Framework for Scalable Intra-Node Collective
Operations using Shared Memory

Surabhi Jain, Rashid Kaleem, Marc Gamell Balmana, Akhil Langer,
Dmitry Durnov, Alexander Sannikov, and Maria Garzaran
Intel Corporation
Email: {surabhi.jain, rashid.kaleem, marc.gamell.balmana, akhil.langer,
dmitry.durnov, alexander.sannikov, maria.garzaran} @intel.com

Abstract—Collective operations are used in MPI programs
to express common communication patterns, collective com-
putations, or synchronization. In many collectives, such as
MPI_Allreduce, the intra-node component of the collective lies on
the critical path, as the inter-node communication cannot start
until the infra-node component has completed. With increasing
number of core counts in each node, intra-node optimizations
that leverage shared memory become more important.

In this paper, we focus on the performance benefit of op-
timizing intra-node collectives using POSIX shared memory
for synchronization and data sharing. We implement several
collectives using basic primitives or steps as building blocks. Key
components of our implementation include a dedicated intra-
node collectives layer, careful layout of the data structures, as
well as optimizations to exploit the memory hierarchy to balance
parallelism and latencies of data movement. A comparison of our
implementation on top of MPICH shows significant performance
speedups with respect to the original MPICH implementation,
MVAPICH, and OpenMPI.

I. INTRODUCTION

Collective operations are used in MPI programs to express
common communication patterns, collective computation op-
erations (e.g. allreduce) or synchronizations (e.g. barrier) [1].
For each collective operation, different algorithms can be used
depending on the message size and the number of the ranks
participating in the collective [2]. Algorithms can be adapted to
better exploit the underlying network topology and to increase
concurrency [3], [4], [S].

Some of the largest supercomputers, like the Oakforest-
PACS or Stampede-2 [6], are built with many-core nodes,
such as the Intel® Xeon Phi™. On these systems, applications
usually run several MPI ranks per node and therefore the intra-
node component of the collective can significantly impact the
performance of the overall collective operation. In fact, in
collectives such as reduce, allreduce, or barrier, the intra-
node component of the collective is on the critical path.
With more cores per node, the latency along the critical path
becomes detrimental to the overall collective performance.
Thus, optimizations that leverage intra-node shared memory
become increasingly crucial [7], [8], [9]. Thus, its performance
is critical to the overall performance of the collective. Current
MPI implementations optimize intra-node component of the
collective in three different ways. First, using intra-node point
to point communication, which uses shared memory as a
transport layer inside a node. Second, allocating a shared

SC18, November 11-16, 2018, Dallas, Texas, USA
978-1-5386-8384-2/18/$31.00 (©2018 IEEE

memory space that ranks in the same node can access and
that can be used for the communication across ranks. This
is necessary because MPI ranks are usually implemented
as processes that have separate memory space. Third, using
zero-memory copy mechanisms, such as those provided by
XPMEM [10], [11], where a rank exposes its memory space,
avoiding the copy into to the shared memory space.

In this paper, we optimize the intra-node component of the
collectives using shared memory. Zero copy mechanisms have
the potential to provide higher performance benefit, specially
for large messages, but this paper focuses on shared memory
as it is a more general mechanism and support for zero-
copy mechanism may not always be provided by the kernel
of the target system. Our implementation is done on top of
MPICH [12]. We use a release/gather approach for synchro-
nization between ranks that was inspired by the gather/release
steps used inside the OpenMP implementation in the LLVM
compiler [13] to implement barrier, and extended it to support
broadcast and reduce, as well as synchronization between
processes that do not share the memory space.

We compare the performance of our proposed scheme
against the current implementation of MPICH with two
different devices, ch3 and ch4 [12], MVAPICH [14], and
OpenMPI [15]. The two main features that distinguish our
design are: a) a dedicated shared memory layer optimized for
collectives based on the release/gather steps used as building
blocks to implement collectives and b) a topology aware
design of intra-node trees that takes into account the memory
hierarchy of the node and minimizes data movement, while
increasing concurrency of the collective operation. MVA-
PICH also uses a dedicated shared memory layer, but Open-
MPI and MPICH use the same code path as the point-to-point
communication between ranks on the same node. This forces
OpenMPI and MPICH to implement MPI_Bcast() with point
to point messages from each parent to each child. With our
approach, the parent rank performs a single copy to a shared
memory buffer and all the children ranks copy the data out
in parallel. To the best of our knowledge, neither OpenMPI,
MPICH or MVAPICH use topology aware trees for intra-node
collectives.

We focus on the optimization of three MPI collectives:
MPI_Bcast(), MPI_Reduce(), and MPI_Allreduce(), al-
though other collectives can be implemented using the building

blocks discussed in this paper. Our experimental results show
that when running with 40 ranks (one rank per core) on
Intel® Skylake, with respect to MVAPICH our approach is
up-to 1.32x, 14.27x, and 3.17x faster for MPI_Bcast(),
MPI_Reduce(), and MPI_Allreduce() and 1.22x, 4.43x%, and
1.80x faster on average, respectively. With respect to Open-
MPI our approach is up-to 5.96x, 13.37x, and 7.71x faster
for MPI_Bcast(), MPI_Reduce(), and MPI_Allreduce() and
, 4.00x, 4.71x, and 3.38x faster on average, respectively.
MPICH with the new ch4 device (discussed later) is up-to
3.96%,6.32x, and 4.17x faster and 2.99x, 3.23 %, and 2.72x,
on average, for the same three collectives.

The paper is organized as follows. Section II presents an
overview of our approach; Section III discusses potential
optimizations; Section IV discusses some issues about memory
consistency and atomicity; Section V presents our environmen-
tal setup, while section VI shows our experimental results;
Section VII discusses related work; Finally, Section VIII
concludes.

II. OVERVIEW

In this section, we focus on the baseline implementation of
broadcast and reduce and then discuss how allreduce can
be implemented using the same basic building blocks.

Our approach uses shared memory buffers that can be
accessed by all the ranks participating in the collective and
two synchronization flags per rank. One of the flags is used
when a rank copies its data to the shared buffer, to notify
that new data is available. The other flag is used when a rank
copies the data out of the shared buffer, to signal that it has
read the contents of the buffer and the buffer can be reused.
We present a detailed description of the flags and the buffers
in detail later in the Section.

Our collective implementation breaks down the collective
into an intra-node collective and an inter-node one. To support
them, the communicator used by the collective call is split into
two different communicators, an intra-node communicator,
which contains all the ranks in the node and is used by the
intra-node collective and an inter-node communicator, that
contains a lead rank per node, which in our implementation
is rank O in the intra-node communicator and is used by
the inter-node collective. From now on, references to the
communicator, unless otherwise specified, refer to the intra-
node communicator.

Our intra-node collective implementations are based on tree
algorithms. A tree is generated for each communicator with
all the ranks as its nodes. Each rank only stores its children
and parent rank. In this section, we assume a flat tree or a
tree where the branching factor is large enough that all the
ranks are the children of the root node (tree optimizations
are discussed in Section III-A). We first describe the data
structure as well as its memory layout in shared memory and
then proceed to describe the two primitive operations (Release
and Gather) that are used to implement the collectives.

A. Memory layout and usage

Our implementation uses POSIX-compliant Unix mmap()
system call to allocate memory that is shared across the
multiple ranks or processes within the node. This memory is
allocated lazily the first time ranks in a communicator call a
collective. A pictorial view of the layout of the shared memory
region is shown in Figure 1. The region contains memory
space for synchronization flags as well as intermediate storage
for broadcast and reduce operations. For each region, a
single buffer of 8 K'B for broadcast and a per-rank buffer of
8K B for reduce operations is maintained. The buffer sizes
can be changed.

