improvements are lesser at higher core
counts. However, for long running simulations and/or with
larger problem sizes, these improvements lead to substantially
reduced runtimes ranging from a few hours to days. The folded
mapping performs slightly better than contiguous and striped.
Unlike on Haswell, the architecture-specific mapping on KNL
(folded) gives little benefit. This is because the Intel KNL NoC
is not as precisely known as in the Intel Haswell architecture.
The proprietary die layout of the 64 cores on the 2D mesh of
a Theta node is only approximately known.

TABLE II: Profiles of 1000-step simulation and analysis using default and striped
mappings on 16384 ranks of Mira.

#Atoms Wallclock (s) Llp miss L2 miss MPI_Send (s)
78.4 42x%108 5.4x%107 3.8
0.8M s ,
62.8 3.6x10 42x%10 3.5
84.4 49%108 6.9%107 52
M 8 7
71.4 44x%10 5.4x%10 5.0
90.5 5.7%108 9.5%107 6.7
2.7M s ,
83.0 54x%10 7.2%10 6.3

4) Data Scaling: Table II shows the profiles of LAMMPS
simulation and analysis (1000 time steps) on 1024 nodes (16
ranks per node, 4 threads per rank) of Mira for different system
sizes (column 1). In each row (columns 2 — 5), the data for
default and striped mappings are shown in the first and second
sub-rows, respectively. The total execution time for striped
mapping is lower than the default in all cases. The reason
for this can be explained from columns 3 — 5. The cache
misses (both L1 prefetch and L2) are higher for the default
mapping. MPI_Send is used in both simulation and analysis
code paths and is one of the most time consuming and called
functions. The maximum time for an MPI_Send (i.e. the slowest
communication time) is also higher in the default case (column
5). This is partly because the analysis ranks are a few hops
away from their senders (simulation ranks) in case of default

mapping. Overall, the striped mapping results in up to 20%
lower execution times than the default mapping. The execution
times of 51, 73, 100 million-atom simulation and analysis
on 4096 cores of Theta are shown in rows 1-3 of Table III.
The maximum time is taken by the time-shared analysis mode
(column 1) because the simulation and analysis stall each
other to execute; this also causes more cache misses. The
contiguous, striped, and folded mappings perform better than
the default mapped space-shared mode (column 2) because
of more efficient data transfers within the node. The folded
mapping (column 5), which is particularly suited for 2D mesh
interconnects, performs the best and is within 10% of simulation
execution times (column 6). The time-shared mode takes ~ 28%
longer than simulation and ~ 20% more than folded mapping.

TABLE III: Execution times for 51M, 73M, 100M-atom simulation+analysis.

Time-shared Default Contiguous | Striped Folded Simulation
624.83 512.60 488.39 489.35 486.93 43433
868.94 726.04 698.09 696.53 695.69 621.46
1171.28 992.75 944.22 944.97 942.86 850.45

The number of network request stalls (from CrayPat) for
simulation and analysis of 6 and 34 million atoms are 2.4e+06
and 9.8e+06 respectively for default mapping, and 5e+05 and
7e+05 for folded mapping, on 1024 cores of Theta. This is
due to more congestion at the analysis nodes in case of default
mapping and more impact of network congestion for larger
data sizes. Clearly, with increasing data size, improved process
placement has a substantial impact. The L3 cache misses with
NUMA-aware mapping for 12M, 21M, 34M and 51M-atom
simulations on Cori were 4—12% lower than default mapping.

580

%)

Default
Contiguous

Striped

T
$560 . Folded
S .

]
£540
@

S . ° ® .

‘552006 * Py * e

c c e .

o . ¢

=500 e -t

o L ‘ . ¢,
] ? .

x 480 e s e
w
323 B 5 61 8 9404040434849 404114849 1013717375196 1 1819 0

Job IDs

Fig. 8: Execution times using different mappings for different job runs. Default mapping
(red) performs the worst and folded (blue) gives the lowest times in most cases.

5) Effect of Runtime Variation: The impact of job placement
and inter-job interference has been well studied [79]-[81].
We analyzed 30 job logs to study the impact of runtime
variability on all mappings. Figure 8 shows the execution
times of LAMMPS simulation and analysis of 133 million
atoms on 16384 cores of Theta using the various mappings for
the 30 jobs examined. We don’t include Mira results because
there wasn’t much variation. For each job, four subsequent
runs with different mappings were executed within the same
job script to ensure identical node placements. The runtimes
were observed to vary for all mappings across the different jobs
to similar degrees. The variation may be due to differences
in allocated partitions as well as other job interference. Thus,
in addition to statistics, comparisons on a per-job basis helps
understand the relative performance improvements. For all job

runs, the default mapping resulted in the highest execution
times and folded mapping had the lowest times for most cases
- thus, depicting the importance of node-aware mapping.

6) Network Analysis: One of the main bottlenecks in parallel
computing at large-scale is the extensive usage of network.
Given that this resource is commonly shared on large-scale
systems today, sharing this resource with many other jobs
can potentially lead to congestion and application slowdown.
Our proposed mappings mitigate to some degree the effects of
slowdown due to the default mapping of simulation and analysis
ranks, by placing the analysis ranks closer to their senders. In
this section, we analyze some of the available Aries network
counters [82], [83] using the CrayPat tool (v7.0.0) [55] on
Theta. We focus on the Theta system as the congestion results
were only available here. We show a few representative network
counters (column 1) in Table IV for simulation and analysis of
100 million atoms on 128 nodes (64 ranks per node), collected
from 5 job runs. Columns 2—4 show the corresponding counter
values (mean) for default, contiguous and folded mappings,
respectively. The first row indicates the aggregate request traffic
injected by the NIC and the second row indicates the aggregate
response traffic received by the NIC from the Aries network,
which interconnects the compute nodes on Theta. The third and
fourth rows indicate the back-pressure arising at the sender and
receiver nodes. The default mapping leads to 20% and 23%
more packets injected/received at the NIC than contiguous and
folded mappings, respectively. This is due to more off-node
data transfers to analysis ranks in the case of default. The
reduction in request stalls for contiguous and folded were 68%
and 71% and the reduction in response stalls were 27% and
34% respectively, as compared to the default mapping. This
indicates lesser back-pressure at the nodes for our mappings.
A high ratio of stalls to packets indicate possible network
congestion [83]. Clearly, NoC-aware mappings lead to lower
congestion benefiting both our job and other running jobs.

