PRISM: Predicting Resilience of GPU Applications
Using Statistical Methods

Charu Kalra*, Fritz Previlon*, Xiangyu Li*, Norman RubinT, and David Kaeli*

*Northeastern University, Boston, MA, TNVIDIA, USA
{ckalra, previlon, xili, kaeli} @ece.neu.edu, {nrubin}@nvidia.com

Abstract—As Graphics Processing Units (GPUs) become more
pervasive in High Performance Computing (HPC) and safety-
critical domains, ensuring that GPU applications can be protected
from data corruption grows in importance. Despite prior efforts
to mitigate errors, we still lack a clear understanding of how
resilient these applications are in the presence of transient faults.
Due to the random nature of these faults, predicting whether they
will alter program output is a challenging problem. In this paper,
we build a framework named PRISM which uses a systematic
approach to predict failures in GPU programs. PRISM extracts
micro-architecture agnostic features to characterize program
resiliency, which serve as predictors to drive our statistical
model. PRISM enables us to predict failures in applications
without running exhaustive fault injection campaigns, thereby
reducing the error estimation effort. PRISM can also be used
to gain insight into potential architectural support required to
improve the reliability of GPU applications.

I. INTRODUCTION

Due to their massively parallel compute capability, Graph-
ics Processing Units (GPUs) have become ubiquitous in
High Performance Computing (HPC). HPC workloads, such
as scientific and engineering applications, typically demand
high precision and correctness. GPUs are also being used
in autonomous vehicles to perform a range of tasks such
as pedestrian detection and avoidance, vehicle control, and
visualization [3]. As the trends toward exascale computing and
autonomous vehicles continue to grow, the ability of these
technologies to deliver heavily depends on the reliability of
hardware and software components [31], especially in safety-
critical applications.

Most GPU architectures today employ a Single Instruction
Multiple Data (SIMD) model. Many state-of-the-art techniques
such as Error Correction Codes (ECC), Redundant Multi-
threading (RMT), and other techniques have been used to
improve the reliability of various hardware structures on the
GPU [20], [35], [50]. However, these solutions come with
significant overhead in terms of area, power, and performance.
For example, Figure 1 illustrates the performance overhead
of three variants of compiler-based RMT on a GPU [50].
The three variants differ in terms of the level of fault cov-
erage (i.e., the Sphere of Replication [40]) provided on the
device. Intra-Group-LDS RMT protects the SIMD functional
units and Vector General Purpose Registers (GPRs), whereas
Intra-Group+LDS, in addition, protects the Local Data Store
(LDS). Inter-Group RMT has the largest coverage and pro-
tects SIMD units, Vector GPRs, Scalar GPRs, Scalar Unit,
LDS, Instruction Fetch (IF), and Instruction Decode (ID). But
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Fig. 1: Slowdown caused by Intra-Group+LDS, Intra-Group-
LDS, and Inter-Group RMT, over baseline, without RMT [50].
Slowdown is calculated by normalizing the runtime of the RMT
variant of the kernel by its original runtime.

clearly, Inter-Group RMT experiences a significant increase in
execution time, as compared to execution using Intra-Group
RMT. Despite these attempts to protect different hardware
structures on GPUs, we still lack a clear understanding of
how vulnerable they are in the presence of transient faults, and
whether we truly need to employ such expensive solutions to
protect them. Moreover, given the random nature of transient
faults, predicting whether they will alter the program’s output
is also a challenging question.

To tackle these challenges, we build a framework
named PRISM, which uses a systematic approach to predict
errors in GPU programs. PRISM uses SASSIFI, a binary
instrumentation tool, to generate dynamic execution and error
profiles of the applications [41]. Our framework extracts
micro-architecture agnostic features to characterize program
resiliency. These features undergo a dimensionality reduction
process in order to identify the program features that have
the highest impact on program correctness. The selected
features serve as predictors to drive our statistical model. Our
model is trained using a diverse set of CUDA applications
from a variety of application domains. PRISM provides many
benefits, including:

« PRISM enables us to predict error outcomes in appli-
cations without running exhaustive fault injection cam-
paigns on a GPU, thereby reducing the error estimation
effort. The application is only required to be executed
once, in order to capture its dynamic execution profile.

o PRISM can also be used to gain insight into potential
hardware and software support required to improve the



reliability of GPU applications. We can then design
more cost-effective solutions to mitigate faults. As a
result, PRISM can be deployed as an intelligent module
that generates the error profile of an application before it
is scheduled for execution on the GPU. Based on the error
profile, the system can either recompile the application by
activating optimizations such as selective instruction du-
plication; or enable ECC for specific hardware structures,
thereby improving performance and power efficiency.

o Finally, programmers can leverage this framework to
write more robust code. PRISM can guide programmers
to write or choose more error-resilient algorithms. They
can also insert informed ‘checks’ in their programs to
ensure correct execution or graceful exits. PRISM will
allow programmers to better understand how their coding
choices translate into more reliable code.

To our knowledge, this is the first work to predict resiliency
of GPU applications using statistical methods. The key con-
tributions of this paper and the findings of our study are:

o We add new capability to the SASSIFI tool to inject faults
randomly in any destination register during application
execution. We use this feature to generate error profiles
of the applications.

o We implement an analysis pass in the profiling phase of
SASSIFI to identify scalar and vector instructions. We
characterize the GPU workloads based on the hardware
resources they stress during execution to accurately cap-
ture their behavior. We use these parameters as our feature
set.

o We identify interaction between features, and perform
feature selection based on their contributions to program
correctness. We use this reduced feature set to drive our
model.

o A key property of PRISM is its flexibility that allows
users to plug in their choice of regression model. In this
paper, we explore two prediction models - one based
on Linear Regression and the other based on similarity
analysis.

o Using Linear regression, PRISM is able to predict
Masked and Unmasked errors with an accuracy of 90%
on our test applications. We also identify that Floating
Point instructions contribute significantly towards mask-
ing, whereas Integer Arithmetic and a set of Scalar
Instructions are the biggest contributors to Detected and
Unrecoverable Errors (DUEs). We also provide insights
into potential architectural modifications and prospective
research that could be performed as a result of our
analysis.

