PruneJuice: Pruning Trillion-edge Graphs
to a Precise Pattern-Matching Solution

Tahsin Reza'2, Matei Ripeanu?, Nicolas Tripoul?, Geoffrey Sanders', Roger Pearce

1

ICenter for Applied Scientific Computing, Lawrence Livermore National Laboratory
2Department of Electrical and Computer Engineering, University of British Columbia
{treza, matei, mtripoul}@ece.ubc.ca, {sanders29, rpearce}@llnl.gov

Abstract—Pattern matching is a powerful graph analysis tool.
Unfortunately, existing solutions have limited scalability, support
only a limited set of search patterns, and/or focus on only a subset
of the real-world problems associated with pattern matching.
This paper presents a new algorithmic pipeline that: (i) enables
highly scalable pattern matching on labeled graphs, (ii) supports
arbitrary patterns, (iii) enables trade-offs between precision and
time-to-solution (while always selecting all vertices and edges
that participate in matches, thus offering 100% recall), and (iv)
supports a set of popular data analytics scenarios. We implement
our approach on top of HavoqGT and demonstrate its advantages
through strong and weak scaling experiments on massive-scale
real-world (up to 257 billion edges) and synthetic (up to 4.4
trillion edges) graphs, respectively, and at scales (1,024 nodes /
36,864 cores) orders of magnitude larger than used in the past
for similar problems.

I. INTRODUCTION

Pattern matching in graphs, that is, finding subgraphs that
match a small template graph within a large background
graph, is fundamental to graph analysis and has applications
in multiple areas such as social network analysis [1]], bioin-
formatics [2l], and information mining [3]. A match can be
broadly categorized as either exact - i.e., there is a bijective
map between the vertices/edges in the template and those in
the matching subgraph, or approximate - the template and
the match are just similar by some defined similarity metric
[4]. If the template size is not limited, exact matching is not
known to have a polynomial time solution in the general
case [S]. Berry et al. [6] introduced the problem of type-
isomorphism: metadata graphs where vertices and edges are
labeled and, in addition to topological constraints, a match
identifies nodes and edges with the same labels in the template
and the background graph. While the labeled version does
not reduce the worst-case complexity of the original problem,
past experience [1]], [[7]], [8] has demonstrated that label-based
matching can be a powerful tool with potential for practical,
real-world applications such as social network analysis.

The Challenge. Applications that mine graphs consist of
tens of billions of edges are common [9], [10]. However,
existing pattern matching solutions (we survey related work
in §C) have limited capabilities: most importantly, they do
not scale to massive graphs and/or support only a restricted
set of search templates. Additionally, the algorithms at the
core of the existing techniques are not suitable for today’s
infrastructures relying on horizontal scalability and share-

SC18, November 11-16, 2018, Dallas, Texas, USA
978-1-5386-8384-2/18/$31.00 (©2018 IEEE

Template

Output

Fig. 1: An example of a background graph G (center), template Go (left) and
the output G* after vertex and edge elimination (right). The output is a refined
set of vertices and edges that contain every subgraph 7 that matches Gp. The
figures present vertex metadata as colored shapes. The eliminated vertices and
edges are colored solid grey.

nothing clusters as most of these algorithms are inherently
sequential and difficult to parallelize [5], [L1], [12]]. Finally,
pattern matching is susceptible to combinatorial explosion of
the intermediate or final state: for low selectivity queries,
the number of subgraphs partially (or entirely) matching the
template can grow exponentially with the number of nodes
and edges in the already large background graph [13], [14],
posing serious memory and communication challenges.

A New Approach for Scalable Pattern Matching. We pro-
pose a new algorithmic pipeline based on graph pruning. The
idea of exploring graph pruning to support pattern matching
stems from three key observations: First, the traditionally used
tree-search techniques [S]] generally attempt to enumerate all
matches through explicit search. When a search path fails,
such an unprofitable path is marked invalid and ignored in the
subsequent steps. Similar to past works that use graph pruning
[15], [L6], [L7] or, more generally, input reduction [18]], we
observe that it is much cheaper to first focus on eliminating the
vertices and edges that do not meet the label and topological
constraints introduced by the search template. Our experience
shows that relatively simple pruning heuristics based on label
and vertex neighborhood constraints can significantly prune
away much of the background graph. The key contributions of
this paper is a pruning-based solution that limits the exponen-
tial growth of the state-space, scales to massive graphs and
distributed memory machines with large number of processors,
and supports arbitrary search templates: the result of pruning
is the complete set of all vertices and edges that participate in
a match, with no false positives or false negatives.

Second, we observe that a vertex-centric formulation for
such pruning algorithms exists, and this makes it possible to
harness existing high-performance, vertex-centric frameworks
(e.g., Giraph [19]], GraphLab [20], HavoqGT [21]]). In our
vertex-centric formulation for pruning, a vertex must satisfy

M ;; M M

Fig. 2: Three examples of search templates and background graphs that
justify the full set of pruning constraints. Template (a) is a 3-cycle; cycles of
length 3k with repeated labels in the background graph meet neighborhood
constraints, surviving LCC. Template (b) contains several vertices with non-
unique labels; to its right there is a background graph that meets individual
point-to-point path constraints, also surviving NLCC-path checking. Template
(c) is characterized by two 4-cliques that overlap at a 3-cycle; the background
graph structure to the right is doubly periodic (a 4 X 3 torus) and meets all edge
and vertex cycle constraints, surviving NLCC-cycle checking. Templates (b)
and (c) require NLCC-template-driven search to guarantee no false positives;
template (a) only needs cycle checking in addition to LLC.
two types of constraints: local and non-local, to possibly be
part of a match. Local constraints involve only the vertex and
its neighborhood: a vertex in an exact match needs to (i) match
the label of a corresponding vertex in the template, and (ii)
have edges to vertices labeled as prescribed in the adjacency
structure of this corresponding vertex in the template. Non-
local constraints are topological requirements beyond the
immediate neighborhood of a vertex (e.g., that the vertex must
be part of a cycle). We describe how these constraints are
generated, and our algorithmic solution to verify them in §III}

Third, we observe that, full match enumeration is not
the most efficient avenue to support many high-level graph
analysis scenarios. Depending on the final goal of the user,
pattern matching problems fall into a number of categories
which include: (a) determining if a match exists (or not) in
the background graph (yes/no answer), (b) selecting all the
vertices and edges that participate in matches, (¢) ranking
these vertices or edges based on their centrality with respect
to the search template, i.e., the frequency of their participation
matchs, (d) counting/estimating the total number of matches
(comparable to the well-known triangle counting problem), or
(e) enumerating all distinct matches in the background graph.
The traditional approach is to perform (e) and to use the result
of the enumeration to answer (a) — (d). However, this approach
is limited to small background graphs or is dependent on a
low number of near and exact matches within the background
graph (due to exponential growth of the search state-space).
We argue that a pruning-based pipeline is not only a practical
solution to (a) — (d) (and to other pattern-matching-related an-
alytics), when full match enumeration is not the main interest,
but also an efficient path towards full match enumeration. We
demonstrate that a solution starting from the techniques we
develop for pruning, efficiently supports match enumeration
for two reasons: First, the pruned graph can be multiple orders
of magnitude smaller than the background graph, and existing
high-complexity enumeration routines (which otherwise would
be intractable following the conventional approach) are now
applicable. Second, our pruning techniques collect additional
key information to accelerate match enumeration: for each
vertex in the pruned graph, our algorithms build a list of its
potential matches in the template (§V-C)).

Contributions. We capitalize on our preliminary study [15]]
that highlighted the effectiveness of pruning (yet in the context
of a restricted set of templates) and design a pattern matching

solution that is: generic - no restrictions on the set of patterns
supported, precise - no false positives, offers 100% recall -
retrieving all matches, efficient - low generated network traffic,
and scalable - able to process graphs with up to trillions of
edges on tens of thousands of cores (as demonstrated). In
particular, we make the following contributions:

(i) Novel Asynchronous Algorithms. We have developed
asynchronous vertex-centric algorithms able to prune the back-
ground graph to a precise, enumeration of all vertices and
edges that participate in a match for arbitrary templates. The
key gap we bridge is the ability support templates with re-
peated vertex labels, cycles, and arbitrary edge density. Impor-
tantly, the algorithms map well on a distributed asynchronous
graph processing platform, thus enabling scalability and high-
performance. For a given template, we propose heuristics to
generate the constraints that are later used for pruning. We
have also developed correctness proofs to show that these
constraints eliminate all non-matching vertices and offer full
recall (not included here due to space constraints).

(ii) Optimized Distributed Implementation. We offer an
efficient implementation of these algorithms on the top of
HavoqGT [21]], an open-source asynchronous graph processing
framework. The prototype includes two key optimizations
that dramatically reduce the generated traffic: aggressive edge
elimination, and what we call work aggregation, a technique
that skips duplicate checks in non-local constraint checking,
thus preventing possible combinatorial explosion. Addition-
ally, our pruning implementation collects potential matching
information: not only it prunes away all vertices and edges that
do not participate in any match, but, for each of the vertices
that remain, it collects their mappings to the search template.
We use this information to accelerate match enumeration.

(iii) Proof of Feasibility. We demonstrate the applicability
of this solution by experimenting on real-world and synthetic
datasets orders of magnitude larger than prior work (§V). We
evaluate scalability through two experiments: first, a strong
scaling experiment using real-world datasets, including the
largest openly available webgraph whose undirected version
has over 257 billion edges; second, a weak scaling experiment
using synthetic, R-MAT [22] graphs of up to 4.4 trillion
edges, on up to 1,024 compute nodes (36,864 cores). We
demonstrate support for search patterns representative of prac-
tical queries in both relatively low selectivity and needle in
the haystack scenarios, and, to stress our system, consider
patterns containing only the highest-frequency vertex labels
(up to 14B instances). We show that our technique prunes the
graph by orders of magnitude, which, combined with using
the intermediary state generated by pruning, makes match
enumeration feasible on graphs with trillions of edges.

(iv) Application Demonstration. We demonstrate the ability
of our solution to support practical graph analytics queries.
To this end, we use two real-world metadata graphs which we
have curated from publicly available datasets, Reddit (3.9B
vertices, 14B edges) and the smaller International Movie
Database (IMDB), and demonstrate practical use cases of our
technique to support rich pattern mining. (§V-DJ.

(v) Exploring Trade-offs, and the Impact of Strategic Design
Choices and Optimizations. Our approach has the added flexi-
bility that search can be stopped early, leading to the ability to
trade faster time to an approximate solution (or even precise
solution, yet without 100% precision guarantees) for precision
(rate of false positives in the pruned graph) and precision
guarantees. We also explore the impact of each optimization
used (§A-A): the cumulative impact of these optimizations is
a multiple orders of magnitude of runtime reduction, bringing
pattern matching on massive metadata graphs in the realm of
possible graph analytics.

II. PRELIMINARIES

We aim to identify all structures within a large background
graph, G, identical to a small connected template graph, Gy.
We describe general graph properties for G, and use the same
notation (summarized in Table [I)) for other graph objects.

A graph G(V,€) is a collection of n vertices V =
{0,1,...,n — 1} and m edges (i,j) € &, where i,7 € V (i is
the edge’s source and j is the target). Here, we only discuss
simple (i.e., no self-edges), undirected, vertex-labeled graphs,
although the techniques are applicable to directed, non-simple
graphs, with labels on both edges and vertices. An undirected
G satisfies (4,j) € £ if and only if (j,7) € &£. Vertex i’s
adjacency list, adj(i), is the set of all j such that (i,j) € €.
A vertex-labeled graph also has a set of ny labels £ of which
each vertex i € V has an assignment £(i) € L.

A walk in G is an ordered subsequence of V where each
consecutive pair is an edge in £. A walk with no repeated
vertices is a path. A path with equal first and last vertex is a
cycle. An acyclic graph has no cycles.