TABLE IV: Network counters for LAMMPS simulation and analysis of 100 million
atoms on 8192 cores of Theta, using default and NoC-aware mappings.

Counters Default (x107) Contiguous (X 107) Folded (x 107)
Request packets 12.15 9.62 9.35

Response packets 12.15 9.62 9.34

Request stalls 71.57 24.67 22.11

Response stalls 26.90 19.44 17.67

7) Effect on MPI Collective 1/0: We show the utility of our
mappings on two-phase MPI collective I/O performance [84] us-
ing our benchmark [73]. Figure 9(a) depicts the mean read and
write times for the default and NoC-aware placement of aggre-
gator ranks, with standard deviation shown as error bars (from 5
runs). This was run on 128, 256 and 512 nodes (64 ranks/node)
of Theta, which has a Lustre file system [85], [86]. This
experiment reads and writes contiguous data from each rank,
using MPI_File_[write/read]_at_all. The largest
file size written was 2 TB from 512 nodes. Maximum number
of object storage servers (OSS) and 16 MB stripe size were
used to yield the best performance in all cases. In these runs,
compute node to aggregator node ratio was set to 16:1 using

the Cray MPI environment variable cb_nodes. Lower ratios
led to poor I/O bandwidths in both cases. Since the effective
I/0O bandwidth has some deviation, we ran both approaches
using the same partition and OSS allocation as part of the
same job for fair comparison. Cray MPI v7.7.0 was used.
Our NoC-aware mapping on Theta was able to reduce the
mean write times on 128, 256 and 512 nodes by 17%, 21% and
24%, respectively. The corresponding reduction in mean read
times were 35%, 24% and 35%, respectively. Our mapping
places the aggregator ranks on the same nodes as the MPI ranks
from which they send/receive data. On the KNL we used the
striped mapping such that the distance of each aggregator rank
from the corresponding compute ranks is minimized on the
KNL 2D mesh interconnect. In the default case, the aggregator
ranks are chosen in round robin fashion, which often leads to
multi-hop communication for aggregation. Aggregators help
in improving performance of large-scale /0O [87]. However, it
is extremely important to carefully place them such that the

data exchange time of the two-phase collective I/O is reduced.

We used the Cray timers (MPICH_MPITIO_TIMERS) [88] to

measure the split I/O times, such as aggregation and wait times.

The maximum wait times for writes on 16384 ranks (second
data point in Figure 9(a)) using default and our approach
were 11.41 x 10° and 3.47 x 10° clock ticks respectively, the
corresponding averages were 6.67 x 10° and 2.72 x 10° clock
ticks respectively. Our mapping leads to reduction in wait times
by a factor of 3, thus reducing the overall write/read times.

EEE Write Default B8 Read Default

10° Write NOC-awarellll Read NOC-aware I Write Default | Read Default

10° Write NOC-awarel® Read NOC-aware

Time (seconds)
Time (seconds)

T

\
- N
992 ranks,51268 16384 ranks, 1T8

32768 ranks,2TB
Number of nodes and data size

(a) Write/read times of 512 GB, 1 TB, 2 TB (b) Write/read times of 192 and 480
shared files on Intel KNL (weak scaling). GB shared files on Intel Haswell.
Fig. 9: I/O improvements with our mappings on Intel KNL and Intel Haswell.
1/0 results on Mira are not presented here!. We ran the same
benchmark on Cori Haswell partition on 12 and 30 nodes (32
ranks/node). Figure 9(b) shows the write and read times for
192 GB and 480 GB shared files using the default and our
NoC-aware approach. The plots show the mean and standard
deviation from 20 runs. We used the NUMA-aware mapping
heuristic (§V-B3) to place the aggregators, i.e. we consider
the two sockets per node and ring interconnect to place the
aggregators. We achieved 18% and 11% reduction in write
times on 384 and 960 ranks, respectively. The corresponding
reduction in read times were 26% and 42%. We observed a
reduction of 42% and 60% in the average and maximum wait
times (from Cray MPI timers) for writing 480 GB file from
960 ranks. Thus, rank placement based on the NoC topology

is important to reduce data movement times in collective I/O.

1(1) Mira has MPIv2, which does not allow fine-grained control of
aggregator placements and (2) BG/Q has 16 cores/node and default/best
ratio of aggregator:compute is 1:16, therefore placing the aggregator on any
of the 16 cores would give similar results due to crossbar interconnect.

VIII. CONCLUSIONS AND FUTURE WORK

We demonstrated effective techniques to scale space-shared
co-analysis of large-scale molecular dynamics simulations.
We presented node interconnect topology-aware mappings
for improved placement of simulation and analysis ranks to
reduce congestion and improve data movement. Space-shared
co-analysis outperforms time-shared mode of analysis (e.g.
20% improvement on 4096 Theta cores) as it is able to
concurrently execute simulation and analysis on sub-partitions
of allocated nodes. Our topology-aware placement of analysis
ranks (contiguous, striped, folded and NUMA-aware) improves
performance in comparison to the default mapping due to
reduced data transfer times. The folded mapping performs
better than others on Theta (Intel KNL), which has a 2D
mesh interconnect. On Intel Haswell (Cori), the NUMA-aware
mapping, which fully exploits the ring interconnect, reduces
the execution times by 30%. This also yields a more energy-
efficient mapping (32% less than the default mapping) due to
reduced data movement in the NoC. On BG/Q (Mira), which
uses a crossbar chip interconnect, the striped mapping achieves
10-20% improvement in comparison to the default mapping.

