HPL and DGEMM Performance Variability on the
Xeon Platinum 8160 Processor

John D. McCalpin
Texas Advanced Computing Center
University of Texas at Austin
Austin, TX 78758
Email: mccalpin@tacc.utexas.edu

Abstract—Initial testing of a cluster equipped with Intel Xeon
Platinum 8160 processors showed occasional slow single-node
HPL benchmark performance — approximately 0.4% of single-
node results were more than 10% slower than expected. We
describe a systematic series of experiments using simplified
benchmarks and hardware performance counters, showing that
the increased run times were associated with increased DRAM
traffic, that this was caused by increased L2 cache miss rates, and
that these were caused by snoop filter evictions. These evictions
resulted from associativity conflicts in the snoop filters, and were
traced to pathological interactions of data physical addresses with
the hash function that distributes addresses across the coherence
agents on the processor. For the HPL benchmark, switching
from 2MiB hugepages to 1GiB hugepages eliminated the conflict
and the associated slowdowns. The snoop filter conflict was later
reproduced using a simple array summation kernel, suggesting
that other applications could be impacted.

I. INTRODUCTION

As microprocessors increase in complexity, understanding
performance is becoming more difficult [1]. Performance
variations, especially those occurring rarely, are especially
challenging to identify, diagnose, and work around. This
report describes our experience attempting to understand and
overcome an infrequently-occurring performance drop that we
observed during the bring-up testing of a cluster of Intel Xeon
Platinum 8160 processors. In the hopes that this will serve as
a useful case study, the presentation is largely chronological,
with discussions of how each new set of results combined with
our slowly improving understanding of the hardware to lead
us to the next step in the investigation.

The performance variations that led to this study were
initially observed using an Intel optimized version of the
HPL benchmark. This is often used as an acceptance test and
as a health checker for servers used in HPC work, and it
was in these roles that we first saw unexpected slowdowns.
Details will be discussed below, but to give an idea of both
the frequency and magnitude of the problem, in single-node
testing we typically saw about one out of every 200 nodes
delivering performance more than 10% below the median
performance for that node. In multi-node HPL testing, all
tests using substantially more than 200 nodes delivered results
below expectations, and those results were roughly consistent
with what one would expect if a few of the nodes were running
10%-15% slower than expected.

SC18, November 11-16, 2018, Dallas, Texas, USA
978-1-5386-8384-2/18/$31.00 (©2018 IEEE

II. TEST ENVIRONMENT
A. Hardware, Operating System, and Benchmark codes

The test environment consists of two clusters of dual-socket
servers equipped with Xeon Platinum 8160 processors [2]
running versions of the Linux OS.

Several different versions of the HPL benchmark (provided
as binary distributions by Intel) were used. We built several
versions of a DGEMM benchmark and a synthetic contigu-
ous array summation code using the two most recent major
releases of the Intel C/C++ compiler (and its associated MKL
library).

No differences in the statistical characteristics of the perfor-
mance variability were associated with hardware vendor, OS
revision, benchmark code version, or compilers.

Detailed descriptions of the hardware, OS, compilers, and
benchmark distributions are provided in Appendix A.

B. Performance Monitoring Infrastructure

The performance monitoring code used in this study was
locally developed for non-intrusive, system-wide monitoring'.
It provides both low overhead (typically < 1% of one logical
processor at 1 second sampling intervals) and very precise con-
trol over the programming of the many different performance
counters in recent Intel processors [3], [4].

To minimize overhead, the monitoring program is currently
single-threaded, and pinned to a single logical processor in the
system. The program uses the /dev/cpu/ [nn] /msr device
drivers to read the performance counters on core nn. Some
of the “uncore” units use MSR access for their performance
counters, while others use PCI configuration space. In the
latter case, the monitoring code calls the mmap () function
on /dev/mem at the base of PCI configuration space, then
ordinary 32-bit array references will read or write the corre-
sponding performance counter registers. The binary is tagged
with the “setuid root” property to provide read/write access to
the MSR and /dev/mem device drivers.

The performance monitoring code is started in the back-
ground immediately before the workload of interest is started.

'Our use of a “home-grown” performance monitoring code is not intended
as a criticism of other performance monitoring infrastructures — we simply
find it easier to minimize overhead and ensure complete control over the
performance monitoring hardware with our own software.

The monitoring code reads a set of configuration files and
programs the corresponding performance counters, then goes
into a loop of reading all the counters, sleeping for a user-
selectable interval, and repeating. The performance counter
values are stored in memory until the program being monitored
completes and a signal is sent to the monitoring process (or
a fixed maximum number of samples have been collected).
At this point the collected results are written to disk for later
post-processing and the program exits. Detection and handling
of counter wraparound is left to post-processing software.