We discuss several graph objects simultaneously: the tem-
plate graph Go(Vo, &) the background graph G(V,E), and
the current solution subgraph G*(V*,£*), with V* C V and
E* C £. Our techniques iteratively refine V* and £* until they
converge to the union of all subgraphs of G that exactly match
the template, Gg.

For clarity, when referring to vertices and edges from the
template graph, Gy, we will use the notation ¢; € V), and
(gi,q5) € &. Conversely, we will use v; € V and (v;,v;) € €
for vertices and edges from the background graph G or the
solution subgraph G*.

Definition 1. A subgraph H(Vy,E), Vi CV,E4 C E is an
exact match of template graph Go(Mo, &) (in notation, H ~
Go) if there exists a bijective function ¢ : Vo «— Vyy with the
properties (Note that ¢ may not be unique for a given H):

(i) L(p(q)) = L(q), for all ¢ € Vy and
(ii) Y(q1,q2) € &, we have (¢(q1), #(g2)) € Ex
(iii) V(v1,v2) € Ey, we have (¢~ (v1), 0" (v2)) € &
Intuition for our Solution. The algorithms we develop here
iteratively refines vertex-match functions w(v) C V, such that,
for every v € V, w(v) stores a super-set of all template
vertices v can possibly match. Set w(v) converges to contain
all possible values of ¢~!(v), were v involved in one or
more matching subgraphs. When a single constraint involving

TABLE I: Symbolic notation used.

Object(s) Notation

template graph, vertices, edges Go(Vo, &o)

template graph sizes no = |[Vol, mo := |&ol
template vertices Vo :={q0,q1, -+, qno—1}
template edges (i, 45) € &o

set of vertices adjacent to ¢; in Go | adj(¢:)

background graph, vertices, edges | G(V, &)

background graph sizes
background vertices

n = V|, m:= ||
V = {’1)07’1)17...,’[)»,171}

background edges (vi,v5) €€
set of vertices adjacent to v; in G | adj(v;)
maximum vertex degree in G dmaz

label set
vertex label and label degree of g;

L=1{0,1,.ne—1}
Uqi) € L,

matching subgraph, vertices, edges | H(Vx, Ex)
solution subgraph, vertices, edges Gr(v*, &)
vertex match function w(vi) C Vo
set of non-local constraints for Go | Ko

q € V) is violated/unmet, ¢ is no longer a possibility for v in
a match and ¢ is removed: w(v) < w(v) \ {q}-

Our previously developed pruning algorithms [15] required
that all vertex labels in the template Gy were unique, and that
Go be acyclic or edge-monocyclic to ensure 100% precision.
Our new techniques achieve 100% precision for arbitrary G.

Remark 1. Given an ordered sequence of all ng vertices
{91,492, -, Gng } C Vo, a simple (although potentially expen-
sive) search from vy € V* verifies if vy is in a match, with
®(q1) = w1, or not. The search lists an ordered sequence
{v1, V2, ey Ung } C V*, with ¢ defined as ¢(qi) = vi. Search
step k proposes a new vy, checking Defll] (i) and (ii). If all
checks are passed, the search accepts v and moves on to step
(k + 1), but terminates if no such vy, exists in V*. If the full
list is generated with all label and edge checks passed then
there exists a H ~ G with Vy = {v1,v2, ..., Ung }

We call this Template-Driven Search (TDS) and develop an
efficient distributed version in to apply to the solution
G*(V*,&*). If TDS has been applied successfully then there
are no false positives remaining.

III. GRAPH PRUNING FOR SCALABLE MATCHING

Our goal is to realize a technique which systematically elimi-
nates all the vertices and edges that do not participate in any
match H ~ Gy. This approach is motivated by viewing the
template Gy as specifying a set of constraints the vertices and
edges that participate in a match must meet. As a trivial exam-
ple, any vertex v whose label ¢(v) is not present in Gy, cannot
be present in an exact match. A vertex in an exact match
also needs to have non-eliminated edges to non-eliminated
vertices labeled as prescribed in the adjacency structure of the
corresponding template vertex. Local constraints that involve a
vertex and its neighborhood can be checked by having vertices
communicate their (tentative) template match(s) with their
one-hop neighbors in the solution subgraph G*(V*,E*) (i.e.,
the currently pruned background graph). We call this process

£ Ko7

o0
om0
= (¢
Identify leaf Identify (1) (2)

Template vertices with vertices with
unique label duplicate label

Step 1 Step 2

Cycle constraints to verify

Step 3 - Cycle Constraints (CC)

3) 1) 3

Path constraints to verify, between a pair of vertices that

AR

) (Y @) @)
Non-edge
monocyclic

Step 5 - TDS Constraints

are not part of a cycle and have identical labels Identical labels Sub-template

Step 4 - Path Constraints (PC)

Fig. 3: A high-level depiction of non-local constraint generation for the template in Fig. [1| The figure shows the steps to generate required cycle constraints
(CC), path constraints (PC) and higher-order constraints requiring template-drive search (TDS). (Due to limited space, the figure presents only a subset of the
path and TDS constraints generated, however, sufficient to guarantee 100% precision.)

O O
Iteration# 1 2
Lce, Lcc, ﬁ
—_ —_—
———
NLCC - TDS
Iteration# 6 7 8

oo

NLCC-CC

e 2

3 4 5

Y

NLCC - TDS
9 10 11

Fig. 4: Algorithm walk through for the example background graph and template in Fig. |1} depicting which vertices and edges in G*(V*, £*) are eliminated
(in solid grey) during each iteration. The NLCC constraints for Go are listed in Fig. [3} Due to space limitations, the example does not show the application

of some of the constraints in Fig. E] that do not eliminate vertices or edges.

Local Constraint Checking (LCC). Our experiments show that
LCC is responsible for removing the bulk of non-matching
vertices and edges.

Some classes of templates (with cycles or repeated vertex la-
bels), require additional routines to check non-local properties
and to guarantee that all non-matching vertices are eliminated.
(Fig. [2] highlights the need for these additional checks). To
support arbitrary templates, we have developed a process
which we dub Non-local Constraint Checking (NLCC): first,
based on the search template Gy, we generate the set of
constraints /Cy that are to be verified, then prune the graph
using each of them.

Alg. |l| presents an overview of our solution. This section
provides high-level descriptions of the local and non-local
constraint checking routines, while provides the detailed
distributed algorithms. For better understanding, Fig. [4] illus-
trates the complete workflow for the graph and pattern in Fig.[I]
for which constraint generation is detailed in Fig.

Algorithm 1 Main Pruning Loop

: Input: background graph G(V, &), template Go(Vo, £o)
: Output: the solution subgraph G*(V*,£*)
: generate non-local constraint set Ko from Go(Vo, £o)
G* + LOCAL_CONSTRAINT_CHECKING (G, Go)
while g is not empty do
pick and remove next constraint Co from Co
G* + NON_LOCAL_CONSTRAINT_CHECKING (G*, Go, Co)
if any vertex has been eliminated or
has one of its potential matches remove then
G* < LOCAL_CONSTRAINT_CHECKING (G*, Go)

ORI NE LT

—_

Local Constraint Checking (LCC) involves a vertex and
its neighborhood. The algorithm performs the following two
operations. (i) Vertex elimination: the algorithm excludes the
vertices that do not have a corresponding label in the template,
then, iteratively, excludes the vertices that do not have neigh-
bors as labeled in the template. For templates that have vertices

with multiple neighbors with the same label, the algorithm
verifies if a matching vertex in the background graph has a
minimum number of distinct neighbors with the same label as
prescribed in the template. (ii) Edge elimination: this excludes
edges to eliminated neighbors and edges to neighbors whose
labels do not match the labels prescribed in the adjacency
structure of its corresponding template vertex (e.g., Fig. [4]
Iteration #1). Edge elimination is crucial for scalability since,
in a distributed setting, no messages are sent over eliminated
edges, significantly improving the overall efficiency of the
system (evaluated in Fig.).

Non-local Constraint Checking (NLCC) aims to exclude
vertices that fail to meet topological and label constraints
beyond the one-hop neighborhood that is covered by LCC
(Fig.2). We have identified three types of non-local constraints
which can be verified independently: (i) Cycle Constraints
(CCO), (ii) Path Constraints (PC), and (iii) constraints that
require Template-Driven Search (TDS) (see Remark [I]). For
arbitrary templates, TDS constraints based on aggregating
multiple paths/cycles enable further pruning and, when based
on full template enumeratio insure that pruning yields
no false positives. Checking TDS constraints, however, can
be expensive. To reduce the overall cost, we first generate
single cycle- and path-based constraints which are usally less
costly to verify and prune the graph before using TDS (the
effectiveness of this ordering is evaluated in Fig. [I4(c)).

High-level Algorithmic Approach. Regardless of constraint
type, NLCC leverages a foken passing approach: tokens are
issued by background graph vertices whose corresponding
template vertices are identified to have non-local constraints.
After a fixed number of steps, we check if a token has arrived

In a number of corner cases not all TDS constraints need to be aggregated
for full precision, we skip this discussion for lack of space.

where expected (e.g., back to the originating vertex for check-
ing the existence of a cycle). If not, then the issuing vertex does
not satisfy the required constraint and is eliminated. Along
the token path, the system verifies that all expected labels are
encountered and, where necessary, uses the path information
accumulated with the token to verify that different/repeated
node identity constraint expectations are met. Next, we discuss
how each of the constraints is verified.

Cycle Constraints (CC). Higher-order structures within G
that survive LCC, but do not contain Gy, are possible if Gy
contains a cycle (this happens if G contains one or more
unrolled cycles as in Fig. 2] Template (a)). To address this,
we directly check for cycles of the correct length.

Path Constraints (PC). If the template Gy has two or more
vertices with the same label three or more hops away from
each other, then structures in G that survive LCC, yet contain
no match, are possible (Fig. 2} Template (b)). Thus, for every
vertex pair with the same label in Gy, we directly check
the existence of a path of correct length and label sequence
for prospective matching vertices in G*. Opposite to cycle
checking, after a fixed number of steps, a token must be
received by a vertex different from the initiating vertex but
with an identical label.

TDS Constraints. These are partial or complete (i.e., in-
cluding all edges of the template) walks on the template. The
token walks the constraint in the background graph and verifies
that each node visited meets its neighborhood constraints
(Remark[I)) - in our distributed memory setting, this is done by
maintaining a history of the walk and checking that previously
visited vertices are revisited as expected. TDS constraints are
crucial to guarantee no-false positives for templates that are
non-edge-monocyclic or have repeated labels (Fig. [2).

Token Generation. For CC and TDS constraints, a token
must be initiated from each vertex that may participate in the
substructure, whereas for PC, tokens are only initiated from
terminal vertices.

Further Optimization - Work Aggregation. All NLCC con-
straints attempt to identify if a walk exists from a specific
vertex and though vertices with specific labels. Since the goal
is to identify the existence of any such path, and multiple
intermediate paths in the background graph often exist, to
prevent combinatorial explosion, our duplicate work detection
mechanism prevents an intermediately vertex (in the token
path) from forwarding a duplicate token (evaluated in §A-A).

Non-local Constraint Generation. For a relatively large class
of templates (i.e., those with unique labels and mono-cyclic
edges), LCC and CC are sufficient to generate a precise solu-
tion. For the general case, we generate non-local constraints
using the following heuristic. (Fig. [3] shows, for a given
template, the non-local constraints to be verified and Fig. [
shows how pruning progresses.) First, all the leaf vertices with
unique labels are identified and ignored from this process (as
LCC guarantees pruning if there is no match). Next, if the
template has cycles, then individual cycles are identified (e.g.,
Fig. [3| Step 3) and a cycle constraint is generated for each
cycle. Next, vertices with identical label are identified and all

path constraints are generated for all such pairs (e.g., Fig. [3
Step 4, pentagonal vertices).