We demonstrated the efficacy of our placement schemes for
an I/O benchmark. For MPI collective I/O, we reduce read and
write times by 20-30% on Cori and Theta by optimizing the
placement of aggregators using our approaches. We achieved
33% improvement in another application — coupled execution
of long and short-range forces using NUMA-aware mapping on
Cori. Our mixed integer linear program formulation identified
optimal 3D decompositions for both the simulation and analysis.
This resulted in 22% lower execution times for the LAMMPS
co-analysis workflow on all three supercomputing systems.
Additionally, we improved the performance of this workflow
by significantly improving the overlap between both executions
and reducing the inherent synchronizations between them. This
achieved a 7% reduction in execution times. This implies an
improvement in the time-to-solution and computational cost
for long-running MD simulations — common workloads on
large scale supercomputing systems. With these optimizations,
we are able to perform several in situ analyses at a desirable
high analysis frequency at scale yielding greater insights.

In future, we will extend this to other applications such as
cosmology [20] and to in situ analysis modes such as those
where simulation and analysis are executed as separate jobs.

ACKNOWLEDGMENTS

This work was supported by the U.S. Department of Energy,
Office of Science, Advanced Scientific Computing Research
under award numbers 571.32, 57L.11, 57K50 and 5080500
and by the Exascale Computing Project (17-SC-20-SC). This
work was funded in part and used resources of the Argonne
Leadership Computing Facility, a DOE Office of Science
User Facility supported under Contract DE-AC02-06CH11357.
This research used resources of the National Energy Research
Scientific Computing Center, a DOE Office of Science User
Facility operated under Contract No. DE-AC02-05CH11231.

[1]

[2

—

[3

—

[5

=

[6

=

[7

—

[8

=

[9

—

[10]

[11

[12]

[13]

[14]

[15]

[16]

REFERENCES

L. Grinberg, V. Morozov, D. Fedosov, J. Insley, M. Papka, K. Kumaran,
and G. Karniadakis, “A new computational paradigm in multiscale
simulations: Application to brain blood flow,” in Proceedings of the
International Conference on High Performance Computing, Networking,
Storage and Analysis, 2011.

S. Habib, V. Morozov, H. Finkel, A. Pope, K. Heitmann, K. Kumaran,
T. Peterka, J. Insley, D. Daniel, P. Fasel, N. Frontiere, and Z. Lukic, “The
Universe at Extreme Scale: Multi-petaflop Sky Simulation on the BG/Q,”
in Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, 2012.

P. Johnsen, M. Straka, M. Shapiro, A. Norton, and T. Galarneau,
“Petascale WRF Simulation of Hurricane Sandy Deployment of NCSA’s
Cray XE6 Blue Waters,” in Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis,
2013.

T. Ichimura, K. Fujita, S. Tanaka, M. Hori, M. Lalith, Y. Shizawa, and
H. Kobayashi, “Physics-based Urban Earthquake Simulation Enhanced
by 10.7 BInDOF x 30 K Time-step Unstructured FE Non-linear Seismic
Wave Simulation,” in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, 2014.
A. Randles, E. W. Draeger, T. Oppelstrup, L. Krauss, and J. A. Gunnels,
“Massively Parallel Models of the Human Circulatory System,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’15, 2015.
Advanced Scientific Computing Advisory Committee (ASCAC) Sub-
committee, “Top Ten Exascale Research Challenges,” US Department of
Energy, Office of Science, Tech. Rep., 2014.

J. Jeffers, J. Reinders, and A. Sodani, Intel Xeon Phi Processor High
Performance Programming: Knights Landing Edition. Elsevier Science,
2016.

F. Chen, M. Flatken, A. Basermann, A. Gerndt, J. Hetheringthon, T. Krger,
G. Matura, and R. W. Nash, “Enabling In Situ Pre- and Post-processing for
Exascale Hemodynamic Simulations - A Co-design Study with the Sparse
Geometry Lattice-Boltzmann Code HemeLB,” in 2012 SC Companion:
High Performance Computing, Networking Storage and Analysis, Nov
2012, pp. 662-668.

P. OLeary, J. Ahrens, S. Jourdain, S. Wittenburg, D. H. Rogers, and
M. Petersen, “Cinema image-based in situ analysis and visualization of
MPAS-ocean simulations,” Parallel Computing, vol. 55, pp. 43-48, 2016,
visualization and Data Analytics for Scientific Discovery.

A. C. Bauer, H. Abbasi, J. Ahrens, H. Childs, B. Geveci, S. Klasky,
K. Moreland, P. O’Leary, V. Vishwanath, B. Whitlock, and E. W. Bethel,
“In Situ Methods, Infrastructures, and Applications on High Performance
Computing Platforms,” Computer Graphics Forum, vol. 35, no. 3, pp.
577-597, 2016.

C. Seshadhri, A. Pinar, D. Thompson, and J. Bennett, “Sublinear
Algorithms for Extreme-Scale Data Analysis,” in Topological and
Statistical Methods for Complex Data, ser. Mathematics and Visualization,
J. Bennett, F. Vivodtzev, and V. Pascucci, Eds. Springer Berlin
Heidelberg, 2015, pp. 39-54.