The remainder of this paper is organized as follows. In
Section II, we describe the fault models used in our work and
some of the fundamentals of NVIDIA’s Kepler GPU archi-
tecture. In Section III, we describe the PRISM framework in
detail and report the accuracy of both models. We then review
prior work done to estimate the reliability of GPU programs
in Section V and present our conclusions in Section VI.
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Fig. 2: Overview of NVIDIA Kepler GK110 architecture.
II. BACKGROUND

A. Fault Modes

Reducing transistor sizes and operating voltage levels make
circuits more susceptible to transient and permanent faults.
Manufacturing defects, thermal stress, and circuit aging are
just a few of the factors that cause permanent faults on a de-
vice. Alternatively, transient faults are caused by temperature
and voltage variations, electromagnetic interference, crosstalk,
and high energy particles in the atmosphere. An alpha or
neutron particle strike may be sufficient to invert the state
of a logic gate or memory cell, and may drive a wrong value
temporarily [33]. Since these faults are temporary, they do not
reoccur when the operation is re-executed in the future. These
temporary upsets in a transistor’s state are called single-event
upsets (SEUs) or, if more than one transistor is affected, single-
event multi-bit upsets (SEMUs). Although a fault causes an
undesired change of state in the hardware, it may or may not
cause an error in the outcome of the program. For instance,
if the location that was impacted by a transient fault is never
read by the program, or was over-written by a subsequent
operation before the faulty value was read, the fault will not
manifest into an error. The fault may also be corrected by
a redundancy mechanism, such as ECC, before it propagates
through the application and produces an undesirable output.
When a fault does not manifest into an error, it is said to be
Masked.

Other possible outcome categories are Detected and Unre-
coverable Errors (DUESs) or Silent Data Corruptions (SDCs).
DUEs occur when a system is able to detect an error and
was unable to recover from it. This could happen when a
fault causes the program to take an incorrect execution path
which results in a system hang, crash, or other unexpected
behavior. For instance, a fault may alter an address and cause
the user program to access an unallocated memory location.
SDCs occur when a faulty bit is used by the program, and
which results in the wrong output. Error rates in this domain
are commonly measured using Failures-in-Time or FIT rate,
which is the expected number of failures in 10° hours of
operation.

B. GPU architecture

Next, we describe the NVIDIA Kepler architecture, given
that we have chosen it to serve as our evaluation platform [38].
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Fig. 3: The PRISM Framework. The ovals represent the processing nodes/phases, whereas the rectangles represent input/output

to/from the processing nodes.

Streaming Multiprocessors (SMX) are the fundamental units
of computation on NVIDIA GPU architectures, as shown in
Figure 2. The smallest unit of execution is a thread, which
executes on one CUDA core of an SMX on the device. There
are 192 CUDA cores per SMX on the Kepler architecture.
Each thread has access to 255 registers. Each thread can only
access its own private register file, but register values can be
shared with other threads via special instructions. Each CUDA
core is equipped with a floating point and integer arithmetic
and logic unit (ALU). The SMX schedules work in groups
of 32 parallel threads, called warps. Threads within a warp
execute in a Single Instruction Multiple Data (SIMD) fashion.
Each SMX has four warp schedulers and eight instruction
dispatchers, which allows four warps and eight independent
instructions (two per warp) to be issued and executed concur-
rently. An instruction is said to be scalar if all active threads
in a warp operate on the same data, otherwise it is vector.

Each SMX has 64 KB of on-chip memory that can be
configured as 48 KB shared memory with 16KB of L1 cache,
or 32 KB of shared memory with 32 KB of L1 cache, or a
16KB/48KB split between shared memory and L1 cache. In
addition to L1 cache, Kepler has a 48 KB cache for read-
only data, and an L2 cache which serves as the primary
point of data unification between the SMX units. Kepler’s
register file, shared memory, L1 cache, L2 cache, and DRAM
memory are protected by a Single-Error Correct Double-
Error Detect (SECDED) ECC code, whereas, the Read-Only
Data Cache supports single-error correction through a parity
check. Programs that run on NVIDIA GPUs are written in
the CUDA C/C++ language and compiled using NVIDIA’s
LLVM-based CUDA Compiler, nvce [36]. We run our fault
injection campaign at the SASS level, which is a low-level
assembly language for NVIDIA GPUs.

C. Statistical Terminology

We next review the statistical terminology that we will use
throughout this paper [25].

o The term sample refers to a single, independent unit of
data. In our study, each CUDA application is a sample.

o The training set consists of samples used to develop a
model, while the test set contains samples used solely
for evaluating the performance of the model. It must be
noted that training and test sets are mutually exclusive.

o The predictors are the independent variables that are
used as input for the prediction equation. In our study,
predictors are the program features that we derive through
dynamic profiling.
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Fig. 4: Demonstration of 5-fold Cross Validation (CV) technique.
CV is used to prevent the problem of overfitting.

e Outcome refers to the outcome event that is being pre-
dicted. Our focus in this paper is to predict resiliency of
GPU applications, therefore our outcomes are categorized
into Masked, DUE, and SDC.

o Model Training or Parameter Estimation refers to the
process of using data to determine the values of model
equation.

o Cross Validation is a technique to generalize the model to
an independent data set. Training and testing the model
on the same data will give it a perfect score, but will
perform poorly on yet unforeseen data. This situation is
called overfitting. The solution to this problem is to use
cross-validation (CV). We use a k-fold CV approach, in
which the training set is divided into k smaller subsets
or folds, as shown in Figure 4. The model is trained on
k—1 of the folds and tested on the remaining part of
the training data. This process is repeated for each of the
k-folds. The final performance is measured by taking the
average of the values computed in the loop. In our work,
we use 5-fold cross validation to prevent overfitting.