Finally, we identify TDS constraints in three steps. First,
for templates with multiple cycles sharing more than one
edge (i.e., non-edge-monocyclic), a TDS cyclic constraint is
generated through union of previously identified cycle con-
straints. This results in a higher-order cyclic structure with a
maximal set of edges that cover all the non-edge-mono cycles
(e.g., Fig. 3 Step 5(1)). Second, for templates with repeated
labels, a new TDS constraint is generated through a union
of all previously identified path constraints. This procedure
generates higher order structure that covers all the template
vertices with repeated labels (e.g., Fig. 3] Step 5(2)). The
final step generates a TDS constraint as the union of the
previously identified two constraints (e.g., Fig. [3] Step 5(3)).
(Note that the above is a heuristic, more constraints could be
generated by creating various possible combinations of cycles
and paths. Only this third step is mandatory to eliminate all
false positives.)

IV. ASYNCHRONOUS DISTRIBUTED ALGORITHMS

This section presents the constraint checking algorithms on
top of HavoqGT [23], a MPI-based framework that supports
asynchronous graph algorithms in distributed environments.
Our choice for HavoqGT’s is driven by multiple considera-
tions: first, unlike most graph processing frameworks that only
support the Bulk Synchronous Parallel (BSP) model, HavoqGT
has been designed to support asynchronous algorithms, essen-
tial to achieve high-performance; second, the framework has
excellent scaling properties [24] [21]; and, finally, it enables
load balancing: HavoqGT’s delegate partitioned graph dis-
tributes the edges of each high-degree vertices across multiple
compute nodes, which is crucial for achieving scalability for
scale-free graphs with skewed degree distribution.

In HavoqGT, graph algorithms are implemented as vertex-
callbacks: the user-defined visit() callback can only access and
update the state of a vertex. The framework offers the ability
to generate events (a.k.a. ‘visitors’ in HavoqGT lingo) that
trigger this callback - either at the entire graph level using
the do_traversal() method, or for a neighboring vertex using
the push(visitor) call (this enables asynchronous vertex-to-
vertex communication). The asynchronous graph computation
completes when all events have been processed, which is de-
termined by a distributed quiescence detection algorithm [25]].

Alg. [T outlines the key steps of the graph pruning procedure.
Below, we describe the distributed implementation of the local
and non-local constraint checking routines. Alg. [2] lists the
state maintained at each vertex and its initialization.

Local Constraint Checking is implemented as an iterative
process (Alg. [3] and the corresponding callback, Alg. [d). Each
iteration initiates an asynchronous traversal by invoking the
do_traversal() method and, as a result, each active vertex
receives a visitor with msgy,pe = init. In the triggered visit()
callback, if the label of a vertex v; in the graph is a match for
the label of any vertex in the template and the vertex is still

Algorithm 2 Vertex State and Initialization

Algorithm 4 Local Constraint Checking Visitor

1: status of vertex v;: a(vj) < true (active) if g € Vo s.t. £(vj) = £(q),
otherwise false (i.e., v; has been pruned)

2: set of possible matches in template for vertex v;:
qr € Vo s.t. Uqi) = £(vj)

3: map of active edges of vertex v;: (v;) < keys are initialized to adj(v;).
The value field, which is initially @, is set to w(v;), for each v; € (vj)
that has communicated its state to v;.

4: set of already forwarded tokens by vertex v;: 7(v;) < initially empty,
used for work aggregation in NLCC

w(vj) 4 initially all

active, it creates visitors for all its active neighbors in e(v;)
with msgsype = alive (Alg. f} line #9). When a vertex v; is
visited with msg:ype = alive, it verifies whether the sender
vertex v, satisfies one of its own (v;’s) template constraints
by invoking the function 7(vs, v;). By the end of an iteration,
if v; satisfies all the template constraints: i.e, it has neighbors
with required labels (and, if needed, a minimum of distinct
neighbors with the same label as prescribed in the template),
it stays active (i.e., a(v;) = true) for the next iteration. For
templates that have multiple vertices with the same label, in
any iteration, a vertex with that label in the background graph
could match any of these vertices in the template, so each
mach must be verified independently. If v; fails to satisfy the
required constraints for a template vertex ¢ € w(v;), gk is
removed from w(v;). At any stage, if w(v;) becomes empty,
then v; is marked inactive («(v;) < false) and never creates
visitors again. Edge elimination excludes two categories of
edges: first, the edges to neighbors: v; € £(v;) from which v;
did not receive an alive message, and, second, the edges to
neighbors whose labels do not match the labels prescribed in
the adjacency structure of the corresponding template vertex(s)
in w(v;). A vertex v; is also marked inactive if its active edge
list £(v;) becomes empty. Iterations continue until no vertex
and/or edge is marked inactive.

Algorithm 3 Local Constraint Checking

1: n(vs,vj) - tests if v, satisfies a local constraint of v;; returns w(s)
2: if constraints are satisfied, () otherwise
3: procedure LOCAL_CONSTRAINT_CHECKING (G, Go)

4 do

5: do_traversal(msgiype < init)

6: barrier

7: for all v; € V do

8 w0 > set of matches in template for neighbors of v;
9 for all v; € e(v;) do

10: if (v, v;) = 0 then

11: e(vj).remove(v;) > edge eliminated
12: continue

13: else

14: w’ <= w'Un(vi,v;) > accum. matches of the nbrs.
15: reset the value field of v; € e(v;) for the next iteration
16: for all ¢;, € w(v;) do > for each potential match
17: if adj(qr) € ' then

18: > qi does not meet neighbor requirements
19: w(vj).remove(qy) > remove from potential matches
20: continue

21: if e(v;) = 0 or w(v;) = 0 then

22: a(v;) < false > vertex eliminated
23: while vertices or edges are eliminated > global detection

: visitor state: v; - vertex that is visited
: visitor state: vs - vertex that originated the visitor
: visitor state: w(vs) - set of possible matches in template for vertex vs
1 visitor state: msgiype - init or alive
: procedure VISIT(G, vq)
if a(v;) = false then return
if msgiype = init then

for all v; € e(v;) do

vis <— LCC_VISITOR(v;, v, w(vj), alive)

10: vq.push(vis)

> vq - visitor queue

R e R

11: else if msgiype = alive then
12: e(vj).get(vs) < w(vs)

Non-local Constraint Checking routine iterates over g, the
set of non-local constraints to be checked, and validates each
Co € Ko one at a time. Alg. [5]describes the solution to verify a
single constraint: tokens are initiated through an asynchronous
traversal by invoking the do_traversal() method. Each active
vertex v; € G that is a potential match for the vertex g at the
head of a path Cy, broadcasts a token to all its active neighbors
in e(v;). A map + is used to track these token issuers. A token
is a tuple (¢, r) where ¢ is an ordered list of vertices that have
forwarded the token and r is the hop-counter; g € ¢ is the
token-issuing vertex in G. The ordered list ¢ is essential for
TDS since it enables detection of distinct vertices with the
same label in the token path.

Algorithm 5 Non-local Constraint Checking

1: procedure NON_LOCAL_CONSTRAINT_CHECKING(G, Go, Co)

2: 7 <— map of token source vertices (in G) for Cp; the value field
3 (initialized to false) is set to true if the token source vertex meets
4: the requirements of Co

5: do_traversal(msgiype < init)
6: barrier

7 for all v; € v do

8 if v.get(vj) # true then

9: > violates Cp, eliminate potential match
10: w(vj).remove(qo) where o is the first vertex in Co

11: if w(vj) = 0 then > no potential match left
12: a(v;) < false > vertex eliminated

13: Yv; € V, reset 7(v;)

When an active vertex v; receives a token with msgiype =
forward, it verifies that if w(v;) is a match for the next entry
in Cy, if it has received the token from a valid neighbor (with
respect to entries in Cp), and that the current hop count is <
|Co|. If these requirements are satisfied (i.e., p returns true), v;
sets itself as the forwarding vertex (added to ¢), increments the
hop count, and broadcasts the token to all its active neighbors
in e(v;). If any of the constraints are not met, v; drops the
token. If the hop count r is equal to |Co| and v, is the same as
the source vertex in the token, for a cyclic template, a path has
been found and v; is marked true in . For path constraints,
an acknowledgement is sent to the token issuer to update its
status in y (Alg. [6] lines #28 — #31). Once verification of
a constraint Cy has been completed, the vertices that are not
marked ¢rue in v, are invalidated, i.e., a(v;) < false (Alg.
line #12). NLCC uses an unordered set 7(v;) (Alg. [2| line #4)
for work aggregation (see Alg. [6] line #14): at each vertex,
this is used to detect if another copy of token has already
visited the vertex v; taking a different path.

Algorithm 6 Non-local Constraint Checking Visitor

1: visitor state: v; - vertex that is visited

2: visitor state: token - the token is a tuple (¢,7) where ¢ is an ordered list
of vertices that have forwarded the token and r is the hop-counter; to € ¢
is the vertex that originated the token

3: visitor state: msgiype - init, forward or ack

4: p(vj,Co, token) - tests if v; satisfies requirements of Cg for the current
state of token; returns true if constraints are met, false otherwise

5: procedure VISIT(G, vq)

6: if a(v;) = false then return

7 if msgiype = init and 3q;, € w(v;) where g, = qo € Co then

8: > initiate a token; v; is the token source

9: t.add(vj);

r < 1; token < (t,r); ~.insert(vj, false)
10: for all v; € £(v;) do
11: vis <— NLCC_VISITOR(v;, token, forward)
12: vq.push(vis)
13: else if msgiype = forward then > v; received a token
14: if token ¢ 7(v;) then > work aggregation optimization
15: 7(vj).insert(token)
16: else return > ignore token if it was previously forwarded by v;
17: if u(vj,Co,token) = true and token.r < |Co| then
18: > the walk can be extended with v; and it has not yet reached
|Co| length
19: token.t.add(vj); token.r <— token.r + 1;
20: for all v; € e(v;) do > forward the token
21: vis <— NLCC_VISITOR(v;, token, forward)
22: vq.push(vis)
23: else if ;(vj, Co, token) = true and token.r = |Co| then
24: > the walk can be extended with v; and it has reached
|Co| length
25: if Co is cyclic and tgp = v; then
26: v.get(vj) < true return > v; meets requirements of Co
27: else if Co is acyclic and to # v; then
28: vis <— NLCC_VISITOR(¢o, token, ack)
29: vq.push(vis) > send ack to the token originator tg € ¢
30: else if msgiype = ack then
31: v.get(vj) < true return > v; meets requirements of Co

Termination, Output, and Match Enumeration Queries. If
NLCC is not required, the search terminates when no vertex
is eliminated (or none of its potential matches is removed)
in an LCC iteration. Otherwise, the search terminates when
all constraints in Ky have been verified and no vertex is
eliminated (or none of its potential matches is removed) in
the following LCC phase. The output is: (i) the set of vertices
and edges that survived the iterative elimination process and,
(ii) for each vertex in this set, the mapping in the template
where a match has been identified. A distributed enumeration
or counting routine can operate on the pruned graph with
this information: Alg. [6] can be slightly modified to obtain
the enumeration of the matches in the background graph: the
constraint used is the full template, work aggregation is turned
off, and each possible match is verified.

Metadata Store. Metadata is stored independent of the graph
topology itself (which uses CSR format [26]]). At initialization,
only the required attributes are read from the file(s) stored on
a distributed file system. A light-weight distributed process
builds the in-memory (or memory-mapped) metadata store. On
256 nodes, for the 257 billion edge Web Data Commons graph
[27], the metadata store can be built in under two minutes.
Although, in this paper, we consider vertex metadata (i.e.,
labels) only, edge metadata is also supported.

V. EVALUATION

We present strong (§V-B) and weak (§V-A) scaling experi-
ments of pruning on massive real-world and synthetic graphs;
additionally we demonstrate full match enumeration starting
from the pruned graph (§V-C); we evaluate the effectiveness
of the optimizations our system incorporates (§A-A); we
highlight the use of our system in the context of realistic
data analytics scenarios (§V-D)); we explore time-to-solution
vs. precision/guarantees trade-offs (§V-E)); and finally, we
compare our solution with a recent work, QFrag [28]] (.