The output of the program is formatted as text array element
assignment statements, e.g.,:

imc_counts[1][0]["ACT. ALL” J[27] = 87368924

This provides the type of information (integrated memory
controller performance counters), the socket number (1), the
DRAM channel number (0), the name of the event pro-
grammed (ACT.ALL), and the sample number (27). The
resulting output files are large, but convenient to work with.
We use a combination of ad hoc processing with standard
text-processing utilities (awk, grep, sed), and embedding
the output files directly into Lua scripts.

Due to the large number of hardware performance counters
in the system, we generated over 240 GiB (over 4 billion lines)
of output for the > 25,000 runs performed during this study.
Although collecting this quantity of data is clearly overkill
for each experiment individually, collecting as much data as
possible in each experiment allowed us to go back and re-
analyze earlier runs as our understanding of the processor and
the performance variability phenomena increased.

III. INITIAL EXPERIMENTS WITH HPL

As part of both the acceptance criteria for the system and
as a health check on the nodes, each node in the system is
required to deliver a performance in excess of 2100 GFLOPS
on the HPL benchmark using the Intel-provided xhpl binary
for problem sizes in the range of N=100,000. We observed
that all nodes were capable of this level of performance (with
median performance values in the range of 2275 to 2570
GFLOPS), but that in any run, approximately one out of 200
nodes would fall below the 2100 GFLOPS threshold. Although
data was limited in the beginning of the study, it was clear
that the slow runs were not limited to a few nodes, and that
the occurrence of slow runs was independent of the median
performance of the node.

At the same time, we saw disappointing performance in all
of our multi-node runs using more than a few hundred nodes,
and log files from these runs showed that a few nodes were
slow in each run. Multi-node performance followed the general
rule of “slowest node times number of nodes”, so that a slow-
down on any one node can lead to a proportional slowdown
on the entire cluster. From a more positive perspective, this
also suggests that fixing the node-level performance might fix
the multi-node performance shortfalls.

We began our study with simple repetition — running a
specific benchmark case (N=148,000, NB=384) four times
on each of 392 nodes. The median and average performance

Sorted, median-adjusted GFLOPS for 2744 single-node HPL runs

2500
2450
2400
2350
2300 i§
2250 f§
2200 §
2150 §
2100}
2050

2000]]]]]]]]]
0 10 20 30 40 50 60 70 80 90 100

Percentile

GFLOPS

Fig. 1. Sorted median-scaled performance values for 2744 runs of the HPL
benchmark (7 runs on each of 392 nodes). The “tail” on the left side indicates
a sharp drop in performance for a small fraction of runs, with about 3% of
the runs showing some slowdown and about 0.4% of the runs suffering a
performance degradation of more than 10%.

of this ensemble were both just above 2400 GFLOPS, with
a maximum of 2584 GFLOPS and a standard deviation of
52 GFLOPS. Of the 1568 runs, there were 2 results (from
different nodes) below 2100 GFLOPS (more than 5.8 standard
deviations below the median), and 7 results (from 6 nodes)
below 2200 GFLOPS (more than 3.9 standard deviations
below the median). This set of carefully controlled cases
was sufficient to convince us that the infrequent slowdowns
represented a repeatable feature of the systems, so we set
aside time for additional experimentation with hardware per-
formance counter instrumentation.

The second series of HPL runs used the same nodes, the
same binary, and the same problem size as the first set, but
added the external performance monitoring utility described
above for each of the three executions per node. The bulk
performance statistics were essentially the same as the first
runs. Of the 1176 results, 2 (on different nodes) were below
2100 GFLOPS, and 7 (from 6 nodes) were below 2200
GFLOPS. There was no overlap between the set of nodes that
were slow in the first set of runs and the set of nodes that were
slow in the second set of runs. This level of agreement in the
statistical distribution of results suggests that the performance
counter measurements in these runs are from an ensemble
showing the phenomenology that we want to investigate.

Analysis of these results was made more difficult by the
relatively large range in HPL performance across the nodes —
median performance varied by almost 13% across this set of
392 nodes (2277 GFLOPS to 2571 GFLOPS). Once we had
accumulated seven HPL results for each node, we were able to
scale each performance result by the ratio of the node median
to the global median (2405 GFLOPS) to contract the range of
“normal” results and make the slow results more visible. The
results are summarized in Figure 1, which shows the sorted,
median-scaled performance results for the first 7 runs on each

of the 392 nodes. The tail on the left is the signal of interest.
As noted above, the slow runs occur as singular events on
different (random??) nodes, and are not due to nodes that are
consistently slow.

Our initial performance counter experiments focused on
familiar topics: looking for software overheads and looking
for variations in DRAM traffic. In a tightly coupled parallel
application that uses all the cores of a multicore processor,
software overheads can easily have an exaggerated impact,
and we had recent experience with tracking down application
performance degradation due to unwanted kernel activity.
Looking at variations in DRAM traffic seems counterintuitive
for a compute-intensive code such as HPL, but the bandwidth
required for the HPL benchmark has been increasing along
with peak performance, and now requires a significant fraction
of the system’s memory bandwidth. Performance variation
is often associated with cache conflicts, and we had done
enough testing to be confident in the accuracy of the hardware
performance counters for DRAM accesses.