III. PRISM FRAMEWORK

PRISM framework includes four different phases, as shown
in Figure 3. In this section, we will describe each phase in
more detail. The first step is to collect samples required for our
study. We have selected a diverse set of regular and irregular
applications from a variety of domains, as shown in Table I.
These workloads have been taken from the CUDA SDK,
Lonestar, NUPAR, Parboil, and Rodinia benchmark suites [9],
[26], [37], [46], [49]. All of the applications that we were able
to support with the SASSIFI tool were included in this study.
We modified the source code for several applications because
they were tuned for performance benchmarking. For example:
some applications had a warm-up pre-execution of the kernel
to avoid cold start misses. Any error that occurs in the warm-
up kernel will never be captured as the output is usually



Domain

Application

Linear Algebra

Vector Addition (vadd), Single Precision Floating General Matrix Multiplication (sgemm), Matrix Transpose,
Scalar Product (sProd), LU Decomposition (lud), Gaussian Elimination, Scan

Graph Traversal

Breadth-First Search (bfs), Survey Propagation (sp), Pathfinder, Minimum Spanning Tree (mst)

Image Processing

Magnetic Resonance Imaging - Gridding (mri-g), Saturating Histogram (histo), MRI-Q,
Sum of Absolute Differences (sad), Leukocyte, HeartWall, Speckle Reducing Anisotropic Diffusion (srad)

Physics Simulation Hotspot

Thermodynamics Stencil

Fluid and Molecular Dynamics

Lattice-Boltzmann Method (Ibm), Computational Fluid Dynamics (cfd), LavaMD

Signal Processing

Infinite Impulse Response (IIR), Discrete Walsh Transform 1D & 2D (dwt1D&2D), Fast Walsh Transform (fwt)

Financial Computation

BlackScholes (blkSch), Binomial Options (binOpt), SobolQRNG (SQRNG)

Electromagnetics

Finite-difference Time-domain (FDTD-3D)

Data reduction and Sorting

Merge Sort (mSort), Radix Sort (rSort), Hyrbid Sort (hSort), Reduction

Data Mining and Pattern Recognition

Kmeans, Nearest Neighbor (nn), Back-propagation (backprop)

Bioinformatics Needleman-Wunsch (nw)

Astrophysics

Barnes Hut (bh), Two Point Angular Correlation Function (tpacf)

TABLE I: Applications used in our training and test samples, along with their domains.
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over-written by the actual kernel execution. We, therefore,
eliminated all warm-up kernel executions. For checking errors,
we compared the output of the kernel when the fault is
injected with the golden output (without any fault injection).
For precision-based applications, we used the default values
of the L1 and L2-Norm provided in the benchmark, which
were typically around le-6. We instrument these application
binaries with the SASSIFI handlers, which we will describe in
the next section. Our study has been done on a live NVIDIA
Kepler K20 GPU.

A. SASSIFI

The SASSIFI tool is based on SASSI, which is a dynamic
instrumentation tool for GPUs, similar to the Pin tool for
CPUs [32], [41]. SASSI instruments the SASS code at run-
time by linking user-written instrumentation handlers with the
application binary [45]. SASSI instrumentation handlers are
written in CUDA C/C++ and can be inserted before, after, or
both before and after an instruction executes.

SASSIFI mainly comprises three stages, as shown in Fig-
ure 5. In the first stage (Profiling Stage), the profile handler
profiles the applications and generates a population count
of different instruction groups (IG). It is important to note
that this handler is inserted before the instruction executes,
which allows us to scan the values of its source registers (the
importance of this is described in the next section).

This profiling information is processed by the Seed Genera-
tor that generates a statistically significant number of injection
seeds using a uniform random distribution. A Seed specifies
the location where the fault will be injected. It is a combination
of kernel ID, kernel invocation ID, and dynamic instruction
ID of the specified instruction type. Each seed is equivalent to

one fault. To generate the seeds, the Seed Generator requires
other information from the user, such as injection mode, bit flip
model (BFM), Instruction Group ID (IGID), and the number of
injections. Our selection of these parameters uses the following
process:

« Injection mode:
SASSIFI currently supports three injection modes - Reg-
ister File (RF), Instruction Output Address (IOA), and
Instruction Output Value (IOV). RF mode supports the
injection of faults randomly across all registers that are
used by the program. IOA mode supports error injection
into the register indices and store addresses. Lastly, IOV
support injections into the destination register of an
instruction after it has executed. In our study, we use
IOV mode to inject errors in the instructions.

« Instruction Groups:
SASSIFI identifies different types of instructions and
allows the user to select them in order to study how the
errors injected propagate to an application output. Some
examples of Instruction Groups include:
GPR - Instructions that write to a destination register,
ST - Store Instructions,
CC - Instructions that write to a condition code,
PR - Instructions that write to Predicate Registers, etc. We
added capability to SASSIFI to inject a fault randomly
in any kind of destination register (GPR, Predicate, or
CC). Before this modification, a user could select only
one of the three kinds of destination register during a
fault injection run.

« Bit Flip Model (BFM):
For IOV mode, we use Single Bit Flip mode in which
one bit in one register in one thread is flipped.

« Number of Injections:
Here, we specify the number of unique seeds that we
would like to generate for our fault injection campaign.

Finally, in the Injector Stage, we perform error injection
based on the seeds generated by the previous stage. The
injector keeps track of the kernel ID, kernel invocation ID, and
Instruction Group ID, and when their value matches with the
seed, a fault is injected. We generate 1000 uniformly random




seeds while injecting one seed per run. The results have an
error margin of 3.1%, with a 95% confidence level [28]. Unlike
the profiler handler, the injector handler is inserted after the
instruction executes and flips a bit in the destination register,
implying that a fault has occurred in the datapath of the in-
struction. Since we only inject faults in the instruction outputs,
our analysis takes into account only the live architectural state.
Once a fault injection is done, the outcome of the program can
fall into one of the three categories - Masked, DUE, or SDC,
as described in Section II-A. We perform our fault injection
campaign on a real NVIDIA Kepler K20 GPU.