Testbed. The testbed is the 2.6PFlop Quartz cluster at the
Lawrence Livermore National Lab., comprised of 2,634 nodes
and the Intel Omni-Path interconnect. Each node has two 18-
core Intel Xeon E5-2695v4 @2.10GHz processors and 128GB
of memory [29]. We run one MPI process per core.

Datasets. We summarize the main characteristics of the
datasets used for evaluation and explain how we have gener-
ated vertex labels where necessary. For all graphs, we created
undirected versions of the graphs; two directed edges are used
to represent each undirected edge.

The datasets used for evaluation.

Type [V 2] dmas
Web Data Commons [27]] Real 3.5B 257B 95M
Reddit [30] Real 39B 14B 19M
Internet Movie Database [31] Real M 29M 552K
Patent [28] Real 2. M 28M 789

Youtube [28] Real 4.6M 88M 2.5K
R-MAT up to Scale 37 [22] Synthetic 137B 44T 612M

Web Data Commons (WDC) graph is a web-graph whose
vertices are webpages and edges are hyperlinks. To create
vertex labels, we extract the top-level domain names from
the webpage URL, e.g., .org or .edu. If the URL contains
a common second-level domain name, it is chosen over, the
top-level domain name. For example, for ox.ac.uk, .ac is
selected as the vertex label. A total of 2,903 unique labels
are distributed among the 3.5B graph vertices. We curated
the Reddit social-media graph from an open archive [30]
of billions of public posts and comments from Reddit.com.
Reddit allows its users to rate (upvote or downvote) others’
posts and comments. The graph has four types of vertices:
Author, Post, Comment and Subreddit (a category for posts).
For the Post and Comment there are three possible labels:
Positive, Negative, and Neutral (indicating the overall balance
of positive and negative votes) or No rating. An edge is
possible between an Author and a Post, an Author and a
Comment, a Subreddit and a Post, a Post and a Comment
(to that post), and between two Comments that have a parent-
child relationship. The International Movie Database (IMDB)
graph was curated from the publicly available data [31]. The
graph has five types of vertices: Movie, Genre, Actress, Actor
and Director. An edge is only possible between a Movie type
vertex and a non-Movie type vertex. We use the smaller Patent
and YouTube graphs to compare published results by Serafini
et al. [28]. The synthetic R-MAT graphs exhibit approximate
power-law degree distribution. These graphs were created
following the Graph 500 [32] standards: 2%°%/¢ vertices and an

B-2a-0-8-8a

Chain Tree

Fig. 5: Chain and Tree patterns used. Both patterns have two pairs of vertices
with the same (numeric) label, hence, require non-local constraint checking
(NLCC), more precisely, path checking. The labels used are the most frequent
in the R-MAT graphs and cover ~30% of all the vertices in the graphs.

PF(10) v v v © 1 © ™~ 1 0 © O W VWV VO N~NON~NN
6 o0 oo YWY g < o oo Y VoY o
SRR SBIIIB L B R N O N Do ma N
2|E*| L Qo aY Hdm AN O M I S S S S T S S S
0 © W oM Y N ® N N 8 M oMo o 1 om Y
N = 0 < © O 0 o O M N = 1N = Mm o O W
-~ - < o n © - m N
o~
PF(10*) < v v w1 1 & © 0 0 [T RS BT, R C- RV, T, B BT BT T}
‘—? SN M S o W N 8o 8T W
RE888A2033RRR A3 AR RAR B3I
Al n m © F 0 MmN QMmN n R o ad;n<d ONKN O
> N - I) L Nt R T N NN
283333 QL — M O+ ® o T
45 ~ 0 0 ™ 20 o N -
36
30
< 27
g 20
£
= 18
10
9
0 0
o N ~ NS 0 O AN Y 0O N
oot L% ® 8 F B RS LRI I
W 9O . . Lo N IO 0 N . .+ N W;m O
R-MAT scale NN M Jd oo LS NN ® A No L
L2 I I BES ST, WY- N L IR I TS ST, W - N
Mmoo oonoN mmmg
. ™
W LCC @NLCC Chain Tree

Fig. 6: Runtime and pattern selectivity for weak scaling experiments, broken
down to individual iterations, for the chain (left) and tree (right) patterns
presented in Fig. E] The X-axis labels present the R-MAT scale and the node
count used for the experiment. (Each node hosts two processors, each with 18
cores.) The number of vertices and edges in each pruned solution is shown
on the top of respective bar plot. The pruning factors (PF), i.e., the order
of magnitude reduction in number of vertices/edges compared to the original
background graph are also shown. A flat line indicates perfect weak scaling.
Time for LLC and NLCC phases is presented with different colors.

undirected edge factor of 16. For example, a Scale 30 graph
has |V| = 230 and |€] &~ 32 x 239 (as we create a directed
version). We leverage degree information to create vertex
labels, computed using the formula, ¢(v;) = [logy(d(v;)+1)].

Search Templates. To stress our system, we use templates
based on patterns naturally occurring, and relatively frequent,
in the template graphs. The R-MAT (Fig.[5) and WDC (Fig.
patterns include vertex labels that are among the most frequent
in the respective graphs. The Reddit and IMDB patterns
(Fig.[TT) include most of the vertex labels in these two graphs.
We chose templates to exercise different constraint checking
scenarios: the search templates have repeated vertex metadata
and non-edge-monocyclic properties.

Experimental Methodology. All runtime numbers provided
are averages over 10 runs. For weak scaling experiments,
we do not present scaling numbers for a single node as
this experiment does not involve network communication and
benefits from data locality. For strong scaling experiments,
the smallest experiment uses 64 nodes, as this is the lowest
number of nodes that can load the graph in memory.

A. Weak Scaling Experiments

To evaluate the ability to process massive graphs, we use
weak scaling experiments and the synthetic R-MAT graphs
up to Scale 37 (~4.4T edges) and up to 1024 nodes (36,864
cores). Fig. [5] shows the two search pattern used and Fig. []
presents the runtimes. Since there are multiple vertices in the

WDC-2
Fig. 7: WDC patterns using top/second-level domain names as labels. The
labels selected are among the most frequent, covering ~22% of the vertices
in the WDC graph: org covers ~220M vertices, the 2"¢ most frequent after
com and mil is the least frequent among these labels, covering ~153K vertices.

WDC-3

4400 170 BWLCC m@mNLCC
3310 153 120 VE Only
1.5x 100
2220 2.1x 136 80
2.7x 60
3.1x
1130 119 40
102 20
40 = 0
= B83BEE s EEEE
OEJ 40 68 50 VE and EE
=

30

30 1.8x

51 -

34 6.6X 20

. S
e 0 0

0 © o s © v 9«
N oo © & v o
S & i o & i

20
2.9%

3.6x
E% =
©
r
<

o N
nh o
=

10

0
#Compute
nodes

1024

s ®
S N
=

1024

WDC-1 WDC-2 WDC-3
V¥ 47,232 117 81,913
2|E*| 126,212 546 255,022

Fig. 8: Runtime for strong scaling experiments, broken down to individual
phases (LCC and NLCC are in different colors) for the three patterns presented
in Fig.[7] The top row of X-axis labels represent the number of compute nodes.
(Each node hosts two processors, each with 18 cores.) The last two rows are
number of vertices and edges in the pruned graph, respectively. For better
visibility, for WDC-1 (left plots), runtime for different iterations are split into
two scales on the Y-axis: LCC and NLCC-path constraints are at the bottom,
and LCC and NLCC-TDS constraints are at the top. To highlight the impact
of edge elimination, for WDC-3 (right plots), we present results with edge
elimination disabled (top) and enabled (bottom). Speedup over the 64 node
configuration is also shown on the top of each stacked bar plot.

pattern with identical labels (at more than two-hop distance),
the patterns require NLCC - path checking - to ensure no false
positives in the pruned graph. We see steady scaling all the
way to the Scale 37 graph, which has ~4.4 trillion edges,
on 1024 nodes (36,864 cores). Runtime is broken down to
the individual iteration to evaluate scaling and the individual
contribution of each intermediate step. As a graph gets pruned,
the subsequent iterations require less time. Fig. [f] includes (at
the top of each bar) the final number of vertices and edges
that participate in the respective patterns. Note that the NLCC
phases (needed to guarantee a precise solution) do not delete

any vertex or edge, hence, no further LCC phase is invoked.

B. Strong Scaling Experiments

Fig. [8|shows the runtimes for strong scaling experiments when
using the real-world WDC graph on up to 1024 nodes (36,864
cores). Intuitively, pattern matching on the WDC graph is
harder than on the R-MAT graphs, as the WDC graph is both
denser and has a more skewed degree distribution. We use
the patterns presented in Fig. [/l WDC-1 is acyclic, yet has
multiple vertices with the same label and thus, requires non-
local constraint checking (PC and TDS). For better visibility,
the plot splits checking initial LCC and NLCC-path constraints
(bottom left) from NLCC-TDS constraints (top left). We notice
near perfect scaling for the LCC phases, however, some of

1.00E+12
1.00E+11
1.00E+10
1.00E+09
1.00E+08
1.00E+07 |

H Vertices
1.00E+06

MEdges
1.00E+05
1.00E+04
1.00E+03 “

g
£ 1.00E+02
= 1.00E+01

WDC-1 WDC-2 WDC-3
#lterations 21 83 24

#Edges in the WDC graph

#Vertices in the WDC graph

r of active vertices and edges (log-scale)

1.00E+00

Fig. 9: Evolution of the number of active vertices and edges after each iteration
for the same experiments as in Fig. [8] The bottom row of X-axis labels
represent number of iterations required for a precise solution. Note that the
Y-axis is on log scale.

the NLCC phases do not show linear scaling (explained in
§A-B). WDC-2 is an example of a pattern with multiple cycles
sharing edges, and relies on CC and TDS constraint checking
to guarantee no false positive matches. WDC-2 shows near-
linear scaling with ~1/3 of the total time spent in the first
LCC phase and little time spent in the NLCC phases. WDC-
3 is a monocyclic template and, when edge elimination is
used (bottom right) shows near linear scaling for both LCC
and NLCC phases. The top right plot highlights the key
performance impact of edge elimination: without it, the NLCC
phases take almost one order of magnitude longer and the
entire pruning 2-9x longer.

TABLE II: Match enumeration statistics: Number of matches for the chain
and tree patterns (Fig. 3} top table), and WDC (Fig. [7), Reddit and IMDB
(Fig. patterns (bottom table) and the enumeration times, starting from the
pruned graphs. Note that for WDC-1 and WDC-3, due to the extremely large
number of matches (over half billion in each case) we stop enumeration early.

R-MAT | #Compute Chain Tree
Scale Nodes Count | Time (s) Count | Time (s)
28 2 2,716 10.36 1,186 10.38
31 16 3,747 10.54 1,488 10.40
34 128 7,529 11.28 3,766 11.28
37 1024 | 55,710 10.10 | 32,532 5.53
Pattern WDC-1 WDC-2 WDC-3 RDT-1 RDT-2 IMDB-1
Count 668M" 2444 1.49B" 24K 518K 1.68M
Time 4min 1.84s 40h+ 6.78s 4.85s 10h
#Compute Nodes 64 64 16 64 64 8

C. Match Enumeration

As our technique prunes the graph by orders of magnitude (see
Fig. 0 and [I2[b)), match counting and full match enumeration
are now feasible. Table [[I] (top) lists the number of distinct
matches and the time to enumerate the chain and tree patterns
on some of the R-MAT graphs we used. While these results
prove that our match enumeration routines scale well, the
match counts and enumeration time for WDC, Reddit and
IMDB patterns listed on Table [II] (bottom) are more revealing.