Each rank maintains a set of private variables per-
communicator to track its own progress in each step. These
include the pvt release_state and the pvt gather_state
which are used in release and gather phases, respec-
tively. Each communicator also maintains a set of shared
flags, one per rank, used for synchronization. Gather flags
(sh_gather_flag) are used for the child to communicate to its
parent i.e. all children gather for its parent, while release flags
(sh_release_flags) are used for the parent to communicate
with its children i.e. a parent releases its children. Each child
rank writes to its own sh_gather_flag, while the parent reads
the sh_gather_flag of its children. For a sh_release_flag,
only the parent writes to it while the children read it. To avoid
false sharing, each flag uses a single cache line. Given the
single-writer to these flags, loads and stores of these flags do
not require a critical region, but may need memory fences, as
discussed in Section IV.

8K 8K 8K nm 8K

Release Flag

|]

n

L |
Gather Flag
Release Flag

o0
]
w
Q
a
©
A0
[7}
4

Gather Flag

="
L
()
=
[}
L=
=)
©
(U]

Reduce Buffers
(one buffer per rank)

Flags
(one per cache line)

Bcast
Buffer

Fig. 1: Memory Layout

B. Release and Gather primitives

A collective is implemented with two synchronization steps,
a release and a gather step. The pseudocode for the release
step is shown in Figure 2. Upon entering the release step, each
rank increments its private pvt_release_state(3). The parent
(root) writes the value of pvt_release_state to the shared
sh_release_flag of each child (non-root)(@-(3®). Each child
spin waits on its own shared sh_release_flag until the value
of the shared sh_release_flag is equal to that of its private
pvt_release_state(®-@). Once the shared sh_release_flag
and private pvt_release_state are equal, the child knows the
parent has arrived at the corresponding release step(®-@). The
pseudocode has additional details for broadcast operations,
which are explained later.

The pseudocode for the gather step is shown in Fig-
ure 3. Upon entering the gather step, each rank incre-
ments the value of its private pvt_gather_state(®). The leaf

if (broadcast && root)

copy data from user_buffer to sh_bcast_buffer;
pvt_release_state++;
for (i=0;i<num_children;i++)

«child[i].sh_release_flag = pvt_release_state;

if (non_root)

wait_until (xsh_release_flag == pvt_release_state);
if (broadcast && non_root)

copy data from sh_bcast_buffer to user_buffer

O 01U W —

Fig. 2: Release step

ranks write the value of the pvt_gather_state to its shared
sh_gather_flag(®). The parent rank waits until each of its
children has updated its shared sh_gather_flag, at which
point it can update its own shared sh_gather_flag to indicate
to its parent that all of its children have progressed in the
collective(@®-®). The pseudocode also includes details for
reduce operations, which will be described later.

if (reduce)
copy data from user_buffer to sh_reduce_buffer;
pvt_gather_state++;
for (i=0;i<num_children;i++) {
wait_until (#child[i].sh_gather_flag ==
pvt_gather_state);
if (reduce) reduce_operation();
}
x*sh_gather_flag = pvt_gather_state;

O 0NN B W=

synchronization can be hidden if there are additional buffers,
as described in the optimizations in Section III.

D. Implementing reduce

A reduce operation is also implemented with a release
followed by a gather step. In this case, during the release
step, the parent updates the children’s sh_release_flag with
its pvt_release_state to inform them that is has already
copied the data from the corresponding reduce buffer so that
the child rank can reuse the buffer. During the gather step,
each child copies the data to be reduced to its own reduce
buffer space (see Figure 1) and then writes the value of its
pvt_gather_state to the sh_gather_flag. The parent rank
reads each child sh_gather_flag to find out if the data to
be reduced have been copied into the reduce buffer. When
the sh_gather_flag has the appropriate value, the parent can
copy-out the data from the child buffer space and perform the
reduction operation.

Figure 4 shows a pictorial view of the gather and release
steps for a reduction operation, where only the parent rank
(rank X) and a child rank (rank Y) are involved.

Fig. 3: Gather step

Next, we discuss how the release and gather steps are used
to implement broadcast (Section II-C), reduce (Section II-D)
and allreduce (Section II-E).

C. Implementing broadcast

A broadcast is implemented using a release followed by a
gather step. For broadcast, during the release step, the parent
copies the data to broadcast into the buffer space reserved for
that purpose (see Figure 1) and updates the children’s release
flag sh_release_flag with its pvt_release_state value. Child
ranks read the shared sh_release_flag and when its value is
equal to the value of its private pvi_release_state, the child
rank can copy out the data from the broadcast buffer. After the
release step, in the gather step the children ranks signal the
parent that they have completed copying the data by updating
the sh_gather_flag with the value of its pvt_gather_state.
The parent rank waits for the gather flag of all its children
to have the appropriate value before it can continue. A child
rank waits for the parent rank to copy the data in the broad-
cast buffer, copies out the data, updates sh_release_flag,
and it leaves. The parent rank can copy the data into the
broadcast buffer and update the sh_release_flag as soon as
it arrives, but needs to wait for all the children to update
their sh_release_flag before it can leave. This guarantees
that when the parent copies the data into the system buffer
during the release step of the next broadcast, all the children
have already copied the data out of the system buffer. This

sh_gather_flag :
sh_release_flag

Increment private pvt_release_state

Rank X writes private pvt_release_state to shared sh_release_flag of Rank Y
Rank Y waits for shared sh_release_flag to be equal to private pvt_release_state
Increment private pvt_gather_state

Rank Y places its data in reduce buffer (not shown)

Rank Y writes private pvt_gather_state to shared sh_gather_flag of Rank Y
Rank X waits for shared sh_gather_flag to be equal to private pvt_gather_state
Rank X performs operation with data from Rank Y

O NOU R WN e

Fig. 4: Pictorial view of release and gather step in reduce

E. Implementing allreduce

An implementation of allreduce with ranks in multiple
nodes requires three steps. First, a reduce operation to reduce
the data across the ranks on the same node. At the end of this
step, one rank per node, which we call lead rank for that node,
has the result of the intra-node reduction. This step can run in
parallel on all the nodes that have ranks participating in the
reduction. Second, an inter-node allreduce, where the lead
ranks perform an allreduce (this stage can use any algorithm
and is not part of the optimizations studied in this paper).
After this second step, the lead rank in each node has the final
result of the reduction. Third, a broadcast operation, where
the lead rank in each node broadcasts the final results to all the
ranks inside its node. This step can be done in parallel across
all the nodes. Notice that allreduce can also be implemented
using other algorithms such as recursive doubling, which we
do not consider in this paper. Recursive doubling is a good
algorithm for the inter-node allreduce as all the lead ranks
can have the result of the reduction in logsn steps, but requires

additional traffic and does not provide any benefit for the intra-
node reduce, where only the lead rank needs the intra-node
reduced value.

III. OPTIMIZATIONS

In this section, we describe some of the optimizations that
we have studied: the usage of trees to propagate flags and
data (Section III-A), read from parent flag on the release step
(Section III-B), pipelining for large messages (Section III-C),
data inlining (Section III-D) and data copy optimization
(Section III-E).

A. Trees to propagate flags and data

This section discusses the different trees we considered to
propagate flags and data. Specifically, we discuss topology-
unaware trees, topology-aware trees, right/left skewed trees,
and the best trees for broadcast and reduce.

The discussion in this section assumes that the root of the
tree is always rank 0. For all nodes, except for the node
containing the root of the collective, rank 0 can be chosen as
the lead rank to perform the inter-node communication. On the
root node (the node that contains the root of the collective),
if rank O is not the root, the root can send a point-to-point
message with the data to rank 0. While this point-to-point
message can be removed, our performance experiments, with
the root not being rank 0, show that the performance difference
is insignificant, hence we did not consider the optimization for
our final evaluation.

1) Topology-unaware-trees: Section II assumes a flat tree,
a tree where the branching factor is large enough that all the
ranks are the children of the root rank. The problem with a flat
tree is that the root has to read the flags from all the children
during the gather step and write them during the release step.
To decrease the overheads of the root rank, we use a tree that
is created at the same time the shared memory is allocated.