Optimized implementations of the HPL benchmark will use
only one Logical Processor (thread) per Physical Core on re-
cent Intel processors. Each of the “worker” threads of the Intel-
optimized benchmark is bound to a separate physical core, but
is allowed to migrate between the two Logical Processors that
share the core. If the operating system has additional processes
to run, it will run them on the “idle” logical processors and
cause some level of performance interference with the worker
thread sharing the same core. If the sum of the fixed-function
CPU_CLK_UNHALTED.REF counters on the two threads of
a core exceeds the elapsed TSC cycles, then we know that
more than one thread was active during the interval®.

The first set of runs with performance counters also included
a kernel instruction count* and an L3 demand data read
count for each logical processor’. On the “negative results”
side, these experiments ruled out kernel activity as the source
of performance degradations — kernel cycle and instruction
counts were very small and uncorrelated with variations in
execution time. The unhalted reference clock counts showed
that the average number of threads active per physical core
was almost exactly 1.0, as expected for the workload under
test. There were positive results as well: the L3 demand data
read and DRAM CAS Read counts were slightly correlated
with execution time (r = 0.4), but more importantly, the two
slowest runs (performance reductions of 10% and 8.3%) had
the highest counts in both these measures. The L3 demand data
read counts seemed too small to account for the magnitude

2 At this point there were not enough runs to know whether the slowdown
could occur on any node, but there was no indication that any nodes might
be immune to the problem.

3This can be made more precise using a combination of per-thread and
ANYTHREAD counts, using straightforward (if not entirely intuitive) algebra.

4These footnotes will list the standard performance counter event name
from the Intel documentation as well as the specific contents of the per-
formance counter event select register. In this case the event is called
INST_RETIRED.KERNEL, and the performance counter event select register
is programmed with 0x004200c0.

SOFFCORE_REQUESTS.L3_MISS_DEMAND_DATA_READ
0x004310b0.

of the slowdown, but this was enough to encourage us to
examine traffic through the memory hierarchy in more detail
in subsequent experiments.

The second performance counter experiment used a set of
core counter events to investigate the role of cache misses.
Counters for loads hitting in the L3° and loads missing in
the L37 are straightforward, but must be interpreted carefully
because they do not account for data motion caused by the
hardware prefetchers — i.e., the data may start in memory,
but if one of the hardware prefetchers moves the data into
the L3 cache before the demand load arrives, it is counted as
an L3 hit, rather than as an L3 miss. With regular memory
access patterns, most data traffic through the cache hierarchy
is managed by the hardware prefetchers, and a relatively low
fraction of demand loads miss in the L2 (or L3) caches. The
other two events used in this experiment require a few words of
explanation. In modern, out-of-order processors, it is surpris-
ingly difficult to identify the causes of “stalls”. Even defining
“stalls” can be challenging, as they can occur at instruction
fetch, instruction decode, register rename/allocation, micro-
op dispatch, or retirement. The last several generations of
Intel processors have provided a performance counter event
that can be useful in quantifying certain kinds of “stalls”.
The event causes the counter to increment in any cycle when
two conditions are simultaneously true: (1) no micro-ops
are dispatched from the reservation station to the execution
pipelines, and (2) there is at least one demand load “in flight”
that has missed at a selectable level of the cache hierarchy.
There is no causality implied by the definition of these events,
but in practice, demand loads that miss in the L2 cache or L3
cache require a large number of cycles to complete, and this
often causes the processor to exhaust its out-of-order capability
and stall. We will refer to these events (imprecisely) as L2 miss
stalls® and L3 miss stalls’.

Figure 2 is a scatter plot of (median-adjusted) execution
time in seconds vs. DRAM Read traffic for the 1176 results
(3 per node) in the second series. The variability of DRAM
traffic among the normal results is rather surprising, but the
important feature of this plot is the high DRAM Read traffic
common to all of the runs more than about 9% slower than
the median of 900 seconds. There are 10 such runs (0.85%
of the total). A far more interesting correlation is seen with
the L2 miss stalls, as shown in Figure 3. After re-scaling by
the node’s median performance, the execution time shows an
extremely high correlation with L2 miss stalls (r? > 0.95),
and a moderate correlation with L3 miss stalls (72 ~ 0.7). The
high correlation with L2 miss stalls, rather than L3 miss stalls,
is a critical clue to the mechanism underlying the performance
variability that we will discuss in more detail in the following
sections.

The third series of single-node HPL runs used the same
performance monitoring events as the last two experiments

SMEM_LOAD_RETIRED.L3_HIT 0x004304d1.
"MEM_LOAD_RETIRED.L3_MISS 0x004320d1.
8CYCLE_ACTIVITY_STALLS.L2_MISS 0x054305a3.
9CYCLE_ACTIVITY_STALLS.L3_MISS 0x064306a3.