There are three important takeaways: First, while our match
enumeration technique is able to enumerate an immense
number of matches (see, for example results for WDC-1 and
WDC-3 with 500+ million matches, or even IMDB-1 with
1.5+ million matches), presenting results as pruned vertex/edge

. &
frﬁﬁ‘ A : wH .-.ﬂ °
@

2262 v 152
@ ee 5]
Fig. 10: The WDC-2 pattern matches in the background graph. The number
of matches in each of the six connected components are also shown.

&

WA @
13

sets (with less than 100,000 vertices) avoids the combinatorial
explosion and makes is feasible to imagine further analytics.
Second, as Fig. [I0] clearly shows, presenting the results as the
union of all matches (rather than explicit match enumeration)
is not only more space efficient, but also, in some cases even
easy to directly understand by a human analyst. Finally, while
we omit details due to lack of space, we note that key to
supporting match enumeration, is edge pruning: this reduces
the edge density in the pruned WDC graph by a factor of
10-15x (compared to using vertex pruning alone).

D. Example Use Case: Social Network Analysis

We demonstrate the ability of our scalable pattern matching
technique to support complex data analytics scenarios in the
context of social networks. Today’s user experience on social
media platforms is tainted by the existence of malicious
actors such as bots, trolls, and spammers. This highlights the
importance of detecting unusual activity patterns that may
indicate potential malicious attacks. We present three use
cases: one for the IMDB graph and two queries that attempt
to uncover suspicious activity in the Reddit dataset.

Fig. [T summarizes the scenarios we target and presents the
corresponding search patterns. Fig. [I2] shows runtime for these
scenarios, broken down to individual LCC and NLCC iteration
levels. Although RDT-1 is much less frequent than RDT-2, on
the same 64 nodes, pruning for RDT-1 takes more than 3x
longer to complete as it spends more time verifying the non-
local constraints. Although both patterns have a 6-cycle, RDT-
2 allows verification of the two smaller cycles in isolation.
(For NLCC, a longer path typically results in larger generated
message traffic.) IMDB-1, on 8 nodes, spends the majority of
the time verifying non-local, specifically TDS, constraints.

E. Pruning Precision/Guarantees vs. Time-to-Solution

Our approach gradually refines G*(V*,£*) down to the com-
plete set of vertices and edges that participate in at least one
match and guarantees no false positives. Given that this is
an iterative process, it is natural to investigate at what rate
G* is refined, and whether there are opportunities to trade
between the precision (or existence of precision guarantees)
of an intermediary solution, and compute time.

Fig. [I3]| shows the evolution of the precision of the interme-
diate solution over time for the various patterns. (We define
precision as the ratio between the number of distinct vertices
that participate in at least one match, and the size of refined

Author| Subreddi]
[More Up votes|

Genre
‘I Actress I\

S S
Actor
(o —a—(e Genre
RDT-1 RDT-2 IMDB-1

Fig. 11: The scenarios and their corresponding templates for the Reddit
(RDT) and IMDB graphs: RDT-1 (left): identify users with adversarial
poster/commenter relationship. Each author makes at least two posts or two
comments, respectively. Comments to posts, that with more upvotes (P+),
have a balance of negative votes (C-) and comments to posts, with more
downvotes (P-), have a positive balance (C+). The posts must be under
different Subreddits (category). RDT-2 (center): identify all poster/commenter
pairs where the commenter makes at least two comments to the same post,
one directly to the post and one in response to a comment. The poster also
makes a comment in response to a comment. The commenter always receives
negative rating (C-) to a popular post (P+), however, comments (to the same
post) by the poster has a positive rating (C+). IMDB-1 (right): find all the
actresses, actors, and directors that worked together at least on two different
movies that fall under at least two similar genres.

micc ENLCC 1.00E+11 #Edges in the Reddit graph
1300 400 320 1.00E+10
1170 350 280 1.00E+09 v #Vertices in the
1040 1.00E+08 erices Reddit graph
300 240 MEdges
o 910 1.00E407
5 780 20 200 1.00E+06
E 60 200 160 1.00E+05
520 150 120 1.00E+04
390 100 % 1.00E403
260 1.00E402
130 50 40 1.00E+01
RDT-1 RDT-2 iMpp-1 1-00E+00)
1V¥] 57,194 2,614,547 104,322) RDT-1 RDT-2
2]E*| 195,160 7,163,856 639,850 H#iterations 105 123
(a) (b)

Fig. 12: (a) Runtime for the graph analytics patterns presented in Fig.
The labels on X-axis represent the number of vertices and edges in the
pruned graph. Note that Y-axes have different scales. (b) Number of active
vertices and edges after each iteration for the same experiments for Reddit as
in (a). The labels on bottom row of X-axis represent the number of iterations
required. Note that the Y-axis is on log scale.

100
100 --
— 80 =
X x 80
c 60 c
o oS 60
5 @
g% @ 40 1 - -~ scale 28 Chain
jd < 1)
a 1 — — —scale 37 Chain
20 & 20 ry
U ’ Scale 28 Tree
0 0 - Scale 37 Tree
AR BNDEAR MO WMmOoOwmowmOoOuwmao
Timeline (s) MWL agaas Timeline (s) = AN AN®m ;S TN

(a) WDC (b) R-MAT

Fig. 13: Vertex set precision over the lifetime of an execution for (a) WDC
(Fig. []) and (b) R-MAT (Fig. [5) patterns. The X-axis presents the timeline
while the Y-axis is the precision achieved by the end of an iteration. The
markers indicate the moment in time when 100% precision has been achieved.
The presented timeline for the WDC-1 is limited to 170™ second for better
visibility (WDC-1 achieves 100% precision in less than 20 seconds). For the
R-MAT patterns, we only show numbers for Scale 28 and 37.

vertex set V* at the end of an iteration.) We note that: (i) the
rate at which precision improves is pattern dependent, and (i)
for some patterns, even after precision reaches 100% and no
more vertices are pruned, the algorithm continues to operate to
offer guarantees that no false positives are left. For example, in
Fig. [[3[a), WDC-1 quickly reaches 100% precision, however,
99% of the execution time is spent to verify five non-local
constraints (top left WDC-1 plot in Fig. B) to guarantee
no false positive match. WDC-3, however, shows different
behaviour: the complex structure does not reach 90% precision
until the very end, and converges to 100% quickly afterwards.

We believe that the rate at which precision is achieved, is partly
influenced by the order in which constraints are verified and
our heuristics for constraint verification ordering leave room
for improvement.

Please continue to Appendix for the remaining of the paper:
evaluation (§4)), a brief discussion on the potential limitations
of this work (@), related work (@, and conclusion (@)

ACKNOWLEDGEMENT

This work was performed in part under the auspices of the U.S.
Department of Energy by Lawrence Livermore National Lab-
oratory under contract DEAC52-07NA27344 (LLNL-CONF-
735657). Experiments were performed at the Livermore Com-
puting facility.

REFERENCES

[1] W. Fan, X. Wang, and Y. Wu, “Diversified top-k graph pattern
matching,” Proc. VLDB Endow., vol. 6, no. 13, pp. 1510-1521, Aug.
2013. [Online]. Available: http://dx.doi.org/10.14778/2536258.2536263

[2] N. Alon, P. Dao, I. Hajirasouliha, F. Hormozdiari, and S. C. Sahinalp,
“Biomolecular network motif counting and discovery by color coding,”
Bioinformatics, vol. 24, no. 13, pp. i241-i249, Jul. 2008. [Online].
Available: http://dx.doi.org/10.1093/bioinformatics/btn163

[31 Z. Zeng, J. Wang, L. Zhou, and G. Karypis, “Out-of-core coherent

closed quasi-clique mining from large dense graph databases,” ACM

Trans. Database Syst., vol. 32, no. 2, Jun. 2007. [Online]. Available:

http://doi.acm.org/10.1145/1242524.1242530

D. CONTE, P. FOGGIA, C. SANSONE, and M. VENTO, “Thirty

years of graph matching in pattern recognition,” International Journal

of Pattern Recognition and Artificial Intelligence, vol. 18, no. 03, pp.

265-298, 2004. [Online]. Available: http://www.worldscientific.com/

doi/abs/10.1142/S0218001404003228

[5] J. R. Ullmann, “An algorithm for subgraph isomorphism,” J.
ACM, vol. 23, no. 1, pp. 3142, Jan. 1976. [Online]. Available:
http://doi.acm.org/10.1145/321921.321925

[6] J. W. Berry, B. Hendrickson, S. Kahan, and P. Konecny, “Software and
algorithms for graph queries on multithreaded architectures,” in 2007
IEEE International Parallel and Distributed Processing Symposium,
March 2007, pp. 1-14.

[71 W. Fan, J. Li, S. Ma, N. Tang, Y. Wu, and Y. Wu, “Graph

pattern matching: From intractable to polynomial time,” Proc. VLDB

Endow., vol. 3, no. 1-2, pp. 264-275, Sep. 2010. [Online]. Available:

http://dx.doi.org/10.14778/1920841.1920878

H. Tong, C. Faloutsos, B. Gallagher, and T. Eliassi-Rad, “Fast

best-effort pattern matching in large attributed graphs,” in Proceedings

of the 13th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, ser. KDD ’07. New York, NY, USA:
ACM, 2007, pp. 737-746. [Online]. Available: http://doi.acm.org/10.
1145/1281192.1281271
[9]1 A. Ching, S. Edunov, M. Kabiljo, D. Logothetis, and S. Muthukrishnan,
“One trillion edges: Graph processing at facebook-scale,” Proc. VLDB
Endow., vol. 8, no. 12, pp. 1804-1815, Aug. 2015. [Online]. Available:
http://dx.do1.org/10.14778/2824032.2824077
[10] S. A. Myers, A. Sharma, P. Gupta, and J. Lin, “Information network
or social network?: The structure of the twitter follow graph,” in
Proceedings of the 23rd International Conference on World Wide Web,
ser. WWW 14 Companion. New York, NY, USA: ACM, 2014,
pp. 493-498. [Online]. Available: http://doi.acm.org/10.1145/2567948.
2576939

[11] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento, “A (sub)graph
isomorphism algorithm for matching large graphs,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 26, no. 10, pp. 1367-1372, Oct. 2004.
[Online]. Available: http://dx.doi.org/10.1109/TPAMI.2004.75

[12] B. D. Mckay and A. Piperno, “Practical graph isomorphism, ii,” J.
Symb. Comput., vol. 60, pp. 94-112, Jan. 2014. [Online]. Available:
http://dx.doi.org/10.1016/j.jsc.2013.09.003

[4

[l

[8

[t}

http://dx.doi.org/10.14778/2536258.2536263
http://dx.doi.org/10.1093/bioinformatics/btn163
http://doi.acm.org/10.1145/1242524.1242530
http://www.worldscientific.com/doi/abs/10.1142/S0218001404003228
http://www.worldscientific.com/doi/abs/10.1142/S0218001404003228
http://doi.acm.org/10.1145/321921.321925
http://dx.doi.org/10.14778/1920841.1920878
http://doi.acm.org/10.1145/1281192.1281271
http://doi.acm.org/10.1145/1281192.1281271
http://dx.doi.org/10.14778/2824032.2824077
http://doi.acm.org/10.1145/2567948.2576939
http://doi.acm.org/10.1145/2567948.2576939
http://dx.doi.org/10.1109/TPAMI.2004.75
http://dx.doi.org/10.1016/j.jsc.2013.09.003

[13]

[14]

[15]

[16]

(7]

[18]

[19]
[20]

[21]

[22]

[23]
[24]

[25]

[26]

[27]

(28]

[29]
[30]

[31]

C. H. C. Teixeira, A. J. Fonseca, M. Serafini, G. Siganos, M. J. Zaki,
and A. Aboulnaga, “Arabesque: A system for distributed graph mining,”
in Proceedings of the 25th Symposium on Operating Systems Principles,
ser. SOSP ’15. New York, NY, USA: ACM, 2015, pp. 425-440.
[Online]. Available: http://doi.acm.org/10.1145/2815400.2815410

N. P. Roth, V. Trigonakis, S. Hong, H. Chafi, A. Potter, B. Motik,
and I. Horrocks, “Pgx.d/async: A scalable distributed graph pattern
matching engine,” in Proceedings of the Fifth International Workshop
on Graph Data-management Experiences & Systems, ser. GRADES’17.
New York, NY, USA: ACM, 2017, pp. 7:1-7:6. [Online]. Available:
http://doi.acm.org/10.1145/3078447.3078454

T. Reza, C. Klymko, M. Ripeanu, G. Sanders, and R. Pearce, “Towards
practical and robust labeled pattern matching in trillion-edge graphs,” in
2017 IEEE International Conference on Cluster Computing (CLUSTER),
Sept 2017, pp. 1-12.