J. Bennett, H. Abbasi, P.-T. Bremer, R. Grout, A. Gyulassy, T. Jin,
S. Klasky, H. Kolla, M. Parashar, V. Pascucci, P. Pebay, D. Thompson,
H. Yu, F. Zhang, and J. Chen, “Combining in-situ and in-transit processing
to enable extreme-scale scientific analysis,” in Proceedings of the
International Conference on High Performance Computing, Networking,
Storage and Analysis, 2012.

Advanced Scientific Computing Advisory Committee (ASCAC) Subcom-
mittee, “Synergistic Challenges in Data-Intensive Science and Exascale
Computing,” US Department of Energy, Office of Science, Tech. Rep.,
2013.

X. Ma, M. Winslett, J. Lee, and S. Yu, “Improving MPI-IO output perfor-
mance with active buffering plus threads,” in Proceedings International
Parallel and Distributed Processing Symposium, April 2003.

K. L. Ma, “In Situ Visualization at Extreme Scale: Challenges and
Opportunities,” IEEE Computer Graphics and Applications, vol. 29,
no. 6, pp. 14-19, Nov 2009.

J. Kress, S. Klasky, N. Podhorszki, J. Choi, H. Childs, and D. Pugmire,
“Loosely Coupled In Situ Visualization: A Perspective on Why It’s Here
to Stay,” in Proceedings of the First Workshop on In Situ Infrastructures
for Enabling Extreme-Scale Analysis and Visualization, ser. ISAV2015,
2015.

[17]

(18]

(19]

[20]

(21]

[22]

(23]
[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

[35]

Y. Wang, G. Agrawal, T. Bicer, and W. Jiang, “Smart: A MapReduce-
like Framework for In-situ Scientific Analytics,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, ser. SC 15, 2015.

M. Dorier, R. Sisneros, T. Peterka, G. Antoniu, and D. Semeraro,
“Damaris/Viz: A nonintrusive, adaptable and user-friendly in situ vi-
sualization framework,” in 2013 IEEE Symposium on Large-Scale Data
Analysis and Visualization (LDAV), Oct 2013.

P. Malakar, V. Vishwanath, C. Knight, T. Munson, and M. E. Papka,
“Optimal execution of co-analysis for large-scale molecular dynamics
simulations,” in SC16: International Conference for High Performance
Computing, Networking, Storage and Analysis, 2016, pp. 702-715.

B. Friesen, A. Almgren, Z. Luki¢, G. Weber, D. Morozov, V. Beckner,
and M. Day, “In situ and in-transit analysis of cosmological simulations,”
Computational Astrophysics and Cosmology, vol. 3, no. 1, 2016.

C. Sewell, K. Heitmann, H. Finkel, G. Zagaris, S. T. Parete-Koon, P. K.
Fasel, A. Pope, N. Frontiere, L.-t. Lo, B. Messer, S. Habib, and J. Ahrens,
“Large-scale Compute-intensive Analysis via a Combined In-situ and
Co-scheduling Workflow Approach,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, ser. SC ’15, 2015.

M. Dreher and B. Raffin, “A Flexible Framework for Asynchronous in
Situ and in Transit Analytics for Scientific Simulations,” in Cluster, Cloud
and Grid Computing (CCGrid), 2014 14th IEEE/ACM International
Symposium on, May 2014, pp. 277-286.

“Top 500 Supercomputing Sites,” http://www.top500.org.

“Argonne Leadership Computing Facility’s Supercomputer Theta,” http:
/Iwww.alcf.anl.gov/theta.

“NERSC, Lawrence Berkeley National Laboratory’s Supercomputer Cori,”
http://www.nersc.gov/users/computational-systems/cori.

A. Varghese, B. Edwards, G. Mitra, and A. P. Rendell, “Programming
the Adapteva Epiphany 64-core network-on-chip coprocessor,” The
International Journal of High Performance Computing Applications,
vol. 31, no. 4, pp. 285-302, 2017.

M. Li, S. S. Vazhkudai, A. R. Butt, F. Meng, X. Ma, Y. Kim,
C. Engelmann, and G. Shipman, “Functional Partitioning to Optimize End-
to-End Performance on Many-core Architectures,” in 2010 ACM/IEEE
International Conference for High Performance Computing, Networking,
Storage and Analysis, Nov 2010, pp. 1-12.

A. Sodani, R. Gramunt, J. Corbal, H. S. Kim, K. Vinod, S. Chinthamani,
S. Hutsell, R. Agarwal, and Y. C. Liu, “Knights Landing: Second-
Generation Intel Xeon Phi Product,” IEEE Micro, vol. 36, no. 2, pp.
34-46, 2016.

G. Aupy, A. Benoit, B. Goglin, L. Pottier, and Y. Robert, “Co-scheduling
HPC workloads on cache-partitioned CMP platforms,” Inria, Research
Report RR-9154, Feb 2018.

S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung,
J. MacKay, M. Reif, L. Bao, J. Brown, M. Mattina, C. C. Miao,
C. Ramey, D. Wentzlaff, W. Anderson, E. Berger, N. Fairbanks, D. Khan,
F. Montenegro, J. Stickney, and J. Zook, “TILE64 - Processor: A 64-Core
SoC with Mesh Interconnect,” in 2008 IEEE International Solid-State
Circuits Conference - Digest of Technical Papers, Feb 2008, pp. 88-598.
I. E. Papazian, S. Kottapalli, J. Baxter, J. Chamberlain, G. Vedaraman,
and B. Morris, “Ivy Bridge Server: A Converged Design,” IEEE Micro,
vol. 35, no. 2, pp. 16-25, 2015.