70000 T T T T T

60000 [7

X X

50000 [

40000 [

30000 - 7

20000 [: 7

DRAM Read Traffic (1e9 Bytes)

10000 [7

0 1 1 1 1 1
800 850 900 950 1000 1050

Median-adjusted execution time (seconds)

1100

Fig. 2. Median-adjusted HPL execution time vs. DRAM Read Traffic. This
represents 1176 executions (3 on each of 392 nodes). Although there is a
surprising amount of variability here, it is clear that the ten runs that are
more than about 9% slower than the global median have high DRAM Read
traffic.

8 7.0e+12 T T T T T
EI
Y 6.0e+12 [<
a
] X X X
< 5.0e+12 [% .
2 XX
> L X X i
£ 4.0e+12
S x X
5 s

3.0e+12 [XK .
< e x X
u x
Q 2.0e+12 % i
(@]
o
T 1.0e+12 [.
o
3
< 0.0e+00 ; ; ; ; ;

800 850 900 950 1000 1050 1100

Median-adjusted execution time (seconds)

Fig. 3. Normalized HPL execution time as a function of CPU dispatch stalls
incurred while at least one demand load was in an L2 miss state. This data
represents 784 runs — 2 runs on each of 392 nodes — with 8 runs more than
10% slower than the median and approximately 25 runs showing elevated
stalls and correspondingly increased runtime.

in the second series, but used two slightly smaller problem
sizes (N=137,000 with NB=384 for two runs and N=86,784
with NB=336 for four runs), and ran the HPL code using one
MPI task per socket, rather than launching the executable in
its shared-memory mode of execution. These tests confirmed
that the infrequent slow runs still exist with different problem
sizes and problem decompositions, and that the strongest
correlation with execution time comes from the L2 miss stalls
performance counter event.

IV. SIMPLIFIED EXPERIMENTS WITH DGEMM

The single-node HPL benchmark has some drawbacks as
a benchmark for detailed performance analysis. The source
code is not available, the execution consists of a number of

dissimilar phases, the problem size (and runtime) must be
relatively large to reach asymptotic performance, and the node-
level performance depends on power-limited behavior of two
independent processor chips (which may have very different
average frequencies in the power-limited regime).

To mitigate some of these difficulties, we decided to test
a DGEMM benchmark code to see if similar variability in
performance was observed. Our code uses the optimized
DGEMM function in the Intel MKL library, so the DGEMM
function source code is not available, but the algorithm is
simpler and the driver is easier to instrument. Table I lists
the subset of the DGEMM runs that are discussed in the text.
The runs will be referred to by a label of the form “DGEMM
2s A1”, where “DGEMM?” is the benchmark, “2s” indicates
the use of 2 sockets, “A” is the vendor (A or B), and “1” is a
sequence number for the set of runs.

First, we needed to see if a two-socket (SMP) DGEMM
calculation showed the same performance variability as the
two-socket HPL runs. The code was set up to execute 10
calls to DGEMM with N=24,000, using all 48 cores in each
node. Timings were recorded for the last 9 calls, and average
performance was computed over these 9 calls. Set “DGEMM
2s A1” showed about one of 200 runs delivering 10% to
27% below median performance. The slow runs were all on
different nodes. This behavior is clearly consistent with the
variability seen with the HPL benchmark.

Set “DGEMM 1s A2” verified that a single-socket DGEMM
calculation showed the same performance variability. Just
under 1% of the runs delivered 13% to 25% below median
performance, and again these slow runs were all on different
nodes. This is also clearly consistent with the behavior seen
with the dual-socket HPL results.

Set “DGEMM 1s A3” switched from the MKL library
distributed with the Intel 17 compiler to the MKL library
distributed with the Intel 18 compiler. Again, about 0.6% of
runs delivered performance of 10% to 25.0% below the median
value. The slow runs were again on different nodes, and there
was no overlap between the nodes with slow runs in the single-
socket MKL 17 test and the nodes with slow runs in the single-
socket MKL 18 test. The median performance increased by
about 1%, but the performance variability was unchanged.

Set “DGEMM 1s B4” shifted the runs from the 392 nodes
used in the original experiment to a smaller set of 31 nodes
from a different vendor to verify that the performance vari-
ability remained. We had to discard the first run on each
node because the BIOS frequency control was taking too long
to ramp the processors up to full speed. This left only two
slow runs, but these had the expected signature — in one slow
run, each of the 15 DGEMM calls was 28% slower than the
median, and in the other slow run, each of the 15 DGEMM
calls was 31% slower than the median. These results were
sufficient to convince us that the performance variability was
present on these nodes as well, leading us to begin the most
extensive set of tests.