A. Lulli, E. Carlini, P. Dazzi, C. Lucchese, and L. Ricci, “Fast connected
components computation in large graphs by vertex pruning,” [EEE
Transactions on Parallel and Distributed Systems, vol. 28, no. 3, pp.
760-773, March 2017.

F. Zhou, S. Mahler, and H. Toivonen, Simplification of
Networks by Edge Pruning. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2012, pp. 179-198. [Online]. Available:

https://doi.org/10.1007/978-3-642-31830-6_13

A. Kusum, K. Vora, R. Gupta, and I. Neamtiu, “Efficient processing
of large graphs via input reduction,” in Proceedings of the 25th ACM
International Symposium on High-Performance Parallel and Distributed
Computing, ser. HPDC *16. New York, NY, USA: ACM, 2016, pp. 245—
257. [Online]. Available: jhttp://doi.acm.org/10.1145/2907294.2907312
“Giraph,” 2016. [Online]. Available: http://giraph.apache.org/

J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin,
“Powergraph: Distributed graph-parallel computation on natural graphs,”
in Proceedings of the 10th USENIX Conference on Operating
Systems Design and Implementation, ser. OSDI’12. Berkeley, CA,
USA: USENIX Association, 2012, pp. 17-30. [Online]. Available:
http://dl.acm.org/citation.cfm?1d=2387880.2387883

R. Pearce, M. Gokhale, and N. M. Amato, “Faster parallel traversal
of scale free graphs at extreme scale with vertex delegates,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’14. Piscataway,
NJ, USA: IEEE Press, 2014, pp. 549-559. [Online]. Available:
https://doi.org/10.1109/SC.2014.50

D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-mat: A recursive model
for graph mining,” in Proceedings of the Fourth SIAM Int. Conf. on
Data Mining. Society for Industrial Mathematics, 2004, p. p. 442.
“Havoqgt,” 2016. [Online]. Available: http://software.llnl.gov/havoqgt/
R. Pearce, M. Gokhale, and N. M. Amato, “Scaling techniques
for massive scale-free graphs in distributed (external) memory,” in
Proceedings of the 2013 IEEE 27th International Symposium on
Parallel and Distributed Processing, ser. IPDPS *13. Washington, DC,
USA: IEEE Computer Society, 2013, pp. 825-836. [Online]. Available:
http://dx.doi.org/10.1109/IPDPS.2013.72

M. P. Wellman and W. E. Walsh, “Distributed quiescence detection in
multiagent negotiation,” in Proceedings Fourth International Conference
on MultiAgent Systems, 2000, pp. 317-324.

N. Bell and M. Garland, “Implementing sparse matrix-vector
multiplication on throughput-oriented processors,” in Proceedings of
the Conference on High Performance Computing Networking, Storage
and Analysis, ser. SC ’09. New York, NY, USA: ACM, 2009, pp. 18:1-
18:11. [Online]. Available: http://doi.acm.org/10.1145/1654059.1654078
O. L. Robert Meusel, Christian Bizer, “Web data commons -
hyperlink graphs,” 2016. [Online]. Available: http://webdatacommons.
org/hyperlinkgraph/index.html

M. Serafini, G. De Francisci Morales, and G. Siganos, “Qfrag:
Distributed graph search via subgraph isomorphism,” in Proceedings
of the 2017 Symposium on Cloud Computing, ser. SOCC ’17. New
York, NY, USA: ACM, 2017, pp. 214-228. [Online]. Available:
http://doi.acm.org/10.1145/3127479.3131625

“Quartz,” 2017. [Online]. Available: |https://hpc.lInl.gov/hardware/
platforms/Quartz

“Reddit public data,” 2016. [Online]. Available: https://github.com/
dewarim/reddit-data-tools

“Imdb public data,” 2016. [Online]. Available: http://www.imdb.com/
interfaces

[35]

[36]

(37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]
[46]

[47]

(48]

[49]

“Graph 500 benchmark,” 2016. Available:
graph500.org/

T. Plantenga, “Inexact subgraph isomorphism in mapreduce,” J. Parallel
Distrib. Comput., vol. 73, no. 2, pp. 164-175, Feb. 2013. [Online].
Available: http://dx.doi.org/10.1016/j.jpdc.2012.10.005

Z. Zhao, G. Wang, A. R. Butt, M. Khan, V. S. A. Kumar, and M. V.
Marathe, “Sahad: Subgraph analysis in massive networks using hadoop,”
in 2012 IEEE 26th International Parallel and Distributed Processing
Symposium, May 2012, pp. 390-401.

G. M. Slota and K. Madduri, “Complex network analysis using parallel
approximate motif counting,” in Proc. 28th IEEE Int’l. Parallel and
Distributed Processing Symposium (IPDPS). 1EEE, May 2014, pp.
405-414.

V. T. Chakaravarthy, M. Kapralov, P. Murali, F. Petrini, X. Que, Y. Sab-
harwal, and B. Schieber, “Subgraph counting: Color coding beyond
trees,” in 2016 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), May 2016, pp. 2-11.

J. Gao, C. Zhou, J. Zhou, and J. X. Yu, “Continuous pattern detection
over billion-edge graph using distributed framework,” in 2014 IEEE 30th
International Conference on Data Engineering, March 2014, pp. 556—
567.

Z. Sun, H. Wang, H. Wang, B. Shao, and J. Li, “Efficient
subgraph matching on billion node graphs,” Proc. VLDB Endow.,
vol. 5, no. 9, pp. 788-799, May 2012. [Online]. Available:
http://dx.do1.org/10.14778/2311906.2311907

S. Ma, Y. Cao, J. Huai, and T. Wo, “Distributed graph pattern matching,”
in Proceedings of the 21st International Conference on World Wide
Web, ser. WWW *12. New York, NY, USA: ACM, 2012, pp. 949-958.
[Online]. Available: http://doi.acm.org/10.1145/2187836.2187963

A. Fard, M. U. Nisar, L. Ramaswamy, J. A. Miller, and M. Saltz,
“A distributed vertex-centric approach for pattern matching in massive
graphs,” in 2013 IEEE International Conference on Big Data, Oct 2013,
pp. 403-411.

‘W.-S. Han, J. Lee, and J.-H. Lee, “Turboiso: Towards ultrafast and robust
subgraph isomorphism search in large graph databases,” in Proceedings
of the 2013 ACM SIGMOD International Conference on Management of
Data, ser. SIGMOD ’13. New York, NY, USA: ACM, 2013, pp. 337-
348. [Online]. Available: http://doi.acm.org/10.1145/2463676.2465300

S. Gurajada, S. Seufert, I. Miliaraki, and M. Theobald, “Triad: A
distributed shared-nothing rdf engine based on asynchronous message
passing,” in Proceedings of the 2014 ACM SIGMOD International
Conference on Management of Data, ser. SIGMOD ’14. New
York, NY, USA: ACM, 2014, pp. 289-300. [Online]. Available:
http://doi.acm.org/10.1145/2588555.2610511
“Largetriplestores.” [Online]. Available:
LargeTripleStores

A. Dave, A. Jindal, L. E. Li, R. Xin, J. Gonzalez, and M. Zaharia,
“Graphframes: An integrated api for mixing graph and relational
queries,” in Proceedings of the Fourth International Workshop on
Graph Data Management Experiences and Systems, ser. GRADES ’16.
New York, NY, USA: ACM, 2016, pp. 2:1-2:8. [Online]. Available:
http://doi.acm.org/10.1145/2960414.29604 16

“Graphframes.” [Online]. Available: http://graphframes.github.i0/

G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski, “Pregel: A system for large-scale graph
processing,” in Proceedings of the 2010 ACM SIGMOD International
Conference on Management of Data, ser. SIGMOD ’10. New
York, NY, USA: ACM, 2010, pp. 135-146. [Online]. Available:
http://doi.acm.org/10.1145/1807167.1807184

J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J.
Franklin, and I. Stoica, “Graphx: Graph processing in a distributed
dataflow framework,” in Proceedings of the 11th USENIX Conference
on Operating Systems Design and Implementation, ser. OSDI’14.
Berkeley, CA, USA: USENIX Association, 2014, pp. 599-613.
[Online]. Available: http://dl.acm.org/citation.cfm?1d=2685048.2685096
N. Sundaram, N. Satish, M. M. A. Patwary, S. R. Dulloor, M. J.
Anderson, S. G. Vadlamudi, D. Das, and P. Dubey, “Graphmat:
High performance graph analytics made productive,” Proc. VLDB
Endow., vol. 8, no. 11, pp. 1214-1225, Jul. 2015. [Online]. Available:
http://dx.do1.org/10.14778/2809974.2809983

S. Hong, S. Depner, T. Manhardt, J. Van Der Lugt, M. Verstraaten,
and H. Chafi, “Pgx.d: A fast distributed graph processing engine,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’15. New

[Online]. http://www.

https://www.w3.org/wiki/

http://doi.acm.org/10.1145/2815400.2815410
http://doi.acm.org/10.1145/3078447.3078454
https://doi.org/10.1007/978-3-642-31830-6_13
http://doi.acm.org/10.1145/2907294.2907312
http://giraph.apache.org/
http://dl.acm.org/citation.cfm?id=2387880.2387883
https://doi.org/10.1109/SC.2014.50
http://software.llnl.gov/havoqgt/
http://dx.doi.org/10.1109/IPDPS.2013.72
http://doi.acm.org/10.1145/1654059.1654078
http://webdatacommons.org/hyperlinkgraph/index.html
http://webdatacommons.org/hyperlinkgraph/index.html
http://doi.acm.org/10.1145/3127479.3131625
https://hpc.llnl.gov/hardware/platforms/Quartz
https://hpc.llnl.gov/hardware/platforms/Quartz
https://github.com/dewarim/reddit-data-tools
https://github.com/dewarim/reddit-data-tools
http://www.imdb.com/interfaces
http://www.imdb.com/interfaces
http://www. graph500.org/
http://www. graph500.org/
http://dx.doi.org/10.1016/j.jpdc.2012.10.005
http://dx.doi.org/10.14778/2311906.2311907
http://doi.acm.org/10.1145/2187836.2187963
http://doi.acm.org/10.1145/2463676.2465300
http://doi.acm.org/10.1145/2588555.2610511
https://www.w3.org/wiki/LargeTripleStores
https://www.w3.org/wiki/LargeTripleStores
http://doi.acm.org/10.1145/2960414.2960416
http://graphframes.github.io/
http://doi.acm.org/10.1145/1807167.1807184
http://dl.acm.org/citation.cfm?id=2685048.2685096
http://dx.doi.org/10.14778/2809974.2809983

[50]

[51]

[52]

[53]

[54]

York, NY, USA: ACM, 2015, pp. 58:1-58:12. [Online]. Available:
http://doi.acm.org/10.1145/2807591.2807620

F. Zhu, Q. Qu, D. Lo, X. Yan, J. Han, and P. Yu, “Mining top-k large
structural patterns in a massive network,” Proceedings of the VLDB
Endowment, vol. 4, no. 11, pp. 807-818, 8 2011.