R. Graham, E. Lawler, J. Lenstra, and A. Kan, “Optimization and
Approximation in Deterministic Sequencing and Scheduling: a Survey,” in
Discrete Optimization II, ser. Annals of Discrete Mathematics, P. Hammer,
E. Johnson, and B. Korte, Eds. Elsevier, 1979, vol. 5, pp. 287 — 326.
Y. Peng, C. Knight, P. Blood, L. Crosby, and G. A. Voth, “Extending
Parallel Scalability of LAMMPS and Multiscale Reactive Molecular
Simulations,” in Proceedings of the 1st Conference of the Extreme Science
and Engineering Discovery Environment: Bridging from the eXtreme to
the Campus and Beyond, ser. XSEDE *12, 2012, pp. 37:1-37:7.

J. W. Hurrell, M. M. Holland, P. R. Gent, S. Ghan, J. E. Kay, P. J.
Kushner, J.-F. Lamarque, W. G. Large, D. Lawrence, K. Lindsay, W. H.
Lipscomb, M. C. Long, N. Mahowald, D. R. Marsh, R. B. Neale, P. Rasch,
S. Vavrus, M. Vertenstein, D. Bader, W. D. Collins, J. J. Hack, J. Kiehl,
and S. Marshall, “The Community Earth System Model: A Framework
for Collaborative Research,” Bulletin of the American Meteorological
Society, vol. 94, no. 9, pp. 1339-1360, September 2013.

B. Zhang, T. Estrada, P. Cicotti, and M. Taufer, “Enabling In-Situ Data
Analysis for Large Protein-Folding Trajectory Datasets,” in Proceedings

http://www.top500.org
http://www.alcf.anl.gov/theta
http://www.alcf.anl.gov/theta
http://www.nersc.gov/users/computational-systems/cori

[36]

371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

of the 2014 IEEE 28th International Parallel and Distributed Processing
Symposium, ser. IPDPS ’14, 2014, pp. 221-230.

T. Peterka, J. Kwan, A. Pope, H. Finkel, K. Heitmann, S. Habib,
J. Wang, and G. Zagaris, “Meshing the Universe: Integrating Analysis in
Cosmological Simulations,” in High Performance Computing, Networking,
Storage and Analysis (SCC), 2012 SC Companion:, Nov 2012, pp. 186—
195.

P. Malakar, V. Vishwanath, T. Munson, C. Knight, M. Hereld, S. Leyffer,
and M. E. Papka, “Optimal scheduling of in-situ analysis for large-scale
scientific simulations,” in Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,
2015.

J. Ahrens, S. Jourdain, P. OLeary, J. Patchett, D. H. Rogers, and
M. Petersen, “An Image-Based Approach to Extreme Scale in Situ
Visualization and Analysis,” in SC14: International Conference for High
Performance Computing, Networking, Storage and Analysis, Nov 2014,
pp. 424-434.

C. Docan, M. Parashar, and S. Klasky, “DataSpaces: An Interaction
and Coordination Framework for Coupled Simulation Workflows,”
in Proceedings of the 19th ACM International Symposium on High
Performance Distributed Computing, ser. HPDC ’10, 2010, pp. 25-36.

Q. Liu, J. Logan, Y. Tian, H. Abbasi, N. Podhorszki, J. Y.
Choi, S. Klasky, R. Tchoua, J. Lofstead, R. Oldfield, M. Parashar,
N. Samatova, K. Schwan, A. Shoshani, M. Wolf, K. Wu, and W. Yu,
“Hello adios: the challenges and lessons of developing leadership
class i/o frameworks,” Concurrency and Computation: Practice and
Experience, vol. 26, no. 7, pp. 1453-1473, 2014. [Online]. Available:
http://dx.doi.org/10.1002/cpe.3125

F. Zheng, H. Zou, G. Eisenhauer, K. Schwan, M. Wolf, J. Dayal, T.-
A. Nguyen, J. Cao, H. Abbasi, S. Klasky, N. Podhorszki, and H. Yu,
“FlexIO: 1/0 Middleware for Location-Flexible Scientific Data Analytics,”
in Parallel Distributed Processing (IPDPS), 2013 IEEE 27th International
Symposium on, May 2013, pp. 320-331.

H. Abbasi, M. Wolf, G. Eisenhauer, S. Klasky, K. Schwan, and F. Zheng,
“DataStager: scalable data staging services for petascale applications,”
Cluster Computing, vol. 13, no. 3, pp. 277-290, 2010.

F. Zheng, H. Abbasi, C. Docan, J. Lofstead, Q. Liu, S. Klasky,
M. Parashar, N. Podhorszki, K. Schwan, and M. Wolf, “PreDatA —
preparatory data analytics on peta-scale machines,” in Parallel Distributed
Processing (IPDPS), 2010 IEEE International Symposium on, April 2010.
U. Ayachit, A. Bauer, B. Geveci, P. O’Leary, K. Moreland, N. Fabian,
and J. Mauldin, “ParaView Catalyst: Enabling In Situ Data Analysis
and Visualization,” in Proceedings of the First Workshop on In Situ
Infrastructures for Enabling Extreme-Scale Analysis and Visualization,
ser. ISAV2015, 2015.

B. Whitlock, J. M. Favre, and J. S. Meredith, “Parallel in Situ Coupling of
Simulation with a Fully Featured Visualization System,” in Proceedings of
the 11th Eurographics Conference on Parallel Graphics and Visualization,
ser. EGPGV ’11, 2011, pp. 101-109.

U. Ayachit, A. Bauer, E. P. N. Duque, G. Eisenhauer, N. Ferrier, J. Gu,
K. E. Jansen, B. Loring, Z. Lukic, S. Menon, D. Morozov, P. O’Leary,
R. Ranjan, M. Rasquin, C. P. Stone, V. Vishwanath, G. H. Weber,
B. Whitlock, M. Wolf, K. J. Wu, and E. W. Bethel, ‘“Performance
Analysis, Design Considerations, and Applications of Extreme-Scale
In Situ Infrastructures,” in SCI16: International Conference for High
Performance Computing, Networking, Storage and Analysis, 2016, pp.
921-932.