Label Problem Size | nodes | runs/node | total runs | median GFLOPS slow runs % slow | notes

DGEMM 2s Al 24,000 392 6 2352 2828 12 0.51%

DGEMM 1s A2 20,000 392 3 1176 1425 11 0.94%

DGEMM 1s A3 12,000 392 5 1960 1440 12 0.61%

DGEMM 1s B4 12,000 31 8 248 1406 2 0.81%

DGEMM 1s B5 20,000 31 273 8463 1421 145 1.71%

DGEMM 1s B6 20,000 31 62 1922 1268 2 0.10% reduce to 20 cores

DGEMM 1s B7 20,000 31 103 3193 1421 32 1.00%

DGEMM 1s B8 20,000 31 41 1271 1419 0 0.00% 1 GiB pages
TABLE I

DGEMM BENCHMARK RUNS MENTIONED IN THE TEXT. THE LABEL INCLUDES THE BENCHMARK, THE NUMBER OF SOCKETS USED, THE VENDOR (A OR
B), AND A SEQUENCE NUMBER. THE TOTAL RUNS LISTED ACCOUNTS FOR A SMALL NUMBER OF EXCLUDED RESULTS. SEE TEXT FOR DETAILS.

A. Initial DGEMM instrumented run series

Using a single socket on the target platform, DGEMM
delivers close to asymptotic performance levels with problem
sizes of N=20,000, which is about an 11 second execution time
on a single Xeon Platinum 8160 processor at a sustained per-
formance of 1400 GFLOPS. This reduction in execution time
(relative to HPL) allowed us to include multiple DGEMM calls
within each benchmark execution. This provided insight into
variations within executions vs. variations across executions,
which proved to be another critical clue into the nature of the
performance problem.

The use of a single-socket DGEMM test case removed much
of the uncertainty from the execution of the benchmarks and
analysis of the results, providing encouragement for continued
experimentation. Although we had suspicions about the source
of the performance losses, a large number of tests were still
required to rule out other plausible mechanisms.

Set “DGEMM 1s B5” is a composite of 13 sets of 21
executions (“trials”) on each node, with each execution con-
taining 21 timed calls to the DGEMM routine. Each run
included performance counter instrumentation, with a total
of 31 different core performance counters used across the 13
runs. The 21 executions on each of 31 nodes gives a per-run
ensemble size of 651 executions. Of these, there were 8—18
executions whose average DGEMM execution time was more
than 10% above the median time.

As each run was completed, the performance results were
tabulated, with [max, median, average, min, standard devia-
tion] computed across the ensemble of trials for each node
and across the ensemble of nodes for each trial. The number
of trials delivering average performance below 1350 GFLOPS
(about 5% below the median for each run) was collected for
each node and accumulated over runs. Performance counter
results were summed across all the logical processors of the
socket for bulk correlation against execution time.

As we moved through various performance counter groups,
the socket-summed performance counters provided these “neg-
ative” results:

o L1 Data Cache fills (LID.REPLACEMENTS) were in-
variant across runs, so there is no concern about L1 Data
Cache conflicts.

e The RESOURCE_STALLS events (Event Code 0xA2)
related to the Load Buffer, the Store Buffer, the ReOrder

Buffer, the MXCSR register, the Floating Point Control
Word, and OTHER are all negligible.

A number of performance counter events showed strong
correlations with performance variability, but with counts that
are too small to be primary controlling factors. For example,
two different performance counter events for demand loads
that miss the L3 cache had high correlations with performance
variations, but these only accounted for about 3% of DRAM
accesses (and only about 3% of the increase in DRAM
accesses in the slow runs), so they cannot be the controlling
factor here.

We considered, but immediately ruled out, issues related to
the TLBs. TLB “reach” was an important factor in DGEMM
performance in earlier processors [5], but our experiments al-
ready use 2 MiB large pages, and (starting with the “Haswell”
core) the second-level TLB (now 1536 entries) can also be
used for 2 MiB pages — providing more than 1500z the TLB
coverage of “Sandy Bridge” or earlier processors using 4 KiB
pages.

Several events showed relatively weak global correlations
with performance variability, but very strong correlation when
considering only the performance outliers. As discussed in
several sections above, DRAM reads are moderately correlated
with execution time, but all of the outliers have high DRAM
traffic. The number of cache lines moved into the L2 cache'”
was measured in five of the thirteen subsets in “DGEMM 1s
B5” (3255 trials). All of the slow runs have anomalously high
counts here, but not all runs with anomalously high counts are
slow. This correlation is shown in Figure 4. The 99% of runs
with normal executions times show nearly a 2x range of L2
fill counts, making it difficult for the 1% of the slow runs (all
with elevated L2 fills) to create a strong statistical correlation.
The dotted line on the right of the figure has a slope of 1 ns
per L2 fill. Assuming all 24 cores have one outstanding 1.2
miss, this corresponds to 24 ns per event. At a frequency of
2 GHz, this is 48 cycles per event, which is comparable to
the expected L3 hit latency of 50-70 cycles. This scaling is
not meant to imply a conclusion about the specifics of the L2
fills, but it does suggest that the counts are large enough to be
a plausible candidate for the primary performance controlling
mechanism.