When a tree is used, the release/gather flags are propagated
level by level from the root to the leaf ranks or vice versa. The
tree changes the data movement pattern in a reduce operation
but does not affect the data movement in a broadcast op-
eration. With a flat tree, there is no concurrency on the
reduction operation, because the root has to perform all the
reductions sequentially. However, with a tree, all the parents
that have leaf children can start the reduction concurrently. In
our implementation, we have considered K-ary and K-nomial
trees, where the value of K is a tuning parameter that can be
selected with a configuration variable.

2) Topology aware trees: While a K-nomial or K-ary tree
does increase the parallelism, it assumes that the cost of
data movement is uniform, which is not the case on current
architectures that have a deep memory hierarchy and multiple
sockets. Thus, an arbitrary tree might result in many reduction
operations taking place across sockets, which can result in
increased latency and hurt the overall performance of the
collective. A topology aware tree takes the machine topology
into account by partitioning the ranks based on their bindings.

To describe the different alternatives explored, let us con-
sider a hypothetical machine with 5 sockets, where each socket
has 4 cores, as shown in Figure 5. Furthermore, assume that
each rank is bound to a single core and rank 0 is the root of the
collective. In this example, the topology aware tree considers
two kinds of trees: per-socket trees and socket-leader trees.
The per-socket trees describe how a collective communicates
within a socket. The assumption is that within the socket the
data movement and synchronization cost is uniform across all
ranks. A K-ary or K-nomial tree can be generated for each
socket, which will be used for the collective within that socket.
An example is shown in Figure 6, with branching factor of 3.

©000| 0000|0000 0o coo

Socket 0 Socket 1 Socket 2 Socket 3 Socket 4

Fig. 5: Node with five sockets and four cores per socket.

16
. 17N 18)

Fig. 6: Per-socket K-ary tree with branching factor 3 for the
machine in Figure 5.

The root of the per-socket tree is the lead rank and is used
in the socket-leader tree, which describes the communication
across sockets. The per-socket and the socket-leader trees are
two independent trees. Next, we define how to connect these
two trees (that only share the socket leaders) and consider the
performance implications.

socket-leader-first: In the socket-leader-first approach, we
generate a complete tree by appending the per-socket sub-
trees to the socket-leader tree affer the socket leader ranks.
An example is shown in Figure 7(a), where socket leaders are
represented with red circular nodes, whereas the per-socket
trees (shown in Figure 6) are shown in black rectangles.
For this specific instance, we chose the socket-leader tree
to be a K-ary tree with K = 2. The per-socket trees are
unconstrained and can be configured independently. Reduction
proceeds upward, from the leaves to the root, with parent ranks
going over its children in sequential order from left to right.
Thus, the socket-leaders are processed first followed by the
per-socket tree members. For the example in Figure 7(a), the
root rank 0 will process socket leaders 4 and 8 first, and then
process its own per-socket sub-tree Sp.

socket-leader-last: The other option to merge the socket-
leader trees and per-socket trees is to append the per-socket
sub-trees before the socket-leader trees. An example is shown
in Figure 7(b), where rank O has a sub-tree S consisting of
ranks {1,2,3} in some tree configuration. The socket-leader
tree has ranks 4 and 8 as children of rank 0. In the socket-
leader-last configuration, the ranks 4 and 8 appear after 0’s
socket-tree children.

The socket-leader-first trees seem more appropriate for the
release path. On the release step, flag updates flow from

@ ©® &
(12(19 50 5

(a) socket-leader-first (b) socket-leader-last

Fig. 7: Different topology aware trees. Red circular nodes
represent socket leaders, and black rectangular boxes represent
per-socket trees.

(b) Right skewed tree

(a) Left skewed tree

Fig. 8: K-ary tree (K = 2) with different skews.

the root to the leaves, starting with the children on the left.
Thus, with the socket-leader-first tree, we start sending the
data through the critical path of the tree to the ranks that are
farther away, minimizing the time for the last rank to receive
the flags. However, on the gather step where data reduction is
performed, data propagate upwards from the leaves to the root
and the socket-leader-first tree limits concurrency. The reason
is that parent nodes start reducing the children on its left and
need to wait for the sub-trees to finish the reduction before
it itself can start to work. As an example, take rank O in the
socket-leader-first tree in Figure 7(a), it needs to wait for the
data on all its sub-trees to be reduced before it can start do
any useful work. However, with the socket-leader-last tree in
Figure 7(b), rank 0 can start to reduce the data from its sub-
tree, while other per-socket sub-trees perform their reductions.

3) Right/Left Skewed trees: So far we have considered the
default ordering of trees, such as K-ary and K-nomial, where
ranks are placed in increasing order. This leads to a tree which
fills up the left side first. We refer to such a tree as a left-
skewed tree. Consider a k-ary tree with ' = 2 for 8 ranks.
This will generate the tree shown on Figure 8(a). As we can
see, the rank 7 appears as the left-most leaf. If, however, we
reverse the order of children for each rank, we get a tree that
mirrors the left-skewed tree, and that we call a right-skewed
tree. The right-skewed tree is shown Figure 8(b), where 7
appears as the right-most leaf. We expect the left-skewed trees
to perform better for the release step and the right-skewed to
perform better for the gather step. The reasons are similar to
those discussed before for the socket-leader-first and socket-
leader-last approaches.

4) Different trees for broadcast and reduce: To better
adapt to the different communication patterns, the tree for
broadcast is different from the tree for reduce. For the
broadcast, the updates to flags are propagated downwards
during the release step, while for the reduce, the data and
updates to flags propagate upwards during the gather step.

With this approach, the same tree is used for the gather
and release step of a collective. While it is possible to use
different trees in the gather and release steps for a given
collective, this is an optimization that we have not explored.
Also, the optimization explained in the next section, improves
the performance of the release step.

B. Read from parent flag on the release step

In our baseline, we have assumed that in the release step,
the parent rank writes to the shared release flag of each child
rank. This adds some overhead for the parent, especially when
the branching factor of the tree is high. Thus, an optimization
that we have explored is to have the parent rank write to
its own shared flag and have all the children read from the
same shared flag. This decreases the overhead for each parent
rank, as it only needs to perform one store versus branching-
factor number of stores. In addition, when the children ranks
share the cache, the approach can decrease latency of the load
operation, as one rank can prefetch the cache line for the other
ranks. This approach cannot be applied to the gather flags,
because in this case each child needs to communicate to the
parent rank, so we still need a separate flag per rank.

C. Multiple Buffers and Data pipelining

The baseline approach in Section II has limitations for large
and small messages. For messages larger than the allocated
buffer space, the approach does not work. For small messages,
a single buffer forces a synchronization during the gather step
of the broadcast and during the release step of the reduce.
With a single buffer, on the gather step of the broadcast the
root rank has to wait for all its children to copy the data out
from the broadcast buffer before it can proceed. On the release
step of the reduce the children have to wait for the root to
signal that it has copied the data out before they can proceed.

A solution for both the problems is to split a buffer into
several chunks and use pipelining. For large messages, this
allows overlapping the copy-in of one chunk with the copy-
out of a previously copied chunk. Figure 9 shows one such
example of a broadcast where rank Y (the root) is copying-in
chunk2, while the other ranks are copying from the previously
copied chunks (chunkQO and chunk1). As the figure shows,
each rank can be copying from different chunks. A similar
approach, but in a different direction, can be assumed for
reduce, where the children ranks will be copying the data in
the buffer and the parent will be copying-out each chunk from
each child rank. This approach also hides the synchronization
for both broadcast and reduce, when enough buffers are
available.