B. Feature Extraction

Once injections are run on all applications, SASSIFI gen-
erates the instruction and error profile for each application. In
this section, we describe the type of instructions that we use
to characterize application behavior. These instructions allow
us to capture the overall workload stress on the underlying
microarchitecture.

o Data Movement Instructions: are responsible for moving

data between registers, such as MOV, SHFL, etc.

o Integer Arithmetic Instructions: perform arithmetic in-

structions on integer data type.

e Floating Point Instructions: perform computation on

floating point data types.

e Logic Instructions: comprised of logical operations, such

as AND, OR, and shift operations.

e Load Instructions: load data from global, shared, con-

stant, and texture memory.

e Store Instructions: store data into the global, shared or

local memory.

o Control Flow instructions: branch and jump instructions

that determine the control flow of the program.

e Predicate Instructions: for example ISETP and FSETP,

instructions that write to predicate registers.

o Kernel Register Usage: the number of general purpose

registers used by the kernel.

As we mentioned earlier, most GPU architectures today
employ a Single Instruction Multiple Data (SIMD) model.
Prior work has shown that a significant portion of SIMD
instructions demonstrate scalar characteristics (i.e., all the
active threads operate on the same data) [10], [27]. In other
words, an instruction is said to be scalar if all active threads in
a warp operate on the same input data, otherwise it is vector.

Based on this differentiation, we implement an analysis
pass in the SASSIFI profiler to identify dynamically scalar
SASS instructions. To achieve this, we check the value of
all source operands and the operation performed on those
operands (opcode) for every SASS instruction. This check
must be done before every instruction because their values
might change after the instruction has executed.

As shown in Algorithm 1, we first select a leader thread by
using two CUDA intrinsic functions - __ffs() and __ballot().
Threads within a warp are also called lanes; the simplest way
to elect a leader is to use the active lane with the lowest
number. ballot() returns the active mask (1 for an active lane

Algorithm 1 Pseudo-code for detecting scalar instructions in
the kernel. All threads execute this code concurrently before
executing each SASS instruction.

1: Input: SASS instruction

2: Output: Instruction Scalar or Vector

3: int threadldxInWarp = get_laneid();

4: int firstActiveThread = (__ffs(__ballot(1))-1);

5: for all Source Registers R; in an instruction do

6

7

8

> leader

GPRRegValue regVal = GetRegValue(R;);
/] shuffle the leader’s value across all threads
int leaderValue = __shfl(regVal.aslnt, firstActiveThread);

9: /] true when all threads’ value equal to leaderValue
10: int allSame = (all(regVal.asInt == leaderValue) != 0);
11: Il warp leader writes the results
12: if threadldxInWarp == firstActiveThread then
13: is_scalar &= allSame;

14: end if
15: end for

16: if is_scalar == 1 then

17: atomicAdd(&CountersInstType[SCALAR], 1)
18: else

19: atomicAdd(&CountersInstType[VECTOR], 1)
20: end if

and O for an inactive lane). ffs() returns the 1-based index
of the lowest set bit in the active mask. Subtracting 1 gives
us a 0-based index of the lowest active lane id, which is our
leader thread. Once we identify the leader, all threads first
scan one source register used by the SASS instruction. The
value of this source register is shuffled across all threads in
the warp. The SHFL instruction allows a thread to read a
register from another thread in the same warp, without using
shared memory. If the value of the source register is the same
across all threads in the warp, then the register is marked
as scalar. This process is repeated for all source registers. If
all source registers used by the instruction are found to be
scalar, the leader thread marks the instruction as scalar (S <
S N S). Even if one of the operands is found to be vector, an
instruction is marked as vector (V <~ VN 'S,or V < VN V)L
Atomic operations are, by default, marked as vector, whereas
unconditional control flow instructions are marked as scalar.
This is done for all dynamic SASS instructions in the program.
We record scalar and vector instances of every opcode using
appropriate counters.

If there are multiple executions of either the same kernel
or different kernels within the same application, the values of
dynamic scalar, vector, and total instructions are averaged out
across the kernel runs. Given the nature of GPU applications,
one of the challenges with multiple executions is that an
instruction which is scalar during one instance may not be
scalar in the next instance. Our algorithm is able to capture
this dynamic behavior of every instruction.

Next, we derive metrics to quantify the kernel characteristics
using the instruction mix and their scalar/vector instances.
Metrics such as Integer Arithmetic Intensity, Floating Point
Intensity, and Logic Intensity give us an insight into the
usage of different functional units on the GPU. Control Flow
Intensity, as the name suggests, allows us to capture the control

s and V represent Scalar and Vector operands, respectively.



[ Metric [ Kind [

Synopsis [ Example of opcodes included [2] |

Control Flow Intensity Scalar

Total number of dynamic Control Flow Instructions/N

BRA, JMP, BRX, JCAL

Data Movement Intensity Scalar, Vector

Total number of dynamic Data Movement Instructions/N

MOV, SHEL, PRMT

Floating Point Intensity Scalar, Vector

Total number of dynamic Floating Point Instructions/N

FADD, FMUL, FMAD

Integer Arithmetic Intensity | Scalar, Vector

Total number of dynamic Integer Arithmetic Instructions/N

IADD, IMUL, MAD

Logic Intensity Scalar, Vector

Total number of dynamic Logic Instructions/N

LOP, SHL, SHR

Load Intensity Scalar, Vector

Total number of dynamic Load Instructions/N

LD, LDS, LDC, LDG

Predicate Intensity Scalar, Vector

Total number of dynamic Predicate Instructions/N

ISETP, FSETP, PSETP

Store Intensity Scalar, Vector

Total number of dynamic Store Instructions/N

ST, STS, STL

Register Usage -

Number of General Purpose Registers used by the kernel

All opcodes

Scalar Intensity Scalar Total number of dynamic scalar instructions/N Scalar instances of all opcodes
Vector Intensity Vector Total number of dynamic vector instructions/N Vector Instances of all opcodes
[ Total features [ 18 [ [ l

TABLE II: Description of metrics derived using kernel characteristics. We use these metrics as features in our model. N = Total

number of dynamic instructions executed by the application.

flow graph, which plays an important role in determining
how an error propagates through the kernel. Information about
thread level resource utilization is retrieved using the kernel
register usage metric. Memory type based classification is
captured using load and store intensities. These metrics are
summarized in Table II.