102 LINES_IN.ALL 0x00431ffl1.

600 T T T T T T

500

400 -

300

200 - 3 7

Execution time (seconds)

100 [. 7

0 1 /I 1 1 1 1
0 1x10"" 2x10"" 3x10"" 4x10" sx10" ex10"

Sum of L2_LINES_IN.ALL (all cores in socket)

7x10"

Fig. 4. Sum of all cache lines moved into the L2 caches vs. execution time.
This includes 3255 results (105 per node). The dotted line on the right has a
slope of 1 ns per count.

In addition to the socket-summed performance counter
values, for most of the runs, one pair of trials was selected
for detailed comparison. These were picked from one node,
where a “good” trial (at or above median performance for that
node) was followed immediately by a “slow” trial (typically
at least 25% slower than the median performance). In the
detailed comparisons, all of the available core performance
counter data for the socket during the period of the each of the
selected trials was aggregated by physical core (rather than by
socket), and the patterns were compared. The specific com-
putations depended on the core performance counter events
being collected in that run.

As an example using the L2 fill event discussed above, Fig-
ure 5 shows the counts per physical core for two consecutive
trials on the same node. The “good” trial ran at very close
to the median performance, while the “slow” trial required a
61% longer execution time and 44% more DRAM reads. In
the “slow” run, cores 6, 9, and 19 ran at higher frequencies,
suggesting that they completed early and entered spin-waits'!.
There was no frequency variation across cores in the “good”
run, despite the 2x variation in L2 fills.

Finally, we investigated some undocumented counters
that Intel has only disclosed by name at the https:
//download.O1.org/perfmon/ site. These events are called
“CORE_SNOOP_RESPONSE” (Event OxEF), with various
Umasks to specify particular transactions. Although these
events are only documented with the word “tbd”, we found
the same nomenclature described in the uncore performance
monitoring guide [4] in the context of the CHA performance
counter events (discussed in more detail in the next sec-
tion). We tested all the sub-events and found strong corre-

""'Maximum frequency on the Xeon Scalable processors is a function of the
width of the SIMD registers in use. The DGEMM computational code uses
512-bit registers and runs at the lowest frequencies. The spin-waiting code
has no reason to use SIMD registers, allowing spin-waiting cores to transition
to higher frequencies.

3.0e+10 T T T T T T T

T T T T
good trial —S—
slow trial = £
2.5e+10
3 2.0e+10[]
<
z
|
o 1.5e+10
Z
:I
Y 1.0e+10

5.0e+09 [1

0.0e+00]]]]]]]]]]]
0 2 4 6 8 10 12 14 16 18 20 22

Physical Core

Fig. 5. Variation in L2 cache line fills by physical core for two consecutive
executions on the same node. The “slow” trial was 38% slower than the
(median-performing) “good” trial.

lations between performance variations and sub-events named
“RSP_IFWDFE” and “RSP_IHITFSE”, and moderate correla-
tions with the sub-event “RSP_IFWDM”. These events were
very small in the normal runs, but increased by factors of
several hundred in the slow runs, until they were comparable
to the (elevated) L2 fill counts. Using the descriptions of the
CHA events as a guideline, we guessed that these events are
related to cache eviction requests processed by the core’s L1
and L2 caches, so we decided to add CHA counters to look
at these eviction events from their source.

B. Forming a Hypothesis

Two properties of the results thus far provided fairly strict
bounds on the classes of mechanisms that might be responsible
for the performance variations. First, the performance was
constant during each run, with variability between runs. This
“meta-stable” behavior suggests that the performance is being
controlled by the physical addresses that are assigned when
virtual to physical mappings are set up as pages are instantiated
at the beginning of each execution. Second, the behavior of the
L2 caches varied strongly across cores in the same execution.
L2 caches are private, and when using 2 MiB pages there are
no translated address bits in the L2 cache set selection that
can cause random conflict behavior. Therefore variations in
L2 cache hit rates are probably due to eviction of lines from
the L2 by an external agent.

In previous Intel processors'?, the L3 inclusion property
mandated that cache lines be evicted from all L1 and L2
caches when the line was selected to be victimized from the L3
cache. In practice, the high associativity of the L3 cache slices
and the effective hashing of addresses across the L3 cache
slices made such evictions extremely rare. We are not aware of
any examples of L3 conflicts causing detectable performance

127 ¢., those based on Nehalem, Westmere, Sandy Bridge, Ivy Bridge,
Haswell, and Broadwell cores.