The implementation requires several release-gather steps
([message_size/chunk_size]). It uses the values of the

Rank C1 (child)
Chunko IS 20 & (child)
Chunk 1

N\ Rank C3 (child)
Chunk 2

Rank Y (root) —

Fig. 9: Pipelining approach

private flags and the number of chunks to determine the
appropriate chunk to use. The difference between the values
of the private and the shared flags is used to determine when
a rank needs to wait to avoid overwriting a buffer that has not
been copied out yet. For the broadcast, the release flags are
used and for the reduce, the gather flags are used.

An additional optimization has been added to further de-
crease synchronization overheads. In broadcast, the root can
skip the gather step if it knows it has a buffer for the next
broadcast call. To do that, the root can keep track of the
minimum value of the sh_gather_flags across all its children
last time it checked. A similar optimization can be applied by
the children ranks on the release step of the reduce. This
optimization is enabled by default on our pipelining imple-
mentation, although we did not see a noticeable performance
difference between enabling and disabling it.

D. Data inlining for small messages

This optimization combines the data and flags in a single
cache line when the message to be sent is very small. Since
we reserve a whole cache line for each flag (64-bytes), there
is extra space that can be used for the data when the message
is small (less than 60 bytes assuming a 32-bit flag). The
advantage of this approach is the decreased number of cache
misses. The drawback is that it cannot be combined with
the pipelining approach, as we only have space for one flag.
Combined with the fact that it can only be used for small
messages, this optimization has limited applicability.

E. Data copy optimizations

This optimization avoids an extra data copy from the shared
memory buffer to the receive or user buffer during a reduction
operation in the root rank and on the lead rank of the inter-
node communicator. In our implementation, the reduction is
performed during the gather step, where each rank first copies
the data from the send buffer to its shared buffer. Then, each
parent rank reads the data from the children’s shared buffer
and reduces it with the data in its shared buffer. Thus, at
the end of the reduction, the root/lead rank need to copy the
data from shared buffer to the receive buffer. Thus, to avoid
this copy, the lead rank of the node that participates in the
inter-node communication, instead of copying the data from
the send buffer to the shared buffer, it copies the data to its
receive buffer. During the gather step, the root reduces the
data from the shared buffer from the child rank directly into its
receive buffer, avoiding the unnecessary copy from the shared
buffer to the receive buffer. The lead rank will use the receive
buffer as send buffer to perform the reduction across nodes.
This optimization can be applied for both allreduce and
reduce and can have a significant impact for large messages,

as it appears in the critical path of the collective, since the
time to perform the copying cannot be hidden.

Notice that when the MPI_IN_PLACE option is used, the
receive buffer already contains the send data. Thus, in this
case, the lead rank does not need to do anything.

IV. MEMORY CONSISTENCY AND ATOMICITY

In our approach, a rank copies the data to a shared buffer
and sets a flag to indicate the data has been copied (release
step for broadcast and gather step for reduce, in Figures 2
and 3, respectively). Since the store instructions target two
different memory addresses, we need to guarantee that neither
the compiler nor the hardware reorder them. To ensure cross-
platform compatibility we use the OpenPA platform abstrac-
tion layer, which is included in MPICH. Our implementation
uses a store fence (i.e., OPA_write_barrier()) between the
store to the data and the store to the flag. In x86 platforms,
where we run our experiments, store instructions are not
reordered, but our implementation calls the memcpy function
(from the C standard library) to perform the copy. Since
the implementation might use streaming stores with the non-
temporal hint, which can be reordered by the CPU, we place
an sfence before setting the flag.

Similarly, ranks that read the data issue a load of the flag
(to wait for it to have a pre-determined value) followed by a
memcpy, which will issue a load (or multiple loads) of the
data. Since these load instructions target different addresses
we need to ensure that they are not reordered. We do so by
placing an OPA_read_barrier() which, for x86, will become
a compiler fence. On other architectures, this fence would be
an actual load fence instruction, if, for instance, the load is
not exposed to the cache coherence protocol. Furthermore,
to ensure atomicity of loads/stores issued against the same
memory address, OPA_load_int() and OPA_store_int() are
used to operate with the flags. For x86 platforms this does not
result in performance degradation since 64-bit integer loads
and stores are translated into a single instruction.

V. ENVIRONMENTAL SETUP

Experiments were run on an Intel Xeon Gold 6138F CPU,
known as Skylake and referred to as SKL, which has 40 cores,
2 threads/core and a frequency of 2.0G H z. It has 32K B of L1
data and instruction cache, 1M B of L2 cache and 27.5M B of
L3 cache. gcc compiler version 8.1.0 was used. The operating
system was SUSE Linux Enterprise Server 12 SP3 running
Linux version 4.4.132 — 94.33 — de fault.

To assess the performance of our implementation, we
compare with other open source MPI implementations. In
particular, we compare with MPICH [12] with two different
devices, ch3 and ch4. MPICH/ch3 is the default MPICH de-
vice, but MPICH has recently introduced ch4, a new device
that optimizes communication [16]. Although MPICH/ch4 is
usually faster for inter-node communication, we have found
that the intra-node point to point communication in ch4, which
is the one used for intra-node collectives, has not yet been
optimized, and hence we compare with both devices. In this

paper, we use the master branch commit id d815dd4 from
https://github.com/pmodels/mpich for the framework as well
as ch3 and ch4 runs. We also compare with MVAPICH [14]
(version 2—2.3rcl) and OpenMPI [15] (version 3.0.0), which
are the two other main MPI open source implementations.
Topology-aware trees were built using hwloc [17] (version
1.11.7) that provides information about the memory hierarchy
of the target system.

We use the Intel® MPI Benchmarks (IMB) [18] (ver-
sion 2018 Update 1) for MPI_Bcast(), MPI_Reduce(), and
MPI_Allreduce(). For the experiments reported in this paper
we run one rank per core, i.e., 40 ranks on a node. All ranks
running the IMB benchmark accumulate, locally, the time they
stay inside the collective call for the total number of iterations.
At the end of the execution, each rank averages its iteration
time. IMB reports the time of the fastest rank (T-min), the
time of the slowest rank (T-max), as well as the average time
across all ranks (T-avg). For all the figures in this section,
unless otherwise stated, we use T-max. Our conclusions are
similar if we use T-avg. For all the data reported, we run each
experiment 5 times, discard the slowest 2 runs, and we average
the other 3.

VI. EXPERIMENTAL RESULTS

In this section, we assess the performance benefits

of our framework as compared to MVAPICH,
OpenMPI, MPICH/ch3 and MPICH/ch4 for
MPI_Bcast(), MPI_Reduce(), and MPI_Allreduce().
Sections VI-A and VI-B analyze the performance

benefit of different optimizations for MPI_Bcast() and
MPI_Reduce() respectively. Section VI-C shows results on
multiple node evaluation.

Figures 10(a), 10(b), and 10(c) compare performance of the
different MPI implementations with our proposed implemen-
tation, that we call Release/Gather (RG), for MPI_Bcast(),
MPI_Reduce(), and MPI_Allreduce(), respectively, on the
SKL platform. For each plot, the X-axis shows the message
sizes and the Y'-axis shows the normalized execution time,
where the baseline is the execution time of the proposed RG
approach. For clarity, we crop the plots to omit data points that
have very large values. Below the X-axis, the plot shows the
absolute running time in puseconds for each message size under
the RG approach. Absolute runtimes for the other approaches
can be computed based on these running times.

Section VI-B and VI-A discuss the configuration parameters
for RG in detail. Here we describe the values used for the
evaluation. For MPI_Bcast(), we use a 32K B shared buffer
split into 4 chunks of 8K B each and a flat tree for the
propagation of the flags. For MPI_Reduce(), we use a 32K B
buffer split into 4 way chunks of 8 K B each. For messages
smaller than 5128 we use a topology unaware K-nomial tree
with branching factor K = 4, while for 5125 and larger we
use a topology aware tree with right skew and socket-leader-
last. In both cases, the data copy optimization is applied. The
per-socket tree uses a K-ary tree with different value of K
depending on the message size:

e« K =3 when 512B < message_size < 8KB

e K = 2 when message_size > 8KB

Both broadcast and reduce implement the optimization
that read from parent flag in the release step. RG performance
can be further improved by selecting a different configuration
for each individual message size and platform, but since most
users run the MPI library with the default configuration, that
is the one we evaluate in this paper.