C. Feature Selection

In this phase, we perform feature selection, with the goal of
selecting a subset of relevant features without incurring much
loss in information. Feature selection simplifies our model and
makes it easier to comprehend by researchers/users. It also
reduces the training and data acquisition time. Fewer features
increase the generality of the model and prevent overfitting.
There are different ways in which a user can minimize the
number of features. One way is to eliminate features that are
of little or no interest to the user. For example, if the user does
not wish to distinguish between scalar and vector instances in
their study, they can combine Scalar and Vector Intensities
for all features. Hence, Floating Point Intensity will now be
the sum of Scalar Floating Point Intensity and Vector Floating
Point Intensity, Integer Arithmetic Intensity will be the sum
of Scalar Integer intensity and Vector Integer Intensity, and so
forth.

In this paper, we use a forward selection wrapper method
to select a subset of relevant features [24]. This method
begins with no features in the model, and on every iteration,
adds the feature which best improves the performance of the
model. This continues until adding a new feature no longer
improves the performance of the model. The advantage of
using a wrapper method is that it is able to detect possible
interaction between features during feature selection. Other
options include filter methods, such as Normalized Mutual
Information (NMI) and Pearson Correlation Coefficient [23],
[54]. Although filter methods are computationally less inten-
sive than wrappers, they have lower prediction performance
than wrappers because they are not tuned for any specific
model [56]. Latent factor based dimensionality reduction tech-
niques, such as Factor Analysis (FA) and Principal Component
Analysis (PCA), and supervised techniques, such as Partial
Least Square (PLS), could also be used. A caveat with using
FA or PCA is that they do not take into account the labels/error

[ Outcome [ Ridge (Coefficients) | K-Nearest Neighbor
SDC Vector Predicate (-0.59) Vector Predicate
Scalar Float (-0.27) Vector Integer
Register Usage (-0.24) Register Usage
Vector Logic
DUE Vector Float (-0.42) Vector Float
Scalar Float (-0.28) Vector Store
Scalar Logic (0.26) Scalar Logic
Scalar Store (0.28) Vector Predicate
Masked Vector Float (0.47) Vector Float, Scalar Store,
Scalar Float (0.43) Scalar Load, Vector Predicate,
Vector Predicate (0.49) Vector Integer, Vector Load,
Scalar Float, Scalar Move

TABLE III: Features selected using the forward selection wrap-
per method for both Ridge Linear Regression and K-NN. The
coefficient of the feature is provided in parentheses for the Ridge
Regression model. K-NN is a non-parametric model, hence does
not require coefficients.

outcomes during feature reduction. They generate a single
set of features for all outcomes, which might work well in
predicting one kind of outcome, but not for another. Since
we have three possible outcomes, a separate feature set for
each outcome might provide better accuracy. We describe
the selected features after introducing the models in the next
section.

D. Error Prediction

Statistical Regression Analysis is a set of techniques to
estimate the relationship between a single dependent variable
and multiple independent variables. In this paper, we explore
two models: Ridge Linear Regression and K-Nearest Neigh-
bor [11], [18]. As mentioned earlier, the wrapper method for
feature selection is tuned for a particular model. Therefore, the
set of features selected for Linear Regression and K-NN are
different. Out of the 50 CUDA samples studied, we randomly
select 43 samples (85%) for training and 7 samples (15%) for
testing our model. The wrapper executes only on the training
set and uses 5-fold cross-validation to select features having
the highest correlation with the error outcomes. We summarize
the features for both models in Table III.

1) Model 1: Linear Regression: Among the various forms
of regression analysis, Linear Regression is most commonly
used due to its well-behaved and well-studied properties [4].
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Fig. 6: Observed and Predicted values of Masked, DUE, and SDC outcomes using the Ridge Regression Model. The accuracy of
prediction for Masked errors is 90%. For DUEs, with the exception of #pacf, our predicted values are close to the observed values.

The model can be stated as follows:
y=by+bix1+byx+..... + bix; +e; (D)

The terms x; are the independent variables. Their changing
values cause the dependent variable, y, to vary as a response.
The terms b; are the parameters or regression coefficients. e;
represents error, which is derived by comparing the predicted
and observed values of y. This model is linear because no
parameter appears as an exponent or is multiplied/divided by
another parameter. The goal of the regression is to accurately
predict the values of the coefficients, b;, from the observed
measurements of x; and y. Given that the focus in this
paper has been GPU error modeling, y then represents error
outcomes, and x; are the kernel characteristics such as Integer
Arithmetic Intensity, Register Usage, etc. Once a model and
its coefficients are proposed, we use Normalized Root Mean
Square Error (NRMSE), a commonly-used statistical metric,
for measuring the quality of the model [42].

Next, we apply Ridge Regression, a type of linear
regression model, on our test samples using the selected
features, and report our results in Figure 6. For Masked, we
observe that Ridge is able to predict masking with a NRMSE
as low as 10%, which means its prediction accuracy is 90%.
The coefficients for Scalar Float, Vector Predicate, and Vector
Float were found to be 0.43, 0.49, and 0.47, respectively. In
the case of DUEs, the overall predicted values are close to
the observed values, except for fpacf, which is an outlier.
The coefficients for DUEs were found to be -0.42, -0.28,
0.26 and 0.285 for Vector Float, Scalar Float, Scalar Logic,
Scalar Store, respectively. For SDCs, the model seems to
be reasonably accurate for a few applications, but has a
couple of outliers such as /IR and cfd. The coefficients for
the predictors were found to be -0.59, -0.27, -0.24 for Vector
Predicate, Scalar Float, and Register Usage, respectively.
We summarize the key takeaways from this information as
follows:

Key takeaways:

o In Masked, the coefficients for the three selected features
were found to be quite uniform. This means all three
features contribute almost equally towards Masking. Note

that two out of three features are floating-point inten-
sive. This suggests that floating point intensity plays a
significant role in masking errors. The level of masking
may vary, depending on the value of the L1 or L2 Norm
selected by the user in the application. For floating point
intensive applications, the L1 or L2 Norm could be added
as an additional feature, or a sensitivity analysis could be
done by varying their precision, but this is beyond the
scope of this work.

e« For DUEs, three out of four features were identified
as Scalar, which means Scalar instructions seem to be
significant contributors to DUEs. Also, the coefficients for
floating point features were found to be negative. Lower
floating point intensity could conversely imply higher
integer intensity. Hence, it could be said that faults in
integer operations are more likely to result in a DUE.