degradations in these processor generations. Following the mo-
tivations discussed in [6], the Xeon Platinum processors use a
non-inclusive L3 cache [2], which must be augmented by some
sort of “snoop filter” to keep snoop requests at each L1 and
L2 cache down to a tolerable rate. Snoop filters are analogous
to sparse directories in scalable shared-memory architectures,
and have a significant academic literature dating back more
than 20 years [7]-[10], but there is insufficient documentation
of Intel’s current implementation to know whether any of the
academic studies are directly relevant. As noted by [7] and
[8], at high core counts, using a filter to reduce (but not
eliminate) broadcast probes is not tolerable, and the only two
practical choices are to invalidate lines that cannot be tracked
in the snoop filter, or to allow snoop filter entries to “spill”
into memory. Here Intel takes the former approach. As with
inclusive L3 caches and AMD’s HyperTransport Assist [11],
the snoop filters in the Intel Scalable processors must track
all lines in the L1 and L2 caches. Before a snoop filter entry
can be victimized, the target cache line must be evicted from
all L1 and L2 caches on the chip. As the number, size, and
associativity of the L2 caches grow, it becomes increasingly
difficult to distribute coherence information across the chip
without creating the opportunity for associativity conflicts that
can prevent the chip from exploiting its full L2 cache capacity.
As a quick “sanity check”, set “DGEMM 1s B6” used 20
threads to show that reducing the number of threads (and the
corresponding aggregate L2 footprint) significantly reduced
the magnitude of the performance loss in the slowest runs.
While the median performance decreased for these cases (as
expected), each of the two sets of 651 runs had only one
trial that was 10% slower than the median. The slowest run
in these sets delivered 1093 GFLOPS, while 12 of the 13
subsets in “DGEMM 1s B5” (all using 24 threads) had at
least one run at less than 1000 GFLOPS. Both the less frequent
occurrence of slow runs and the smaller performance drops are
consistent with the hypothesis that conflicts in the coherence
infrastructure outside of the private L2 caches are responsible
for the increased L2 miss rates and decreased performance.

C. DGEMM with CHA counters

The previous tests included performance monitoring of
the cores, memory controllers, and power control units, but
did not include instrumentation of the distributed caching
and coherence mechanisms in the uncore. Inspired by the
unexpected variation in L2 fills and the large variations in
core snoop responses, the next version of the performance
monitoring program was enhanced to include counters in the
Caching and Home Agent (CHA) boxes. The Xeon Platinum
8160 processor has 24 active CHAs — one per physical core.
The CHA performance counter interface allows access to the
L3 cache counters, the mesh traffic counters, and the snoop
filter.

We suspected that the variation in L2 fills was related to
the snoop filters, so the CHA events were programmed to

1.2e+10 T T T T T T T T T T T
good L2 LINES IN -
good SF Evictions -

1.0e+10 | slow L2 LINES IN -
slow SF Evictions

8.0e+09([0 .

§2]

= | %) \

§ 6.0e+09 o)
q

4.0e+09 []

2.0e+09 []

0.0e+00P-0-0-0--0-0-0-O-O0-OO0-OO0 OO0 OO0 HO0OO00<
0 2 4 6 8 10 12 14 16 18 20 22

Physical Core number or CHA number

Fig. 6. Variation in L2 fills by physical core and Snoop Filter evictions by
CHA for two consecutive trials on the same node. The “slow” trial was 20%
slower than the (median-performing) “good” trial and required 28% more
DRAM Read traffic. The snoop filter evictions in the good run were only
about 0.1% of the L2 fills, so they are indistinguishable from zero on this
graph.

record events related to snoop filter evictions'3. Set “DGEMM
Is B7” included core and CHA counters in all runs. A
very small number of results (14 of 3193) were discarded
due to interference with OS processes. As in earlier cases,
approximately 1% of runs showed performance reductions
of 10% to 45%. Execution time was highly correlated with
DRAM CAS Reads (r > 0.91), while the CHA counters
allowed us to compute a strong correlation with with Snoop
Filter Evictions (r > 0.82).

A detailed view of the L2 fills by core and the Snoop
Filter Evictions by CHA for one pair of trials is presented in
Figure 6. Note that the physical cores and CHAs are numbered
independently, so any correspondence in the pattern is unlikely
to be meaningful. The total number of L2 fills increased by
86% in the slow run. The number of Snoop Filter Evictions
increased by a factor of about 270 on the first 16 CHAs and
a factor of almost 1100 on the last 8 CHAs. In the good run,
the number of Snoop Filter Evictions was less than 0.1% of
the L2 fills, while in the slow case, the increase in the number
of Snoop Filter Evictions was more than 80% of the increase
in the L2 fills. While detailed understanding of these events
may not be possible given publicly available information, it
seems unambiguous that there is a severe Snoop Filter conflict
causing some level of “thrashing” of cache lines between the
L2 and L3 caches. A fraction of those cache lines either
bypass the L3 or are evicted before being fetched again, and
these create long-latency DRAM accesses that are the ultimate
source of the performance reductions.