To be fair to other MPI implementations, we have searched
their configuration space for each collective and compared the
performance of each configuration with that of the default.
In most cases, we found that the default implementation
provided the best performance, but when a configuration
outperformed the default by more than 5%, we changed
the default to the new configuration. Using this light-weight
tuning, the configuration used for each implementation is as
follows. For OpenMPI, we use the default parameters. For
MVAPICH, we also use the default parameters, except for the
buffer size allocated for broadcast and reduce. The default
configuration in MVAPICH uses 128 buffers of 8K B each.
We have changed the MVAPICH configuration to 4 buffers
of 8K B each, so that both MVAPICH and RG use the same
amount of memory. In MPICH/ch3, broadcast uses the small
messages algorithm (binomial tree) for messages up-to 32K B,
medium size message algorithm (scatter followed by recursive
exchange based allgather) for messages between 32K B and
1M B, and the large message algorithm(scatter followed by
ring-based allgather) for messages larger than 1M B. In
MPICH/ch4, the corresponding cross-over points are 64K B,
and 512K B. In MPICH/ch3, reduce and allreduce use the
small message algorithm (binomial tree) for messages up-
to 4K B, and the large message algorithm (reduce-scatter
followed by gather or allgather) for messages larger than
4K B. The cross-over point for MPICH/ch4 is 8K B.

Experimental results in Figures 10(a), 10(b), and 10(c) show
that RG is usually the fastest on all the collectives evaluated,
in many cases by a significant difference. For MPI_Bcast(),
RG is the fastest for all message sizes, while OpenMPI and
MPICH/ch3 are the second best; for MPI_Reduce(), RG
is the fastest for all message sizes except for messages
smaller than 128 B, where MVAPICH is 10% faster than RG.
MPICH/ch3 is the second best for messages of 512B or
larger; for MPI_Allreduce(), RG and MVAPICH are similar
for messages smaller than 64B, and RG is the fastest for all
other message sizes, with MVAPICH being the second best in
most cases.

Next, we study the impact of each of the optimizations we
enabled for each collective on the SKL platform.

A. MPI_Bcast() Optimizations

The two main optimizations that impact the performance
of MPI_Bcast() are the branching factor of the tree and
the number of buffers. MPI_Bcast() does not benefit from
topology-aware trees, as these are only used to propagate
the flags. Our results show that a flat tree or a tree with

FFTN] T 177 Y
(] 1) Q r
£ ‘N / e £ £ / \'%
F 3 F 34 et E 3 /
Vs > N 5 oY I\
< S | pense™ S e A NN N
3 /’NNV = 3 o N \/
21 - X2 X2
——— w \(Arﬁ‘l w —
el o] ko] /—_
Bl by rnnnmall \H\HHHHLLJ/ S| e T A ~ =
E 1 £ 11 mmnar R I
O [} [}
2 2 =2
0 LB e e e e e S e o LI B e i e o e e e e o+—r—r—r—TTrTrrrrrr—rTrrrrTTTTT7 o+Tr—r—T"—rTrTrrrrr—rTTTrTTT T T
SNTOONTDONMY MY Y NN S S S TOONTOONYYYYYYVYYVYYSSS TOONTOONYYYYYYVYYYYSSS
ANTOONYNONS NS HNONINHANIOONINONS NS HNONINHANSOONTINONS NS
n HNL” —MOML o AN —MOM o N0 —MOML
£ = Msg Size (bytes) oo E 5 Msg Size (bytes) N E = Msg Size (bytes) o
FoveeeeevonReonedsnnnsQnmn FS nnrnrnodsoNcamaonaoman F 849999000 unandannene i
—&— OpenMPI == MPICH/ch3 RG —&— OpenMPI == MPICH/ch3 RG —&— OpenMPI == MPICH/ch3 RG
—s— MVAPICH == MPICH/ch4 —#— MVAPICH == MPICH/ch4 —de— MVAPICH == MPICH/ch4

(a) MPI_Bcast()

(b) MPI_

Reduce() (c) MPI_Allreduce()

Fig. 10: Results for different collectives on SKL

branching factor 39 (40 is the number of ranks/cores of our
SKL) provides, in most cases, the best performance.

With respect to the number of buffers, our experimental
results show that in general 2 buffers are enough. For messages
smaller than 8 K B, MPI_Bcast() runs up-to 1.9x slower with
a single buffer. This can be explained by the parent stalling in
the gather phase waiting for all the children to have copied
the data out. A configuration with 8 buffers requires additional
bookkeeping for large messages, running up-to 1.35x slower.
Data inlining optimization does not provide a performance
benefit because, as previously discussed, it forces us to use
a single buffer, and so the performance penalty due to the
additional synchronization is not compensated by the small
decrease on cache misses.

Finally, the read from parent flag optimization on the release
step is beneficial, as the root only writes its own flag, rather
than the flag of its 39 children.

B. MPI_Reduce() Optimizations

The single most important optimization for
MPI_Reduce() of large messages is topology-aware
trees. Figure 11 shows the impact of topology aware trees
versus topology unaware trees. To determine the best
configuration of the trees, we generate K-ary and K-nomial
trees for topology unaware trees and for the per-socket
tree in topology aware trees. In the topology unaware case,
K-nomial trees were better. In the figure, the topology
unaware line corresponds to a K-nomial tree with branching
factors (determined empirically): K = 8 when message_size
< 16K B and K = 2 for larger messages (branching factor
K = 4 performs the same as K = 8 for messages smaller
than 512B - RG in Figure 10(b) uses K = 4). For the
per-socket tree (in topology aware trees) the K-ary trees
were better than the K-nomial. In the figure, the topology
aware lines uses a socket-leader-last, right skew, K-ary tree
with branching factors (determined empirically): K 3,

when message_size < 4KB; K = 2 when message_size >
4K B. As Figure 11 shows, for messages smaller than 5125,
topology un-aware trees slightly outperform topology-aware
trees; for larger messages, topology-aware trees significantly
outperform the topology-unaware trees. The benefit of
topology-aware trees increases as the message size increases,
because topology aware trees optimize data movement. In the
best case, topology aware trees run up-to 1.8x faster.

-
5}

g
o

Normalized Execution Time
o
w

0.0 — ——
< © © NN
— - N Y ®

128
256
512
16K -
32K
64K
132K
256K 4
512K 4
1M
2M 4
4M -

o
m ©

Msg Size (bytes)

=8~ Topology-aware == Topology-unaware

Fig. 11: Impact of topology aware trees on MPI_Reduce()

We also evaluate the performance benefits of socket-leader-
first versus socket-leader-last (socket-leader-last is our default)
and of right skew trees versus left skew trees (right skew is our
default). Both optimizations provide speedups between 1.1x
and 1.25x for messages smaller than 64K B. As the message
size increases, the impact of these optimizations decreases as
the reduction computation becomes the dominant factor.

With respect to the branching factor (K), we find that
in general larger values of branching factors are better for
small message sizes. As the message size increases, smaller
branching factors are better. For the topology un-aware trees
used for messages smaller than 512B, K = 4 or K = 8
provide the same performance. A branching factor K = 2 is

up-to 1.15x slower, while K = 3 is up-to 1.2x slower. For
topology aware trees, branching factor K = 3 is 3% faster
than K = 2 when 5128 < message_size < 8K B. When
message_size > 8K B, K = 2 is the best, with branching
factor K = 3 being up-to 1.17x slower than K = 2.