M. Dorier, G. Antoniu, F. Cappello, M. Snir, and L. Orf, “Damaris: How
to Efficiently Leverage Multicore Parallelism to Achieve Scalable, Jitter-
free 1/0,” in 2012 IEEE International Conference on Cluster Computing,
Sept 2012, pp. 155-163.

A. Bhatele, T. Gamblin, S. H. Langer, P-T. Bremer, E. W. Draeger,
B. Hamann, K. E. Isaacs, A. G. Landge, J. A. Levine, V. Pascucci et al.,
“Mapping applications with collectives over sub-communicators on torus
networks,” in High Performance Computing, Networking, Storage and
Analysis (SC), 2012 International Conference for. 1EEE, 2012, pp.
1-11.

G. Mercier and E. Jeannot, “Improving MPI Applications Performance
on Multicore Clusters with Rank Reordering,” in Proceedings of the
18th European MPI Users’ Group Conference on Recent Advances in
the Message Passing Interface, ser. EuroMPI'11, 2011, pp. 39—49.

G. Michelogiannakis, K. Z. Ibrahim, J. Shalf, J. J. Wilke, S. Knight, and
J. P. Kenny, “APHiD: Hierarchical Task Placement to Enable a Tapered
Fat Tree Topology for Lower Power and Cost in HPC Networks,” in

[51]

[52]

[53]

[54]

[55]

[56]

(571

[58]
[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

17th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGRID), 2017, pp. 228-237.

T. Hoefler and M. Snir, “Generic topology mapping strategies for
large-scale parallel architectures,” in Proceedings of the International
Conference on Supercomputing, ser. ICS 11, 2011, pp. 75-84.

T. Hoefler, E. Jeannot, and G. Mercier, “An Overview of Topology
Mapping Algorithms and Techniques in High-Performance Computing,”
in High Performance Computing on Complex Environments. Wiley,
2014, pp. 75-94.

A. Bhatele, G. R. Gupta, L. V. Kale, and I. H. Chung, “Automated
mapping of regular communication graphs on mesh interconnects,” in
2010 International Conference on High Performance Computing, Dec
2010.

M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids. Oxford
Science Publications, 1989.

L. DeRose, B. Homer, D. Johnson, S. Kaufmann, and H. Poxon, “Cray
performance analysis tools,” in Tools for High Performance Computing,
M. Resch, R. Keller, V. Himmler, B. Krammer, and A. Schulz, Eds.
Springer Berlin Heidelberg, 2008.

S. Plimpton, “Fast Parallel Algorithms for Short-Range Molecular
Dynamics,” Journal of Computational Physics, vol. 117, no. 1, pp. 1 —
19, 1995.

S. Ito, K. Goto, and K. Ono, “Automatically optimized core mapping
to subdomains of domain decomposition method on multicore parallel
environments,” Computers & Fluids, vol. 80, pp. 88 — 93, 2013.
“LAMMPS Documentation,” http://lammps.sandia.gov/doc/Manual.html.
T. Bjerregaard and S. Mahadevan, “A Survey of Research and Practices
of Network-on-chip,” ACM Comput. Surv., vol. 38, no. 1, 2006.

P. P. Pande, C. Grecu, M. Jones, A. Ivanov, and R. Saleh, “Performance
evaluation and design trade-offs for network-on-chip interconnect archi-
tectures,” IEEE Transactions on Computers, vol. 54, no. 8, pp. 1025-1040,
Aug 2005.

R. Haring, M. Ohmacht, T. Fox, M. Gschwind, D. Satterfield, K. Suga-
vanam, P. Coteus, P. Heidelberger, M. Blumrich, R. Wisniewski, A. Gara,
G.-T. Chiu, P. Boyle, N. Chist, and C. Kim, “The IBM Blue Gene/Q
Compute Chip,” Micro, IEEE, vol. 32, no. 2, pp. 48-60, 2012.

D. Molka, D. Hackenberg, and R. Schone, “Main Memory and Cache
Performance of Intel Sandy Bridge and AMD Bulldozer,” in Proceedings
of the Workshop on Memory Systems Performance and Correctness, ser.
MSPC 14, 2014.

S. Jahagirdar, V. George, I. Sodhi, and R. Wells, “Power management of
the third generation Intel core micro architecture formerly codenamed
Ivy Bridge,” in 2012 IEEE Hot Chips 24 Symposium (HCS), 2012, pp.
1-49.

S. Saini, R. Hood, J. Chang, and J. Baron, “Performance Evaluation of an
Intel Haswell-and Ivy Bridge-Based Supercomputer Using Scientific and
Engineering Applications,” in 2016 IEEE 18th International Conference
on High Performance Computing and Communications, 2016, pp. 1196—
1203.

J. Hofmann, G. Hager, G. Wellein, and D. Fey, “An analysis of core-
and chip-level architectural features in four generations of intel server
processors,” in High Performance Computing, J. M. Kunkel, R. Yokota,
P. Balaji, and D. Keyes, Eds. Springer International Publishing, 2017,
pp. 294-314.

“Top GREEN 500 Supercomputing Sites,” https://www.top500.org/
green500/1ist/2017/11/.

G. J. Colin de Verdiere, “Computing element evolution towards exascale
and its impact on legacy simulation codes,” The European Physical
Journal A, vol. 51, no. 12, p. 163, Dec 2015.