H. Shang, Y. Zhang, X. Lin, and J. X. Yu, “Taming verification
hardness: An efficient algorithm for testing subgraph isomorphism,”
Proc. VLDB Endow., vol. 1, no. 1, pp. 364-375, Aug. 2008. [Online].
Available: http://dx.doi.org/10.14778/1453856.1453899

J. Cheng, J. X. Yu, B. Ding, P. S. Yu, and H. Wang, “Fast graph
pattern matching,” in 2008 IEEE 24th International Conference on Data
Engineering, April 2008, pp. 913-922.

M. R. Henzinger, T. A. Henzinger, and P. W. Kopke, “Computing
simulations on finite and infinite graphs,” in Proceedings of the 36th
Annual Symposium on Foundations of Computer Science, ser. FOCS
’95. Washington, DC, USA: IEEE Computer Society, 1995, pp. 453—.
[Online]. Available: http://dl.acm.org/citation.cfm?1d=795662.796255
G. Liu, K. Zheng, Y. Wang, M. A. Orgun, A. Liu, L. Zhao, and X. Zhou,
“Multi-constrained graph pattern matching in large-scale contextual
social graphs,” in 2015 IEEE 31st International Conference on Data
Engineering, April 2015, pp. 351-362.

http://doi.acm.org/10.1145/2807591.2807620
http://dx.doi.org/10.14778/1453856.1453899
http://dl.acm.org/citation.cfm?id=795662.796255

APPENDICES

A EVALUATION (CONTINUED)
A. Impact of Design Decisions and Strategic Optimizations

Edge Elimination. Fig. [§] (right plots) show scalability
and performance gains as a result of enabling edge elimi-
nation. Without edge elimination, the WDC-3 pattern results
in 3,180,678 edges selected (some are false positives). Edge
elimination identifies the true positive matches and reduces
the number of active edges to 255,022. In other words, the
graph is 12.5x sparser which in turn improves overall message
efficiency of the system.

Asynchronous Communication. Our system is designed to
harness the advantages of an asynchronous graph processing
framework, yet a synchronous one could easily support the
same algorithms. Fig. [T4(a) shows runtime for two patterns
that benefit the most from asynchronicity: for WDC-1 and
RDT-1 (2.65x and 3.5x gains, respectively) compared with a
synchronous version that adds a barrier after each NLCC token
propagation step. Asynchronous NLCC makes it possible for
all walks to progress independently without synchronization
overheads. Synchronous NLCC is implemented within Havo-
qGT as well.

Work Aggregation. Fig.[T4(b) shows the performance gains
enabled by the work aggregation strategy employed by NLCC
(presented in and Alg. [6). The magnitude of the gain: 10-
50%, is data dependent and more pronounced when the pattern
is abundant, e.g., WDC-1 has 600M+ instances (Table |H|)

Constraint Selection. For patterns for which full TDS is re-
quired for precision guarantees, the path and cycle constraints
are there for performance optimizations (their goal is to prune
away the non-matching part of the graph early) and we are
interested to evaluate the impact of these optimizations. To this
end, we compare time-to-solution for a configuration that gen-
erates and uses all NLCC constraints, and one that uses only
the TDS constraints required to guarantee 100% precision.
Our experiments show that, although it increases the number
of iterations, verifying simpler and smaller substructures first
is extremely effective: for some patterns (e.g., RDT-1) the
system is not able to complete in reasonable time without
these constraints, for others (e.g., WDC-2) these constraints
enable a 2.39x speedup (Fig. [[4[c)).

B. Load Balancing

Load imbalance issues are inherent to problems involving
irregular data structures, such as graphs, when these need
to be partitioned for processing over multiple nodes. For
our pattern matching solution, load imbalance can be further
caused by two artifacts: first, over the course of execution, our
solution causes the workload to mutate (i.e., we prune away
vertices and edges), and, second, by nonuniform distribution of
matches in the background graph: the vertices and edges that
participate in the matches may reside on a small, potentially
concentrated, portion of the graph. Load imbalance can indeed
occur: for example, for the relatively rare WDC-2 pattern when
using 128 nodes, for example, the vertices that participate in

12000 M@ Synchronous W No aggregation

E Asynchronous 200

10000 @ Aggregation

8000 150

6000 100

4000 F
50
2000 ’_‘
0 0

WDC-1

(a) (b)

E TDS-only 7200 14000 ENLB 2100

Time (s)
Time (s)

K

RDT-1 WDC-1 WDC-2 WDC-3

@ All constraints 12000 OLB 1800
200 10000 1500
4800 1.7x

— — 8000 1200
2300 z
v 3600 2 6000 900
£ £ .1x
= 200 2400 = 4000 600

1.3x
2000
0 0
0 0

#compute 64 128 64

WDC-2 nodes WDC-1 RDT-1

© (@)

Fig. 14: (a) Comparing synchronous and asynchronous NLCC. (b) Impact of
work aggregation on runtime for the WDC patterns (for the sake of readability,
only a subset of non-local constraints are considered for WDC-1). (c) Runtime
performance when only TDS constraints are used vs. all NLCC constraints
used. (Here, RDT-1 does not finish after two hours). Note that in (a) and
(c), we did not apply load balancing to RDT-1. All experiments in (a), (b)
and (c) use 64 compute nodes. (d) Impact of load balancing on runtime for
the the WDC-1 and RDT-1 patterns. We compare two cases: without load
balancing (NLB) and with load balancing (LB). For WDC-1, we show results
for two scales, on 64 and 128 nodes. Speedup achieved by LB over NLB is
also shown on the top of each bar.

RDT-1

the final selection are distributed over as few as 114 partitions
out of 4,608. The distribution is concentrated: 90% of the
matching edges are on 85 partitions while more than half
of of the matching edges are located on only 15 partitions.
For the more frequent WDC-1 pattern, 99% of the matching
vertices are part of a single connected component. 50% of the
matching edges are on less than 5% of the total partitions on
a 64 node deployment, which becomes less than 3% on a 128
node deployment.

We employ a pseudo-dynamic, load balancing strategy.
First, we checkpoint the current state of execution: the pruned
graph, i.e., the set of active vertices and edges and the per-
vertex state indicating template matches, w(v;) in Alg.
Next, using HavoqGTs graph partitioning module, we reshuffle
vertex-to-processor assignment to evenly distribute vertices
and edges across processing cores. Processing is then resumed
on the rebalanced workload. (Note that, depending on the size
the the pruned graph, it is possible to resumed processing
on a smaller deployment.) Over the course of the execution,
checkpointing and rebalancing can be repeated as needed.

As a proof of feasibility, to examine the impact of this tech-
nique, we analyze the runs for WDC-1 and RDT-1 patterns.
(We chose some of the real-world workloads as they are more
likely to lead to imbalance than synthetically generated load.)
Fig. [[4(d) compares performance of the pruning algorithms
with and without load balancing. For these examples, we
perform workload rebalancing only once: for WDC-1, before
verifying the TDS constraints, and for RDT-1, when the pruned
graph is four orders of magnitude smaller. The extent of
load imbalance is more severe for WDC-1 on the smaller
64 node deployment compared to using 128 nodes; workload

rebalncing improves runtime by 3.1x and 1.3x on 64 and 128
nodes, respectively. In the case of RDT-1, the gain in runtime
as a results of load balancing is 1.7 . Given the pruned graphs
are orders magnitude smaller then the original graph, check
pointing, rebalancing, and relaunching the computation takes
less than two minutes, which is negligible compared to the gain
achieved in time-to-solution. In Table [lI, we run enumeration
for WDC-1, WDC-2 and RDT-1 on the rebalanced graphs.

TABLE III: Performance comparison between QFrag and our pattern matching
system. The table shows runtime in seconds for full enumeration for QFrag;
pruning and full enumeration for our distributed system (labeled PruneJuice-
distributed), and for a single node implementation of our graph pruning-
based approach tailored for a shared memory system (labeled Pruneluice-
shared). For PruneJuice, we split time-to-solution into pruning (top row)
and enumeration (bottom row) times. We use the same graphs (Patent and
YourTube) and some of the query templates (Q4 — Q7) used for evaluation
of QFrag in [28].

QFrag Pruneluice-distributed | PruneJuice-shared

Patent | Youtube | Patent Youtube Patent | Youtube

Q4| 4.19 2.08 0.238 0.704 0.100 | 0.400
0.223 1.143 0.010 | 0.010

Q6| 599 | 1026 0.874 2.340 0.070 1.730
0.065 0.301 0.005| 0.010

a7l 636 | 1189 0.596 1.613 0.130 | 0.820
0.039 0.180 0.005 0.010

Q810,05 | 14.48 0.959 2.633 0.100 1.370
0.049 0.738 0.001 0.010

C. Comparison with Existing Work: QFrag

We empirically compare our work with a recent work
(2017) on pattern matching from the database community:
QFrag [28].

Similar to our solution, QFrag targets exact pattern match-
ing, yet there are two main differences: QFrag assumes that
the entire graph fits in the memory of each compute node
and uses data replication to enable search parallelism. More
importantly, QFrag employs a sophisticated load balancing
strategy between parallel instances of a search to achieve good
scalability. QFrag is implemented on top of Apache Spark
and Giraph [19]. In QFrag, each replica runs an instance of a
pattern enumeration algorithms called Turboyso [41]]. Through
evaluation, the authors demonstrated QFrag’s performance ad-
vantages over two other distributed pattern matching systems:
(i) TriAD [42], an MPI-based distributed RDF [43] engine
based on an asynchronous distributed join algorithm, and (ii)
GraphFrames [44]], [45], a graph processing library for Apache
Spark, also based on distributed join operations.

Given that we have demonstrated the good scalability of our
solution (Serafini et al. [28]] demonstrate equally good scalabil-
ity properties for QFrag yet on much smaller graphs), we are
interested to establish a comparison baseline at single node
scale. To this end, we run experiments on a modern shared
memory machine with 60 CPU-cores, and use four template
queries and two real-world graphs (Patent and Youtube) that
were used for evaluation of QFrag [28]. We run QFrag with 60
threads and HavoqGT with 60 MPI processes. The results are
summarized in Table QFrag runtimes for match enumer-
ation (first pair of columns) are comparable with the results

presented in [28], so we have reasonable confidence that we
replicate their experiments well. With respect to combined
pruning and enumeration time, our system (second pair of
columns, presenting pruning and enumeration time separately)
is consistently faster than QFrag on all the graphs, for all the
queries. We note that our solution does not take advantage of
shared memory of the machine at the algorithmic or imple-
mentation level (we use different processes, one MPI process
per core), and has the system overhead of MPI-communication
between processes. Additionally, unlike QFrag, our system is
not handicapped by the memory limit of a single machine as
it supports graph partitioning. To highlight the effectiveness
of our technique and get some intuition on the magnitude
of the MPI overheads in this context, we implemented our
technique for shared memory and present runtimes (when
using 60 threads) for the same set of experiments in Table
(right two columns). We notice up to an order of magnitude
better performance, the main cost for our technique, compared
to the distributed implementation running on a single node.
In summary, our system works about 4-10x faster than
QFrag, and, if excluding distributed system memory overheads
and considering the pruning time for the shared memory
solution and conservatively reusing enumeration runtime for
the distributed solution, it is about 6-100x faster than QFrag.

B LIMITATIONS / DISCUSSION

We categorize the limitations of our proposed system based
on their respective sources.

Limitations stemming from major design decisions. Our
system inherits limitations of a system that performs exact
matching (compared to a system that focuses on approximate
matching, e.g., based on graph simulation [7]). Similarly,
our system inherits all limitations of its communication and
middleware infrastructure, MPI and HavogGT. One example
is the lack of flow control in these infrastructures which
sometimes leads to message buildup and system collapse.