With respect to the number of buffers, our default optimiza-
tion uses a total buffer size of 32K B (4 buffers with 8K' B
each) per rank. Thus, we assessed the benefit of allocating a
single buffer of 32K B, two buffers of 16 K B, four of SK B
or eight of 4K B. All the configurations with more than one
buffer outperform a single buffer, with the single buffer being
up-to 1.2x slower for small messages and up-to 2.3 x for large
messages. Having multiple buffers prevents child ranks from
stalling while the parent copies out the data. With 8 buffers,
bookkeeping increases, and the execution time can be up-to
1.25x slower for messages larger than 32K B. Two or four
buffers show similar results. Finally, notice that results vary
with a larger total buffer space, but our experimental results
with other buffer sizes show that 32K B is a good compromise.

Our baseline implementation uses the read from parent
flag optimization during the release step and the data copy
optimization. Read from parent flag provides small benefit, but
without the data copy optimization MPI_Reduce() runs up-to
1.08x slower than our default (with the optimization enabled).
The data inlining optimization provides a small benefit for
small messages, but since it complicates the design to also
support pipeline, we did not consider it any further.

C. Multi-node evaluation

In this section, we evaluate the impact of RG when de-
ployed in a multi-node setup. Figure 12 and 13 show the
impact our proposed approach has on the overall collective
execution time for MPI_Bcast() and MPI_Allreduce(), re-
spectively!. For these experiments, we only compare with
MPICH/ch3 and MPICH/ch4, keeping the inter-node collec-
tive implementation in all the variants the same. The only
difference in the execution times can be attributed to the intra-
node implementation of the collective. For MPI_Bcast(), we
see that the performance difference increases as the message
size increases, which is unexpected based on the results in Fig-
ure 10(a). The reason is that when running on multiple nodes,
the medium and large message algorithms for broadcast ran
very slowly, even though, these were the best for single-node
runs. As a result, experimental results on Figure 12 use the
small message algorithm for all message sizes, since those
obtained better performance for multi-node runs.

For MPI_Allreduce(), Figure 13 shows that benefit in-
creases as message size increases. This agrees with the results
for MPICH/ch3 and MPICH/ch4 for MPI_Allreduce() in
Figure 10(c). Overall, the runtime of MPI_Allreduce() with-
out RG is between 1.30x and 2.34x slower.

As we can see from the Figures 12 and 13, the improvement
provided by the RG intra-node collective has a visible impact
on the execution time of the overall collective.

IResults for MPI_Reduce() are not shown due to lack of space. We show
results for MPI_Allreduce(), which is a more important collective operation.

Normalized Execution Time

Execution

il

RG(us)
7
7
8.
7
8.
8.
8.
14
14
14.
15
17
21
27
52
72
125
185
287
523
1010
1890

=@ MPICH/ch3

Fig. 12: MPI_Bcast() on 32 nodes with 40 ranks per node

== MPICH/ch4 === RG

Normalized Execution Time

o

4
8 4
16
1 128K
3 256K
3 512K
2M 4

us)

Execution
Time

RG
12
12
19
13
13
19
19
19
20
22
25
44,
81
116
209
341
610
1148

=@ MPICH/ch3

Fig. 13: MPI_Allreduce() on 32 nodes with 40 ranks per node

== MPICH/ch4

1

VII. RELATED WORK

As previously mentioned, the release/gather approach dis-
cussed in this paper is also used in the LLVM OpenMP
runtime [13] to implement a barrier, where it is used in the
reverse order, first a gather and then a release. We build on top
of this approach to support broadcast and reduce. In particu-
lar, we added several optimizations designed to minimize data
movement and to reduce synchronization between processes.
We do not compare with the LLVM implementation, as the
MPI collectives require a copy-in of data to a shared buffer
that is not required in the case of the OpenMP runtime.

Both MVAPICH [14], [8] and OpenMPI [15], [9] have
optimized intra-node collectives. OpenMPI intra-node col-
lectives are implemented through a variety of algorithms
operating on the intra-node point-to-point communication,
where the specific algorithm depends on the message and
communicator sizes. By implementing the collectives through
send and receive calls, OpenMPI| allows the underlying
communication to be abstracted. While this approach allows
for extensibility, this comes at the expense of performance,
as shown in this paper. MVAPICH provides optimized imple-
mentations of several collective operations (i.e. MPI|_Bcast(),
MPI_Reduce(), and MPI_Barrier()) that leverage shared-

memory regions to improve the intra-node portion of the
operation, similar to our approach. However, in MVAPICH,
the intra- and inter-node portions of the collective are tightly-
coupled, i.e., implemented within the same function, in at least
one of the variants. When compared to OpenMPI’s design,
this approach lays at the other end of the spectrum, as it
may offer performance benefits at the expense of reduced re-
usability and extensibility. Our approach separates the inter-
and intra-node portions to facilitate the selection of the best
combination for the target system. MPICH follows a similar
approach to OpenMPI in that it uses the intra-node point to
point path to implement the intra-node collective. To the best
of our knowledge, MPICH, MVAPICH, and OpenMPI use
topology un-aware trees. None of them use topology-aware
trees that take into account the memory hierarchy of the node
as we do. For MPI_Reduce(), MVAPICH uses flat trees
for small messages and 4-ary trees for larger ones, while
MPICH uses binomial trees. OpenMPI selects the algorithm
based on message and communicator size. For MPI_Bcast(),
MVAPICH uses a flat tree like we do. Their implementation
resembles ours on the release, but differs on the gather.

Li et al. [7] present algorithms optimized for intra-node
shared memory, but their approach assumes that a rank is
based on a thread implementation [19], avoiding the copy-in
and out from the shared buffer. We base our implementation
on processes, since in main MPI implementations, such as
MPICH or OpenMPI, ranks are based on processes. Also,
although [7] evaluates K-ary trees with different branching
factors that seem to take into account the different sockets of
the machine, we evaluate more variations of topology aware
trees (socket-leader-first and socket-leader-last and right/left
skewed trees) as well as buffer pipelining for large messages.
Also, Li et al. do not describe the synchronization process,
such as the release/gather steps used in our approach. Other
implementations also avoid the copy-in and copy-out, using
kernel assisted memory copy (KNEM [20]) [21]. We did not
base our implementation on kernel assisted memory because
these kernels are not always available in the target systems, and
wanted to have a general mechanism that will always work.

Algorithms for Scalable Synchronization on Shared-
Memory to support barriers, such as the MCS Barrier, are
discussed in [22], where different trees and dissemination
algorithms for threads that share memory are evaluated.

VIII. CONCLUSIONS

In this paper, we have discussed and evaluated our Release/-
Gather approach and possible optimizations to implement
intra-node collectives using shared memory. With the preva-
lence of processors with large number of cores, the intra-node
implementation of collectives has become critical to obtain
good performance on large scale. By using the topology infor-
mation of the underlying hardware, the data movement can be
orchestrated to minimize high latency movement. Furthermore,
for large messages the different phases can be overlapped by
having different chunks work on different buffers. These op-
timizations, among others, allow the intra-node collectives to

outperform other open source implementations. This directly
benefits inter-node collectives since the intra-node collective
is on the critical path of the collective in a multi-node
execution. Our experimental results show that when compared
to MPICH, our approach runs between 1.16x and 2.18x faster
for MPI_Bcast(), and between 1.29x and 2.50x faster for
MPI_Allreduce(), when running on a 32 node cluster. On a
single node, our experimental results show that with respect
to MVAPICH, our approach is, on the average, 1.22x, 4.43x,
and 1.80x faster for MPI_Bcast(), MPI_Reduce(), and
MPI_Allreduce(), respectively. With respect to OpenMPI, our
approach is, on the average, 4.00x, 4.71x, and 3.38x faster
for MP1_Bcast(), MPI_Reduce(), and MPI_Allreduce(), re-
spectively. With respect to MPICH/ch4, our approach is, on
average, 2.99x, 3.23x, and 2.72x faster for MPI_Bcast(),
MPI_Reduce(), and MPI_Allreduce(), respectively. Similar
improvements are obtained with respect to MPICH/ch3. We
have shown that our building blocks can be used to efficiently
build three MPI collectives, MPI_Bcast(), MPI_Reduce(),
and MPI_Allreduce(). The same building blocks could be
used to implement other collectives, although that is left for
future work.