« Moreover, from our experimentation, we observed that
most DUEs are generated when an instruction tries to
access an illegal memory location. This happens when the
register used for holding or computing a memory address
gets corrupted. Therefore, identifying and replicating
instructions that feed into load/store instructions could
assist in detecting sources of DUEs. These instructions
can be identified using static data-flow analysis, such as
reaching definitions, to create use-def chains [5].

o A linear model for SDCs does not perform as well as it
does for predicting Masked errors. A possible explanation
for this could be that a linear relationship is insufficient to
predict SDCs, and there could be some underlying non-
linearity that must be exploited. However, if the user is
interested in predicting the number of unmasked errors
(SDC+DUE) for his/her application, they could use (1000
- # of predicted Masked errors) as an indirect way to
estimate Unmasked errors, since a linear model predicts
masking quite accurately.

2) Model 2: K-Nearest Neighbor: Next, we apply a popular
non-parametric model called K-Nearest Neighbor (K-NN).
Our hypothesis is that similar applications might show similar
resiliency behavior. The rationale behind choosing K-NN to
explore similarity between applications is that it does not make
any assumption about the underlying distribution of the data,
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Fig. 8: Demonstration of K-Nearest Neighbor (K = 3).

which makes it very robust.

Using K-NN, an application’s resilience can be predicted
by using its K closest neighbors. Here, ‘K’ represents the
number of neighbors (here, training samples) closest to a
test sample that will be used to make a prediction for that
test sample. The closeness between the test and training
sample is measured by using Euclidean distance metric. To
illustrate this model, all samples correspond to points in
an n-dimensional feature space, as shown in Figure 8. For
simplicity, we only use two dimensions/features, X; and X>.
To make a prediction for a test sample, we first locate its three
nearest training samples (i.e., K=3). We predict the outcome
for the test sample by using an average of the values of its
three nearest neighbors. The value of K is chosen through
cross validation. Figure 9 provides a visual representation of
our intuition. We use Cosine similarity on the feature set
to generate this application similarity heatmap. In the figure,
shades of red show similarity between applications, whereas
shades of blue represent dissimilarity. We try to leverage this
similarity information in our methodology.

We use the features selected by the forward selection
wrapper for K-NN to compare similarity between applications.
The value of K was found to be 4, 3, and 2 for Masked, DUEs
and SDCs, respectively, through cross-validation. Figure 7
shows the accuracy of K-NN Model for all three outcomes.
One can notice that Ridge Regression clearly provides better
prediction accuracy for Masked than K-NN. For Masked,
the value of K is 4, which means that every sample must
find four similar samples in its vicinity. If the four chosen
samples are not similar, it may end up smoothing things
out too much and eliminating some important details in the
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Fig. 9: Visualization of similarities between applications using a
dendrogram at the top. In the heatmap, Red represents similarity,
whereas Blue represents dissimilarity. In the dendrogram, the
vertical distance is a measure of similarity. Shorter distance
means more similarity.

distribution. Moreover, K-NN uses 8 selected features to check
similarity for Masked outcomes. As the number of features/di-
mensions increases, the sparseness of the training data in the
n-dimensional feature space also increases. This causes the
distance metric to lose significance as it becomes difficult to
accurately identify the neighbors. This phenomenon is also
known as the curse of dimensionality [7]. A combination of
the above two reasons might impact the prediction accuracy
for Masked outcomes.

In case of DUEs, K-NN has accuracy comparable to Ridge.
Besides the cfd and tpacf applications, the model predicts
the outcomes quite accurately. This suggests that these two
outliers were not able to find three similar neighbors. A
solution to this problem is to increase the size of the training
data. While there are small clusters in the heatmap, having
a large sample space might create more concrete and dense
clusters. This can eventually result in a better prediction for



K-NN. A small value of K is more susceptible to noise, as
might be the case seen in SDC prediction. Finding the right
value of K is also a challenging research problem.

Key Takeways:

e Overall, we find that K-NN does not work as well as
Ridge. This may be a side effect of working with a small
training sample space (43 CUDA applications), as K-NN
has a tendency to perform better with large data samples.
In addition, if the number of selected features is large as
compared to the sample space, then K-NN might suffer
from the curse of dimensionality, as observed in the case
of Masked outcomes.

e« However, K-NN is a more robust model as it does not
rely on the underlying distribution of the data; unlike
a Linear model which assumes a linear relationship
between features and outcomes. We anticipate that the
results for K-NN would improve if we increased the
number of training samples. Hence, it might be worth
revisiting K-NN by supporting more CUDA applications
on SASSIFI. The user must consider the above trade-offs
and choose a model which best suits their data.

« Both Ridge and K-NN select register usage as one of the
features impacting SDCs. A negative coefficient of Ridge
could imply that increasing the number of registers could
reduce the number of observed SDCs. This could make
for an interesting case to study the impact of compiler
optimizations, such as loop unrolling, on the resiliency
of the application.

IV. DISCUSSION
A. Support for Other Modern Architectures

Modern GPUs exploit data parallelism in application kernels
to achieve high performance and efficiency. However, there can
be a loss in efficiency due to redundant execution whenever
threads perform the same operations on the same data. Scalar
instructions reduce energy by eliminating replicated work.
Moreover, scalarization reduces overall register file capacity by
eliminating redundant operand storage, or additionally allows
a register file of a given size to hold the context of more
threads. The execution of the scalar instructions is enabled
by architectural and microarchitectural support provided next
to the parallel datapaths. For example: AMD’s Graphics Core
Next (GCN) architecture has a scalar co-processor in each
compute core, along with a separate scalar register file [1].
A warp (or wavefront, in OpenCL terminology), is mapped
across the SIMD lanes with one thread per SIMD [44].
In contrast, the scalar unit has a single lane with a scalar
register file to execute scalar instructions. To support a GCN-
like architecture (as shown in Figure 10) in PRISM, the
count of scalar instructions must be recorded only once per
warp, whereas the count for vector instruction depends on the
number of active threads in a warp executing that instruction.
This distinction must be accounted for while calculating scalar
and vector instances, as described in Algorithm 1.
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Fig. 10: Spatial SIMT Architecture with a separate Scalar Unit.