Limitations stemming from the targeted uses cases. In the
same vein, we note that our system targets a graph analytics
scenario (queries that need to cover the entire graph), rather
than the traditional graph database queries that attempt to find
a specific pattern around a vertex indicated by the user (where
other systems may perform better).

Limitations stemming from attempting to design a generic
system. Systems optimized for specific patterns may perform
better (e.g., systems optimized to enumerate triangles or
treelets [34] or systems relying on multi-join indices to support
patterns with limited diameter).

Limitations stemming from incomplete understanding and
work in progress. While we propose heuristics that appear to
work well for our experiments, one of the key challenges is
identifying an optimal set of constraints and their execution or-
der. We believe graph statistics at different stages in execution
can be used to dynamically select effective constraints.

C RELATED WORK

The volume of related work on graph processing in gen-
eral [46], [19], [20], [47], [48], [49] and on pattern match-

TABLE IV: Comparison of past work on distributed pattern matching. The table highlights the characteristics of the solution presented (exact vs. approximate
matching), its implementation infrastructure, and summarizes the details of the largest-scale experiment performed. We highlight the fact that our solution is
unique in terms of demonstrated scale, ability to perform exact matching, and ability to retrieve all matches.

Contribution Model Framework/ Match Max-.Query Metadata #Compute Max-Real Max-Synthetic
Language Type Size Nodes Graph Graph
Plantenga [33]] Graph Walk Hadoop Approx. 4-cliques Real 64 107B edges R-MAT Scale 20
QFrag [28] Tree-based Spark Exact 7 edges Real 10 117M edges N/A
SAHAD [34] Explore-Join Hadoop Approx. 12 vertices ~ Synthetic 40 N/A 269M edges
FASICA [35] Explore-Join MPI Approx. 12 vertices N/A 15 117M edges Erd6s-Renyi 1M edges
Chakaravarthy et.al. [36] Explore-Join MPI Approx. 10 vertices N/A BG/Q-512 2.7M edges R-MAT
PGX.D/Async [14] Async. DFS Java/C++ Exact 4 edges Synthetic 32 N/A 2B edges (Unif. rand.)
Gao et al. [37] Explore-Join Giraph Approx. 50 vertices ~ Synthetic 28 3.7B edges N/A
Sun et al. [38] Explore-Join C#.Net4 Exact 15 vertices ~ Synthetic 12 16.5M edges 4B vertices
Ma et al. [39] Graph Simulation Python Approx. 15 vertices Type only 16 5.1M edges 100M vertices
Fard et al. [40] Graph Simulation GPS Approx. N/A N/A 8 300M edges N/A

ing algorithms in particular [Sl], [11], [12], [SOl, [6], [1] is
humbling. We summarize closely related work in Table
Sequential Algorithms. Early work on graph pattern match-
ing mainly focused on solving the problem of graph isomor-
phism [5)]. The well-known Ullmann’s algorithm [5] and its
extensions (in terms of join order and pruning strategies),
e.g., VF2 [11] and QuickSI [51], belong to the family of
tree-search based algorithms. A recent effort, Turboiso [41]]
is considered to be the state-of-the-art of tree-search based
sequential subgraph isomorphism algorithm. For large graphs,
a tree search that fails mid-way and has to backtrack, can
be expensive. Efficient distributed implementation of this ap-
proach is difficult due to the costs associated with maintaining
large intermediate search state across multiple physical nodes
that participate in the search. Perhaps the best known exact
matching algorithm that does not belong to the family of tree-
search based algorithms is Nauty due to McKay [12], which
is based on canonical labeling of the background graph. This
approach, however, has high preprocessing overhead.
Subgraph Indexing. In the same spirit as database index-
ing, indexing of frequent subgraph structures is an approach
attempted by some in order to reduce the number of join op-
erations and lower query response time, e.g., SpiderMine [50]]
and R-Join [52]. Unfortunately, for a billion-edge graph, this
approach is infeasible. First, searching frequent subgraphs in
a large graph is expensive. Second, depending on topology
of the template(s) and the background graph, the size of the
index is often superlinear relative to the size of the graph [38]].
Distributed Solutions. Here, we focus on projects that
provide distributed pattern matching and demonstrate it
at some scale. Table summarizes the key differentiat-
ing aspects and the scale achieved. The best scale is of-
fered by Plantenga’s [33] MapReduce implementation of
the walk-based algorithm for inexact matching, originally
proposed in [6]]. Unlike ours, Plantenga’s system can find
exact/approximate matches only for a restricted class of small
patterns. Plantega demonstrated performance using a 107
billion edge graph, the largest-scale experiment to date (ex-
cluding ours). SAHAD [34], is a MapReduce implementation
of the color-coding algorithm originally developed for finding
tree-like patterns (treelet) in protein-protein interaction net-

works. SAHAD follows a hierarchical sub-template explore-
join approach. Its application was presented only on small
graphs with up to ~300M edges. FASICA [35] is also a
color-coding-based system for approximate treelet counting,
whose MPI-based implementation offers superior performance
to SAHAD. Chakaravarthy et al. [36] extended the color-
coding algorithm to count patterns with cycles and presented a
MPI-based distributed implementation. However, they demon-
strated performance on graphs with only a few million edges.
Although QFrag outperforms many of its competitors in terms
of time-to-solution, it replicates the entire graph in the memory
of each node which limits its applicability to small graphs only.
PGX.D/Async [14] relies on asynchronous depth-first traversal
and incorporates flow control with a deterministic guarantee
of search completion under a finite amount of memory. Both
QFrag and PGX.D/Async are demonstrated at a much smaller
scale (in terms of graph sizes and number of compute nodes)
than in this paper. Sun et al. [38] present an exact subgraph
matching algorithm which follows the explore-join approach
and demonstrate it on large synthetic graphs and larger query
graphs than in [33].

Approximate Matching. Recently, a new family of approxi-
mate matching algorithms based on graph simulation [53]] has
been proposed [1]], [40], [54]. As opposed to exact matching,
graph simulation algorithms relax matching constraints, e.g.,
matching based on vertex attributes and their connectivity
constraints in the query [[7]. Simulation based algorithms have
quadratic/cubic time-complexity and have been proposed as
a possible solution for emerging matching problems when
large-scale graphs are involved [53]. Two inexact matching
algorithms based on graph simulation are introduced in [40],
[39], although results from both are only presented on rela-
tively small real-world graphs. Gao et al. introduce another
approximate matching algorithm based on explore-join [37]]
and evaluate it on even larger query patterns than in [38]]. Here,
a query pattern is converted into a single-sink Directed Acyclic
Graph (DAG) and message transition follows its topology.

D CONCLUSION

This paper presents a new algorithmic pipeline to support
pattern matching on large-scale metadata graphs on large

distributed-memory machines. We capitalize on the idea of
graph pruning and develop asynchronous algorithms that use
both vertex and edge elimination to iteratively prune the
original graph and reduce it to a subgraph which represents the
union of all matches. We have developed pruning techniques
that guarantee a solution with 100% precision (i.e., no false
positives in the final pruned graph) and 100% recall (i.e.,
all vertices and edges participating in matches are included)
for arbitrary search patterns, including patterns with repeated
vertex metadata, and patterns that have arbitrary cycles. Our
algorithms are vertex-centric and asynchronous, thus, they map
well onto existing high-performance graph frameworks. Our
evaluation using up to 257 billion edge real-world web-graphs
and up to 4.4 trillion edge synthetic R-MAT graphs, on up to
1,024 nodes (36,864 cores), confirms the scalability of our so-
lution. We demonstrate that, depending on the search template,
our approach prunes the graph by orders of magnitude which
enables full pattern enumeration and counting on graphs with
trillions of edges. Our success stems from a number of key
design ingredients: asynchronicity, aggressive vertex and edge
elimination while harnessing massive parallelism, intelligent
work aggregation to ensure low message overhead, effective
pruning constraints, and lightweight per-vertex state.

E ARTIFACT DESCRIPTION

Here, we present an example of searching a pattern in a
R-MAT generated graph using our program. The code is
developed on top of HavoqGT. Detailed instructions on how to
use our tool are available at https://github.com/LLNL/havoqgt

Clone the code from https://github.com/LLNL/havoqgt.git

You will require the latest releases of OpenMPI or
MAVPICH2 and the Boost library to run HavoqGT. The code
has only been tested on latest generation of Linux distributions.
Once you have checked out the code, make sure you are on
the master branch.

Go to the directory, build/quartz/ Setup CMake environment
by running the following script:

Jscripts/quartz.llnl.gov/do_cmake.sh
(Make necessary adjustments to the script for CMake to work
within your environment.)

The next step is to generate a graph in HavoqGT format: Go
to the directory, build/quartz/ and build the R-MAT generator:

make generate_rmat

Create a directory, e.g., /usr/graph/, to store the generated
graph.

Assuming you are in a Slurm environment, run the following
command to generate a R-MAT graph:

srun -N1 —ntasks-per-node=4 —distribution=block
Jsrc/generate_rmat -s 18 -p 1 -f 1 -o /dev/shm/rmat -b
/urs/graph/rmat

This will create a graph with four partitions, to be run using
four MPI processes. Note that this is a Scale 18 graph. (Notice
the parameter for the -s flag.) The mmap/binary graph file will
be store in /usr/graph/

Next, we build the pattern matching executable:

make run_pattern_matching_beta

We will search the following Tree pattern on the graph we
just created. The numeric values on each vertex is the label
of the respective vertex.

Tree

We use degree information to create numeric vertex labels,
computed using the formula. [log,(d(v;)+1)]. Here, d(v;) is
the degree of a vertex v;.

The input pattern is available at https://github.com/LLNL/
havoqgt (See the instructions on the readme page regarding
how to download the sample input pattern.)

See the instructions on the readme page regarding how
create the output directory before you run the program.
(https://github.com/LLNL/havoqgt)

Once you have the input pattern, e.g., /usr/pattern/ and
output, e.g., /usr/results directories setup, use the following
command to search the pattern stored in /usr/pattern/.

Note that we do not need to provide vertex labels for the
Tree pattern as we will use labels based on vertex degree
and the program will generate labels when no input label is
provided, i.e., the -1 flag is not set. (The readme page has links
to other datasets that require input labels.)

srun -N1 —ntasks-per-node=4 —distribution=block
Jsrc/run_pattern_matching_beta -1 /dev/shm/rmat -b
/usr/graph/rmat -p /usr/pattern/ -o /usr/results

The program logs status information to the standard output
so you know the current state of the execution.

See the instructions on the readme page regarding how to
interpret the results and retrieve the pruned graph. You will
find scripts (written in python) that will help you to parse the
result files. (https://github.com/LLNL/havoqgt)

Also, instructions on how to enumerate a pattern on the
pruned graph are available on the readme page. (https://github.
com/LLNL/havoqgt)

We encourage you to try the Tree pattern on a Scale 28 or
larger R-MAT graph and compare the results you obtain with
the numbers we have reported in Section [V-A]

The instructions page also explains how to partition a graph
(from a given edge list) for distributed processing, provide
required vertex labels and use the scripts to generate non-local
constraints for a given pattern.

https://github.com/LLNL/havoqgt
https://github.com/LLNL/havoqgt.git
https://github.com/LLNL/havoqgt
https://github.com/LLNL/havoqgt
https://github.com/LLNL/havoqgt
https://github.com/LLNL/havoqgt
https://github.com/LLNL/havoqgt
https://github.com/LLNL/havoqgt

	Introduction
	Preliminaries
	Graph Pruning for Scalable Matching
	Asynchronous Distributed Algorithms
	Evaluation
	Weak Scaling Experiments
	Strong Scaling Experiments
	Match Enumeration
	Example Use Case: Social Network Analysis
	Pruning Precision/Guarantees vs. Time-to-Solution

	References
	Evaluation (Continued)
	Impact of Design Decisions and Strategic Optimizations
	Load Balancing
	Comparison with Existing Work: QFrag

	Limitations / Discussion
	Related Work
	Conclusion
	Artifact Description