ACKNOWLEDGMENTS

This material is based upon work supported by the U.S.
Department of Energy and Argonne National Laboratory and
its Leadership Computing Facility under Award Number(s)
DE-AC02-06CH11357.

IX. DISCLAIMER

This report was prepared as an account of work sponsored by an agency and/or
National Laboratory of the United States Government, in. Neither the United
States Government nor any agency or National Laboratory thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark, manufacturer, or otherwise
does not necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency or National Laboratory
thereof. The views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency or National
Laboratory thereof. Intel, Intel Xeon Phi, and Intel Xeon are trademarks of
Intel Corporation in the U.S. and/or other countries. Software and workloads
used in performance tests may have been optimized for performance only on
Intel microprocessors. Performance tests, such as SYSmark and MobileMark,
are measured using specific computer systems, components, software, operations
and functions. Any change to any of those factors may cause the results to
vary. You should consult other information and performance tests to assist you
in fully evaluating your contemplated purchases, including the performance of
that product when combined with other products. For more information go to
http://www.intel.com/performance.

Intel’s compilers may or may not optimize to the same degree for non-
Intel microprocessors for optimizations that are not unique to Intel micropro-
cessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets
and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel.
Microprocessor-dependent optimizations in this product are intended for use with
Intel microprocessors. Certain optimizations not specific to Intel microarchitecture
are reserved for Intel microprocessors. Please refer to the applicable product User
and Reference Guides for more information regarding the specific instruction sets
covered by this notice. The benchmark results reported above may need to be
revised as additional testing is conducted. The results depend on the specific
platform configurations and workloads utilized in the testing, and may not be
applicable to any particular users components, computer system or workloads. The
results are not necessarily representative of other benchmarks and other benchmark
results may show greater or lesser impact from mitigations.

[1]

[2]

[3]

[4]

[5]

[6]
[7]

[8]

[9]

[10]

(1]

[12]
[13]
[14]
[15]
[16]

[17]
[18]

[19]

[20]

[21]

[22]

REFERENCES

E. L. William Gropp and A. Skjellum, Using MPI: Portable Parallel
Programming with the Message Passing Interface, third edition ed. The
MIT Press, 2014.

R. Thakur, R. Rabenseifner, and W. Gropp, “Optimization of collective
communication operations in mpich,” International Journal of High
Performance Computing Applications, vol. 19, no. 1, pp. 49-66, 2005.
P. Sack and W. Gropp, “Faster topology-aware collective
algorithms through non-minimal communication,” in Proceedings

of the 17th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, ser. PPoPP ’12. New
York, NY, USA: ACM, 2012, pp. 45-54. [Online]. Available:

http://doi.acm.org/10.1145/2145816.2145823

N. Jain and Y. Sabharwal, “Optimal bucket algorithms for large
mpi collectives on torus interconnects,” in Proceedings of the 24th
ACM International Conference on Supercomputing, ser. ICS ’10.
New York, NY, USA: ACM, 2010, pp. 27-36. [Online]. Available:
http://doi.acm.org/10.1145/1810085.1810093

K. Kandalla, H. Subramoni, A. Vishnu, and D. K. Panda, “Designing
topology-aware collective communication algorithms for large scale
infiniband clusters: Case studies with scatter and gather,” in Parallel
& Distributed Processing, Workshops and Phd Forum (IPDPSW), 2010
IEEE International Symposium on. 1EEE, 2010, pp. 1-8.

“Top500,” https://www.top500.org.

S. Li, T. Hoefler, and M. Snir, “Numa-aware shared-memory collective
communication for mpi,” in Proceedings of the 22Nd International
Symposium on High-performance Parallel and Distributed Computing,
ser. HPDC ’13. New York, NY, USA: ACM, 2013, pp. 85-96.
[Online]. Available: http://doi.acm.org/10.1145/2462902.2462903

V. Tipparaju, J. Nieplocha, and D. Panda, “Fast collective operations
using shared and remote memory access protocols on clusters,” in Pro-
ceedings International Parallel and Distributed Processing Symposium,
April 2003, pp. 10 pp.—.

R. L. Graham and G. Shipman, “Mpi support for multi-core archi-
tectures: Optimized shared memory collectives,” in European Paral-
lel Virtual Machine/Message Passing Interface Users Group Meeting.
Springer, 2008, pp. 130-140.

M. Woodacre, D. Robb, D. Roe, and K. Feind, “The sgi altixtm 3000
global sharedmemory architecture,” Silicon Graphics, Inc.(2003), 2005.
J. M. Hashmi, S. Chakraborty, M. Bayatpour, H. Subramoni, and D. K.
Panda, “Designing efficient shared address space reduction collectives
for multi-/many-cores,” in 2018 IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS), May 2018, pp. 1020-1029.
“Mpich,” http://www.mpich.org.

“Openmp subproject of llvm,” https://openmp.llvm.org.

“Mvapich,” http://mvapich.cse.ohio-state.edu.

“Openmpi,” https://www.open-mpi.org.

K. Raffenetti, A. Amer, L. Oden, C. Archer, W. Bland, H. Fujita,
Y. Guo, T. Janjusic, D. Durnov, M. Blocksome, M. Si, S. Seo,
A. Langer, G. Zheng, M. Takagi, P. Coffman, J. Jose, S. Sur,
A. Sannikov, S. Oblomov, M. Chuvelev, M. Hatanaka, X. Zhao,
P. Fischer, T. Rathnayake, M. Otten, M. Min, and P. Balaji, “Why
is mpi so slow?: Analyzing the fundamental limits in implementing
mpi-3.1,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, ser. SC
’17. New York, NY, USA: ACM, 2017, pp. 62:1-62:12. [Online].
Available: http://doi.acm.org/10.1145/3126908.3126963

“Hwloc,” https://www.open-mpi.org/projects/hwloc/.

“Intel® mpi benchmarks,” https:/software.intel.com/en-us/articles/intel-
mpi-benchmarks.

A. Friedley, T. Hoefler, G. Bronevetsky, A. Lumsdaine, and C.-C.
Ma, “Ownership passing: Efficient distributed memory programming
on multi-core systems,” in Proceedings of the 18th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, ser.
PPoPP *13. New York, NY, USA: ACM, 2013, pp. 177-186. [Online].
Available: http://doi.acm.org/10.1145/2442516.2442534

D. Buntinas, B. Goglin, D. Goodell, G. Mercier, and S. Moreaud,
“Cache-efficient, intranode, large-message mpi communication with
mpich2-nemesis,” in 2009 International Conference on Parallel Pro-
cessing, Sept 2009, pp. 462-469.

T. Ma, G. Bosilca, A. Bouteiller, B. Goglin, J. M. Squyres, and J. J. Don-
garra, “Kernel assisted collective intra-node mpi communication among
multi-core and many-core cpus,” in 2011 International Conference on
Parallel Processing, Sept 2011, pp. 532-541.

J. M. Mellor-Crummey and M. L. Scott, “Algorithms for scalable
synchronization on shared-memory multiprocessors,” ACM Trans.

Comput. Syst., vol. 9, no. 1, pp. 21-65, Feb. 1991. [Online]. Available:
http://doi.acm.org/10.1145/103727.103729

APPENDIX

A. Artifact Description

1) Description:

1) MPICH: MPICH was obtained from https://github.com/pmodels/mpich/commit/
master branch commit id d815dd40d2241ac80 f65d01e826e25e7657 f3clb
MPICH/ch3 was configured without any special configuration flags.
MPICH/ch4 was configured in the same way as our RG framework, which is
described later in this section.