In our study, we have used Kepler because the SASSIFI tool
is optimized for the CUDA v7.0 software stack and a compute
capability of 3.5. To take full advantage of architectures
supporting a compute capability greater than 3.5 (e.g., Pascal
and Volta), SASSIFI must first be optimized to run on these
newer architectures. Unlike Kepler, Pascal and Volta have an
extended Instruction Set (ISA) with explicit support for half-
precision floating point instructions. These additional opcodes
must be incorporated in the intensities, described in Table II,
for PRISM to provide better accuracy. Adding half-precision
FP instructions might impact the high masking effects of
floating point instructions that we observed in the Ridge
Regression Model. This requires further investigation in order
to understand the contribution of half-precision floating point
instructions to program correctness, which we plan to explore
in our future work.

V. RELATED WORK

This study spans both the fields of GPU architecture/reli-
ability and machine learning. We identify and present three
categories of research related to our study. The first category
includes the studies on prediction of system vulnerability. In
the second category, we review the body of work dedicated
to comprehensive studies of vulnerability and the analytical
measurement of vulnerability. Finally, in the third category,
we will present the studies that have tried to characterize GPU
applications.

A. Vulnerability Prediction

Numerous studies have been conducted on the prediction
of vulnerability. These studies propose methods to estimate
the vulnerability of a system during its execution, and is
called online vulnerability. Such a technique allows a system
administrator to adapt any vulnerability protection scheme to
the current vulnerability state of the system.

X. Li et al. use tainted analysis on microarchitectural
registers to approximate the effects of faults injected into these
registers [30]. The taint analysis is able to identify all the
detectable faults in registers that would later be used in stores,
branches or system calls. Fu et al. proposed a correlation
between vulnerability of core microarchitectural structures and
performance counters [15]. Walcott et al. [51], Biswas et
al. [8], and Duan et al. [12], propose training-based mod-
els that use performance variables to estimate Architectural
Vulnerability Factor (AVF) at runtime.

As these studies only estimate vulnerability at a hard-
ware level, they do not take into account the resilience
properties from a programming perspective. Wibowo et al.
use a cross-layer approach which accounts for, not only the



microarchitecture-level vulnerability, but also for the inher-
ent resilience present in the algorithms being executed [53].
Moreover, Farahani et al. dynamically predict the vulnerability
of a program during its execution [14]. They utilize machine
learning to predict program vulnerability. Their algorithm
learns from performance features at both architecture and
microarchitecture levels.
All of these approaches differ from our work in that:

1) The vulnerability is evaluated at different layers of the
system stack, while our work only targets the ISA level.
Moreover, they predict vulnerability at runtime in order to
allow a dynamic vulnerability protection scheme to save
energy, while only enabling soft error protection when
necessary. Since this kind of support is not available in
many systems, a developer would need to be responsible
for managing resilience of their own programs. With
our framework, a programmer is able to evaluate the
robustness of his/her program, regardless of the hardware
that it is running on.

2) They target CPU applications, while our work focuses
on GPU applications. The GPU architecture implements
an in-order SIMD pipeline, with thousands of threads
concurrently executing. Given the execution model of
the GPU, error propagation within a GPU application is
different from a CPU. It is possible for errors to propagate
across threads in a block, or across invocations of a GPU
kernel. Furthermore, the control flow changes in GPU
applications are minimized, so that the application can
fully take advantage of the parallel hardware. The features
that we consider in our work, as described in Table II,
are suited for GPU applications.

B. GPU Vulnerability

Recently, there have been a number of studies that have
considered GPU reliability, given the growth in popularity of
GPUs in HPC and safety-critical applications [39], [48]. In
addition, Li et al. have investigated the propagation of errors
across GPU kernel calls using fault injection experiments [29].
They have also developed a comprehensive fault injection
tool, LLFI-GPU, which allows users to perform fault injection
experiments at the intermediate assembly level.

Program Vulnerability Factor (PVF) is a vulnerability metric
that only considers program level effects on vulnerability [43].
PVF can be measured with either statistical fault injection
or through Architecturally Correct Execution (ACE) analy-
sis [34]. ACE analysis systematically identifies state in a
program structure (such as the architectural register file) that
is necessary for correct execution of the program. Because
ACE analysis conservatively assumes that all bits in an ar-
chitectural structure are important until proven otherwise, the
vulnerability estimation obtained from ACE analysis is often
overestimated [52].

Studies have measured GPU application resilience using
the PVF or related metric using both fault injection [13],
[17], [41] and ACE analysis [19], [47]. Our work aims at
simplifying the process of vulnerability estimation, avoiding

lengthy and exhaustive fault injection experimentation, as well
as the inaccuracy and overestimation of the ACE analysis.

C. GPU application characterization

As GPUs have gained popularity in high performance
computing domains, many studies have tried to characterize
performance of GPU workloads. Kerr et al. introduce a set of
metrics for GPU workloads and utilize these metrics to analyze
the behavior of GPU workloads [22]. Goswami ef al. propose
a set of microarchitecture-agnostic workload characteristics
to capture the behavior of GPU applications [16]. These
study characterization of GPU applications in terms of their
performance. Our work focuses on characterization based on
the reliability of GPU applications.

Kalra et al. quantify the linear correlation between the pro-
portion of scalar instructions and different outcomes. However,
their work solely focuses on understanding the vulnerability of
scalar and vector opcodes, and does not predict the resilience
of applications [21]. Fang et al. introduce a fault injection
methodology, and present some error resilience characteristics
of GPU application kernels based on the results observed
from a fault injection study [13]. They found that program
behavior can influence application resilience. They catego-
rized the applications according to their respective patterns
of computations. Their categorization follows the 13 dwarfs
of parallelism, as presented by Asanovic ef al. [6]. However,
their work is focused on understanding the resilience of GPU
applications, and does not use the categorization for resilience
prediction.