J. Balkind, M. McKeown, Y. Fu, T. Nguyen, Y. Zhou, A. Lavrov,
M. Shahrad, A. Fuchs, S. Payne, X. Liang, M. Matl, and D. Wentzlaff,
“OpenPiton: An Open Source Manycore Research Framework,” in
Proceedings of the Twenty-First International Conference on Architectural
Support for Programming Languages and Operating Systems, Ser.
ASPLOS ’16, 2016, pp. 217-232.

D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey,
M. Mattina, C. C. Miao, J. F. B. III, and A. Agarwal, “On-Chip
Interconnection Architecture of the Tile Processor,” IEEE Micro, vol. 27,
no. 5, pp. 15-31, Sept 2007.

S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz, D. Finan,
P. Iyer, A. Singh, T. Jacob, S. Jain, S. Venkataraman, Y. Hoskote, and
N. Borkar, “An 80-Tile 1.28TFLOPS Network-on-Chip in 65nm CMOS,”
in 2007 IEEE International Solid-State Circuits Conference. Digest of
Technical Papers, Feb 2007, pp. 98-589.

http://dx.doi.org/10.1002/cpe.3125
http://lammps.sandia.gov/doc/Manual.html
https://www.top500.org/green500/list/2017/11/
https://www.top500.org/green500/list/2017/11/

[71]

[72]

[73]
[74]
[75]

[76]
(771

(78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

A. Bhatele, N. Jain, Y. Livnat, V. Pascucci, and P.-T. Bremer, “Analyzing
network health and congestion in dragonfly-based supercomputers,” in
IEEE International Parallel and Distributed Processing Symposium
(IPDPS), 2016, pp. 93-102.

W. M. Brown, P. Wang, S. J. Plimpton, and A. N. Tharrington, “Im-
plementing molecular dynamics on hybrid high performance computers
short range forces,” Computer Physics Communications, vol. 182, no. 4,
pp. 898 — 911, 2011.

“MPI 10 Benchmark,” https://github.com/sc18auxdata/iobenchmark.
“Argonne Leadership Computing Facility’s Supercomputer Mira,” http:
/Iwww.alcf.anl.gov/mira.

R. Fourer, D. M. Gay, and B. W. Kernighan, AMPL: A Modeling
Language for Mathematical Programming, 2nd ed. Duxbury Press,
2003.

“Mapfiles,” https://github.com/sc18auxdata/mapping.

M. Pagel, H. Pritchard, K. McMahon, and A. Hilleary, “Performance and
Functional Improvements in MPT Software for the Cray XT System,”
in In Proceedings of the Cray User Group Conference (CUG), 2007.
G. Lakner, I.-H. Chung, G. Cong, S. Fadden, N. Goracke, D. Klepacki,
J. Lien, C. Pospiech, S. R. Seelam, and H.-F. Wen, IBM System Blue
Gene Solution: Performance Analysis Tools. IBM Redbooks, 2008.
X. Yang, J. Jenkins, M. Mubarak, R. B. Ross, and Z. Lan, “Watch
out for the Bully!: Job Interference Study on Dragonfly Network,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC *16, 2016.

S. Chunduri, K. Harms, S. Parker, V. Morozov, S. Oshin, N. Cherukuri,
and K. Kumaran, “Run-to-run Variability on Xeon Phi Based Cray
XC Systems,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, ser. SC *17,
2017.

T. Groves, Y. Gu, and N. J. Wright, “Understanding Performance
Variability on the Aries Dragonfly Network,” in 2017 IEEE International
Conference on Cluster Computing (CLUSTER), Sept 2017, pp. 809-813.
J. M. Brandt, E. Froese, A. C. Gentile, L. Kaplan, B. A. Allan, and
E. J. Walsh, “Network Performance Counter Monitoring and Analysis
on the Cray XC Platform,” in In Proceedings of the Cray User Group
Conference (CUG), 2016.

Cray, “Aries Hardware Counters,” http://docs.cray.com/PDF/Aries_
Hardware_Counters_S-0045-30.pdf, 2015, Cray Technical Documen-
tation.

R. Thakur, W. Gropp, and E. Lusk, “Data sieving and collective I/O in
ROMIO,” in Frontiers of Massively Parallel Computation, 1999. Frontiers
'99. The Seventh Symposium on the, Feb 1999, pp. 182-189.

P. Schwan, “Lustre: Building a File System for 1,000-node Clusters,” in
Proceedings of the 2003 Linux Symposium, 2003.

G. M. Shipman, D. A. Dillow, S. Oral, F. Wang, D. Fuller, J. Hill,
and Z. Zhang, “Lessons Learned in Deploying the World’s Largest
Scale Lustre File System,” in In Proceedings of the Cray User Group
Conference (CUG), 2010.

M. Chaarawi and E. Gabriel, “Automatically Selecting the Number of
Aggregators for Collective I/O Operations,” in 2011 IEEE International
Conference on Cluster Computing, Sept 2011, pp. 428—437.

M. Moore, P. Farrell, and B. Cernohous, “Lustre Lockahead: Early Ex-
perience and Performance using Optimized Locking,” in In Proceedings
of the Cray User Group Conference (CUG), 2017.

https://github.com/sc18auxdata/iobenchmark
http://www.alcf.anl.gov/mira
http://www.alcf.anl.gov/mira
https://github.com/sc18auxdata/mapping
http://docs.cray.com/PDF/Aries_Hardware_Counters_S-0045-30.pdf
http://docs.cray.com/PDF/Aries_Hardware_Counters_S-0045-30.pdf

APPENDIX

This work focused on reducing the overall execution time by
better process mapping, given a particular ratio of simulation
and analysis tasks. The experimental results presented in this
paper use empirically determined ratio of simulation to analysis
tasks. Note that our mapping schemes do not depend on the
particular ratio used in an experiment. Here, we provide an
extensive evaluation to show the premise of ratio selection. This
ratio was obtained from experiments conducted with various
ratios, as shown below for the different systems, mappings and
multiple atom counts. We provide results from a subset of all
possible configurations (which is combinatorial).