2) MVAPICH: MVAPICH (version 2 — 2.3rcl) was obtained from
http://mvapich.cse.ohio-state.edu/downloads/. It was configured to use psm2: “—
disable-mcast —with-device=ch3:psm —with-psm2-include=/path/to/psm2/include/
—with-psm2-lib=/path/to/psm2/lib64/ CFLAGS=-03 CXXFLAGS=-03".

3) OpenMPI: OpenMPI (version 3.0.0) was obtained from
https://github.com/open-mpi/ompi. It was configured to use psm2 and
libfabric: “—with-libfabric=/path/to/libfabric/ —with-psm2=/path/to/psm2/
LD_FLAGS=-L/path/to/psm2/ -lpsm2”

4) Compiler: We used the gcc compiler (version 8.1.0) for the experiments shown
in this paper.

5) Autotools: autoconf version 2.69, automake version 1.15 and libtool version
2.4.6 was used in the paper for all the MPI implementations.

6) PSM2: opa-psm2 was obtained from https://github.com/intel/opa-psm2.git com-
mit id 09213e7a f8d32¢291d4657 f f4a3279918dele60. The default con-
figuration was used.

7) Libfabric: Libfabric was obtained from https:/github.com/ofiwg/libfabric.git
commit id: 91669aa6681680e28abbb9 fbec5c4be87330132¢. It was con-
figured with psm2 using the option “~enable-psm2=/path/to/psm2/”

8) Operating System: The experiments were done on a machine running SUSE
Linux Enterprise Server 12 SP3, Linux version 4.4.132 — 94.33 — de fault.

9) IMB Benchmarks: Intel MPI Benchmarks were obtained from
https://github.com/intel/mpi-benchmarks. ~ Version 2018 wupdate 1 was
used. The same configuration was used for each of the MPI implementations.
The experiments were run with parameters “-iter 5000 -msglog 22 -sync 1
-imb_barrier 1 -root_shift 0”. IMB benchmarks use a custom barrier (not
MPI_Barrier()) across invocations of the collective. This setup guarantees that
the same barrier is executed by all the evaluated MPI implementations. If the
benchmark were to call MPI_Barrier, the barrier would be different based on
the MPI implementation. The custom barrier in IMB is based on recursive
doubling, providing a tighter synchronization than a tree-based implementation,
for instance. The running time of this custom barrier is not measured.

10) Publicly available: The data shown in this paper can be made publicly available if
needed. The goal is to make our framework publicly available as well by merging
it with the pmodels/mpich repository at github.com.

2) Installation: Command to generate the mpich library. ./configure
—prefix=/path/to/install ’—disable-perftest’ ’—with-libfabric=/path/to/libfabric/’
’—disable-ft-tests’ ’—with-fwrapname=mpigf’ ’—with-filesystem=ufs+nfs’ ’—enable-
timer-type=linux86_cycle’ ’—enable-romio’ ’—with-mpe=no’ ’—with-smpcoll=yes’
’—with-assert-level=0" '—enable-shared’ "—enable-static’ "—enable-error-messages=yes’ —
enable-visibility’ ’—enable-large-tests’ '—enable-strict’ '—enable-g=none’ ’—enable-error-
checking=no’ ’—enable-fast=all,03’ ’—disable-debuginfo’ *—with-device=ch4:ofi:sockets’
’—enable-handle-allocation=default’ ’—enable-threads=multiple’ ’—without-valgrind’
’—enable-timing=none’ ’—enable-ch4-shm=exclusive:posix’ ’—enable-thread-cs=global’
’—with-ch4-netmod-ofi-args=" 'MPICHLIB_CFLAGS=-03 -Wall -ggdb -ggdb -Wall
-mtune=generic -std=gnu99 -DMPIDI_OFI_FORCE_AM -I/path/to/numactl/include/
-L/path/to/numactl/lib/ -lnuma’ ’MPICHLIB_CXXFLAGS=-O3 -Wall -ggdb -

ggdb -Wall -mtune=generic -I/path/to/numactl/include/ -L/path/to/numactl/lib/
-lnuma’ "MPICHLIB_FCFLAGS=-03 -Wall -ggdb -ggdb -Wall -mtune=generic’
'MPICHLIB_F77FLAGS=-03 -Wall -ggdb -ggdb -Wall -mtune=generic’
"MPICHLIB_LDFLAGS=-0O3 -L/ust/lib64 -mtune=generic’ 'CC=gcc’ 'LDFLAGS=
-Wl,-z,muldefs -W1,-z,now’ *CXX=g++" 'FC=gfortran’ "F77=gfortran’
B. Tuning MPI implementations

1) MVAPICH: We tuned MVAPICH by trying different values for the

parameters listed in the wuser guide: MV2_SHMEM_BCAST_MSG,
MV2_SHMEM_REDUCE_MSG, MV2_SHMEM_ALLREDUCE_MSG,
MV2_BCAST_2LEVEL_MSG, MV2_REDUCE_2LEVEL_MSG,
MV2_ALLREDUCE_2LEVEL_MSG. These parameters correspond to the
thresholds to choose between the short size message, the medium size
message, and the long size message algorithms. In our experiments, we
ran all the message sizes with all the algorithms and found that the default
were the best. We also tried different values (2,4,8,16,32,40) for
MV2_KNOMIAL_INTRA_NODE_FACTOR, but found that the default value (4)
was the best.

2) OpenMPIL: To tune OpenMPI, we determined the relevant parameters
from the ompi_info utility. For MPI_Reduce(), the relevant parameters
were coll_tuned_reduce_algorithm, coll_tuned_reduce_algorithm_tree_fanout,
and coll_tuned_reduce_algorithm_chain_fanout. coll_tuned_reduce_algorithm se-
lects the algorithm to be used for reduction and ranges from O to
coll_tuned_reduce_algorithm_count. The default algorithm is set to O, which uses

3

=

a dynamic algorithm. The other parameters are used to control the tree or chain
fanout degree for different algorithms. Both are set to 4 by default. We found
that the default configuration performed the best for both MPI_Reduce() and
MPI_Bcast().

MPICH/ch3: MPICH has several configuration variables to choose the algorithm
to use based on the message size. We tuned MPICH/ch3 and MPICH/ch4 sepa-
rately by running all the different algorithms for all the message sizes and chose
the configuration that provided the best performance. For MPI_Bcast() we ran the
search for single node and for the 32 node experiments, since the best algorithm
for single node had poor performance when running 32 node experiments.

o MPI_Bcast(): For single node runs, we set
MPIR_CVAR_BCAST_SHORT_MSG_SIZE to 64K B and
MPIR_CVAR_BCAST_LONG_MSG_SIZE to 2MB. For 32 nodes
run, we set MPIR_CVAR_BCAST_SHORT_MSG_SIZE to 5MB and
MPIR_CVAR_BCAST_LONG_MSG_SIZE to 5M B.

o MPI_Reduce(): For single node run, we set
MPIR_CVAR_REDUCE_SHORT_MSG to 4K B.

e MPI_Allreduce(): For single as well as 32 nodes run, we set
MPIR_CVAR_ALLREDUCE_SHORT_MSG to 4K B.

4) MPICH/ch4

o MPI_Bcast(): For single node runs, we set
MPIR_CVAR_BCAST_SHORT_MSG_SIZE to 128K B and
MPIR_CVAR_BCAST_LONG_MSG_SIZE to 1MB. For 32 nodes
run, we set MPIR_CVAR_BCAST_SHORT MSG_SIZE to 5MB and
MPIR_CVAR_BCAST_LONG_MSG_SIZE to 5M B.

o MPI_Reduce(): For single node run, we set
MPIR_CVAR_REDUCE_SHORT_MSG to 8 K B.

e MPI_Allreduce(): For single as well as 32 nodes run, we set
MPIR_CVAR_ALLREDUCE_SHORT_MSG to 8K B.