To our knowledge, our work is the first to make use of
microarchitecture agnostic features to predict vulnerabilities
in GPU applications. Unlike prior work, we approach the
problem of reliability from a non-traditional perspective by
bringing together statistical learning methods to predict failure
in applications.

VI. CONCLUSION

In this paper, we propose a framework named PRISM to
predict resiliency of GPU applications. As part of PRISM, we
explore two prediction models based on different hypotheses.
Linear regression model tries to capture any linear relation
between program characteristics and outcomes, whereas K-NN
tried to identify similarities between applications to predict
the outcomes. To use PRISM, the application needs to be
executed only once to collect an instruction profile of the
application, instead of running an exhaustive fault injection
campaign. PRISM can help us predict the resiliency profile
for an application based on its instruction mix, which can aid
architects to selectively protect the hardware structures, and
potentially avoid the overhead introduced by RMT and ECC.

In the future, we plan to explore other models such as Tree-
based Regression. We also plan to characterize neural network
and machine learning workloads to further expand our GPU
application suite.
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APPENDIX
ARTIFACT DESCRIPTION

In this Appendix, we describe how to reproduce the results
reported in this paper.

Our Evaluation Platform includes:

 Graphics Processing Unit: Kepler K20

o Operating Sytem: Linux Ubuntu 14.04 LTS

o CUDA version: CUDA v7.0

 Python version: 2.7

We will provide step-by-step modifications required in
every phase of the PRISM framework, shown in Figure 3.
The description is provided as follows:

SASSIFI:
The first step is to download SASSIFI from resource (1) and
then make the following changes to the tool:

1) We created a new Instruction Group called 'DEST_REG’
that allows a user to inject faults in any destination
register. The guidelines for adding a new IGID has been
provided in the SASSIFI user guide.

2) Next, we implemented the scalarization algorithm de-
scribed in Algorithm 1 in the profiler handler to identify
scalar instructions.

3) We support 50 CUDA applications from the CUDA SDK,
Parboil, Lonestar, Rodinia, and NUPAR benchmark suites
on SASSIFI. A sample example (atomic add) has been
provided in the github repository to demonstrate how
to instrument a kernel with SASSIFI handlers (both -
profiler and error injector). If an application has multi-
ple kernels, each kernel must be instrumented with the
handlers and statically linked using the linker, nviink.

4) We then classify the outcomes into different categories.
A DUE occurs when the program crashes or hangs even
before it finishes execution. This behavior is automati-
cally recorded by the tool and classified as a DUE. To
check for SDCs or Masked outcomes, we developed a
script (unique for every application) which executes after
the program completes execution. We compare the stdout,
stderr, and the result with the golden output. If there is a
discrepancy in any of the three, the outcome is classified
as an SDC, otherwise it is classified as Masked.

5) After implementing all of the above changes in the
SASSIFI tool, we run 1000 injections on each sample
(a total of 50,000 injections) to gather our raw data. We
have used the IOV injection mode as it allows us to flip
bits in a destination register, implying that a fault has
occurred in the datapath of a random instruction. RF
and IOA modes are specifically used for studying the
vulnerability of the register file and memory accesses,
which can be modeled using our methodology.

Rest of the framework:
The remainder of our framework has been written in Python.
For feature extraction, we process the raw data generated

by SASSIFI and derive the metrics mentioned in Table II.
For feature selection, we implement our algorithm for the

forward wrapper method with cross validation, as provided
in the book [25]. Lastly, we feed the tuned parameters (such
as K) and selected features into both models to generate our
final results. These models can either be written by the user,
or leverage existing python libraries. This framework can also
be written in R programming language.

Choosing the Number of Injections:

As mentioned above, we have chosen 1000 injections per
application for our study. According to Leveugle et al.,
this number of injections should be sufficient to provide an
error margin of 3.1%, with a 95% confidence level [28].
The confidence level is the probability that the value of the
parameter-of-interest falls within the given range of values. A
95% confidence level is the most commonly used confidence
level by researchers [55], and has been used in various prior
work [13], [41]. The error margin is the range of values above
and below the sample value in a confidence level.

Next, we observe the changes in all three outcomes by
running 10K injections on our applications. Statistically, the
difference between 1K and 10K injections is that 10K expe-
riences a lower error margin for the same confidence level.
Figure 11, 12, and 13 show the observed values for Masked,
DUE, and SDC, respectively, for 1K and 10K injections. We
report the Min, Max, and Mean Absolute difference (or error)
as percentages comparing the observed values for 1K and
10K injections in Table IV. The maximum error is within our
expected error margin of 3.1%.

In order to evaluate the robustness of our approach, we also
report the results for 100K injections for the DWT2D appli-
cation from Rodinia, randomly selected from our workload
suite. As shown in Table V, we compare the results of 100K,
10K, and 1K injections for DWT2D. The observed difference
in the distribution of outcomes for 1K and 100K injections
varied by 2.26% for Masked, 2.71% for DUE, and 0.45% for
SDC. Users can verify the number of injections required to
achieve the desired confidence interval and error margin by
using resource (2).

[ [ Masked [ DUE [ SDC ]
Min Error 0.01 (lavaMD) 0.01 (lavaMD) 0 (Vector Add)
Max Error 3.00 (Ibm) 3.09 (pathfinder) 3.06 (BlkSch)
Mean Absolute Error 1.51 1.15 1.39

TABLE IV: Min, Max, and Mean Absolute Error observed
between 1K and 10K injections for Masked, DUE, and SDC.

[ [ Masked [ DUE | SDC |
DWT2D (100K) 23.35% 23.34% | 53.31%
DWT2D (10K) 22.96% 24.15% | 52.89%

DWT2D (1K) 21.09% 26.05% | 52.86%

TABLE V: Percentage Masked, DUE, and SDC for 100K, 10K,
and 1K injections in DWT2D application.

Resources

1) https: [/ github.com/NVlabs/sassifi/
2) https: |/www.surveysystem.com/sscalc.htm
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