Experiments on Mira

Table V shows the execution times using various process ratios
of simulation:analysis on Mira Blue Gene/Q. The runs were
repeated only 5 times, as there was negligible variance in the
runtimes. Rows 1 — 4 show the results for node counts 128
— 1024, with 16 ranks per node. Column 2 shows the atom
counts for each row. Columns 3 — 5 shows the results for ratios
1 (8 cores/node for simulation 8 cores/node for analysis), 3 (12
cores/node for simulation 4 cores/node for analysis), and 7 (14
cores/node for simulation 2 cores/node for analysis) using the
striped mapping. Ratio of 3:1 results in the lowest runtime in
all cases. There are 16 cores per node of Mira. Hence a ratio
of 3:1, which leaves 4 cores for analysis per node, provides a
good balance between too few and too many cores/node for
analysis and therefore gives good results. Therefore, this ratio
was selected for the experiments conducted on Mira in this
paper.

TABLE V: Execution times for simulation+analysis on various core
counts on Mira for different atom counts using three different ratios

for simulation:analysis tasks — 1, 3 and 7. Ratio of 3:1 (column 4)
performs the best.

#Nodes | #Atoms Execution Time (seconds)
r=1 r=3 r=7
128 0.34M 31.5 31.2 33.1
256 0.80M 44.8 40.3 53.9
512 2.09M 59.9 52.2 58.3
1024 4.30M 68.9 64.5 67.3

Experiments on Cori

Figures 10 and 11 depict the execution times of simulation
and analysis of 1.5 and 4 million atoms on various node
counts on the Cori Haswell system (32 cores per node) using
three different ratios — 1 (16 cores/node for simulation and 16
cores/node for analysis), 3 (24 cores/node for simulation and
8 cores/node for analysis) and 7(28 cores/node for simulation
and 4 cores/node for analysis). A ratio of greater than 7
gives worse performance. Therefore we selected ratios of
simulation:analysis processes as 1, 3 and 7 as the range of our
experiments for empirically determining the best ratio. The
graphs are plotted from 15 runs for each configuration and
the results are shown for the NUMA-aware mapping. We note
that the ratio of 3 is the best among these three ratios for both

atom counts and on all node counts. Therefore we used ratio
of 3:1 for experiments on Cori in this work. However, our
mappings are not tied to this ratio. One of the reasons that this
ratio performs better than the others could be attributed to the
computation and communication characteristics of simulation
and analysis used for the experiments. In this work, we do not
investigate how to determine the optimal ratio of simulation
to analysis tasks.

60

—~50 —r=1
1]

o — I’=3
840 - ‘ — =7
|9 .

§30 i : .

o & - .
£ 20 Q, L
F10 =

0 768 1024 1536 2048

Number of MPI ranks

Fig. 10: Execution times of simulation and analysis of 1.5M atoms
on 24, 32, 48 and 64 nodes (32 ranks per node) of Cori Haswell.
Simulation:analysis ratios of 1, 3 and 7 are shown here. Ratio of 3
performs the best on average from 15 runs.

140
120 — r=1
(V)] R —_—
T100, & r=3
S . — r=7
o 80 &
V] & ‘e
2 60 R -
Q : Tz .
£ 40 T
= 20

O— 68 1024 1536 2048

Number of MPI ranks

Fig. 11: Execution times of simulation and analysis of 4M atoms
on 24, 32, 48 and 64 nodes (32 ranks per node) of Cori Haswell.
Simulation:analysis ratios of 1, 3 and 7 are shown here. Ratio of 3
performs the best on average from 15 runs.

Experiments on Theta

Figure 12 shows the execution times of simulation and analysis
of 4 million atoms using four different ratios — 1, 3, 7 and
15. Results are shown for six configurations (2 different node
counts, and three different mappings for each node count).
Intel Knights Landing system, Theta, has 64 cores per node.
A ratio greater than 15 gives worse performance. Therefore
we selected ratios of simulation:analysis processes as 1, 3, 7
and 15 as the range of our empirical evaluations. The graphs
are plotted from 15 runs of each configuration and the results
are shown for the default, contiguous and striped mappings on
64 and 128 nodes of Theta (64 ranks per node). We note that
ratio of 7:1 is the best among these four, for each of the 6
configurations. Therefore we used this ratio for our experiments
on Theta in this paper. Note that our mappings do not depend

140,
— r=1—— r=3 — r=7 — r=15
120
)
c 100}
o)
§ 80 '{ | o :
o 60 %as %8 555 T
8.l 17
E 40 g % Cop
20;
0

64 (DU (ContiguO B (striPecl g (DefMY (contiguopfd striped)
Number of nodes (Mapping)

Fig. 12: Execution times of simulation and analysis of 4M atoms on 64 and 128 nodes (64 ranks per node) of Theta KNL system.
Simulation:analysis ratios of 1, 3, 7 and 15 are shown here. Ratio of 7 performs the best on average from 15 runs.

on a specific ratio. Given a specific ratio, we presented various
NOC-aware mapping schemes that benefit coupled codes, as
shown in the results section of the paper.

	Introduction
	Related Work
	Challenges of MD Simulation Co-analysis
	Code Optimizations in LAMMPS
	Process Mapping
	On-chip interconnects
	NoC-aware Mapping Heuristics
	Contiguous
	Striped
	NUMA-aware
	Folded

	Process Decomposition
	Experiments
	Effect of Code Optimization
	Process Decomposition
	Strong Scaling
	Data Scaling
	Effect of Runtime Variation
	Network Analysis
	Effect on MPI Collective I/O

	Conclusions and Future Work
	References
	Appendix