For a more global view, we attempted a variety of heuristic
classification schemes for the ratios of counter values in the
slow runs before realizing that a simple plot would make the

13SF_EVICTION.M_STATE 0x0040013d, and SF_EVICTION.E_STATE
0x0040023d

1.8e+11 T T T T T T T T T T T

Excess L2 Lines In +
Snoop Filter Evictions
Excess DRAM CAS Reads

1.6e+11 [0

1.4e+11 [

1.2e+11 [

1e+11

8e+10 [

Socket Counts

6e+10 -

4e+10 [

2e+10 [0

0 L —
80 90 100 110 120 130 140 150 160 170 180 190 200
Execution time (seconds)

Fig. 7. Excess L2 fills, snoop filter evictions (M plus E states), and excess
DRAM reads as a function of execution time for 3179 runs on the 31 test
nodes. The 32 runs (1.0% of the total) with execution times more than 10%
above the median show a clear pattern of increasing L2 fills, snoop filter
evictions, and DRAM reads.

relationships apparent. Figure 7 plots the “excess” L2 fills'4,
the sum of the M and E state snoop filter evictions, and the
“excess” DRAM cacheline reads as a function of the execution
time for each of the 3179 runs. Only 32 of the runs have an
execution time that is more than 10% slower than the median
(i.e., greater than 111.5 seconds), and all of these cases show
highly elevated snoop filter evictions, which lead to increased
L2 fills, some of which miss in the L3 and become increased
DRAM reads.

D. Mitigation: DGEMM on 1GiB pages

The variation in performance between runs appears to be
due to infrequent random combinations of high-order address
bits that cause the address hash to fail to distribute the active
set of addresses across the CHAs with enough uniformity to
avoid thrashing. We speculated that the use of 1 GiB pages
would provide sufficient control over the addresses that these
conflicts would either disappear or be greatly reduced. We
quickly discovered that putting the three data arrays on 1 GiB
pages made no difference to the performance variability'>. The
conflict must involve addresses dynamically allocated by the
MKL library as well as the addresses of the main data arrays.
For set “DGEMM 1s B8”, we linked the executable to the
“libhugetlbfs.so” library'®, causing all dynamically allocated
data to be placed on 1 GiB pages. The results are outstanding,
with the slowest (of 1271) run only 6.8% below the median,
while the cases using 2 MiB pages always had at least one
run at 25% below the median.

For the fixed problem size of N=20,000, a comparison of
results on 4 KiB pages, 2 MiB pages, and 1 GiB pages is

4For L2 fills and DRAM reads, “excess” is computed by subtracting the
smallest count for the corresponding event across the ensemble of 3179 runs.

SThese tests are a subset of those in “DGEMM 1s B7”.

16https://github.com/libhugetlbfs/libhugetlbfs

1600 T T T T T T T T T

i

1400 T
1200 1

1000 GFLOPS (N=20,000) 1 GiB pages —%— i

GFLOPS (N=20,000) 2 MiB pages —<—

800 I GFLOPS (N=20,000) 4 KiB pages 1

GFLOPS

600 [~ 1

400 - T

200 1

O 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100
Percentile

Fig. 8. Sorted single-socket DGEMM performance (N=20,000, 24 cores) for
4 KiB pages, 2 MiB pages, and 1 GiB pages.

presented in Figure 8. The results with 4 KiB pages have a
significantly wider and deeper “tail”, as expected due to L2
cache page coloring conflicts!”.

For larger problem sizes (N=50,000), the results with 1 GiB
pages are similar, with the slowest run (of 930) at only 3.2%
below median performance.

V. RE-TESTING WITH HPL

The original motivation for this performance analysis was
to understand and, if possible, mitigate performance drops that
were seen with the HPL benchmark. Given the success of us-
ing 1 GiB pages with the single-socket DGEMM benchmark,
we requested a modified version of the xhpl benchmark from
Intel with support for 1 GiB pages. Intel provided us with such
a version, with the caveat that performance would be slightly
degraded when run as a single task because of the 1 GiB
NUMA placement granularity inherent in the use of 1 GiB
pages!819.

Upon receipt of the new code, we tested the performance
for single-node runs using the standard 2 MiB Transparent
Huge Pages used by default. Using a medium HPL test size
(N=120,000, NB=384), the ensemble of 651 results displayed
a median result of 2218 GFLOPS. One run was at 15% below
the median (1880 GFLOPS), and a total of five runs (0.8%)
were more than 10% below the median value. This confirms
that the new binary displays the same frequency and amplitude
of performance variability as the earlier test codes.

The new code has “native” support for 1 GiB pages,
controlled by environment variables, so the LD_PRELOAD
approach was not required. A large ensemble of 247 runs

17Note that due to the uniform work distribution and lack of load balancing,
it is not the average L2 miss rate due to random page coloring that determines
the performance — the controlling factor is the worst L2 miss rate across the
24 L2 caches.

ngazushige Goto, Intel, personal communication.

19Performance is restored when running one MPI task per socket, but our
experiments were run in “SMP mode” for compatibility with the prior results.

2400 T T T T T T T T T T T T T T

2350 [7

2300

GFLOPS
N
N
=]
S

2100

2050 [7

2000] L L L L L] L
1 3 656 7 9 11 13 15 17 19 21 23 25 27 29 31

node number

Fig. 9. Performance of the single-node HPL benchmark on the 31 test nodes
using 1 GiB pages. For each node, the error bars show the minimum, average,
and maximum performance seen across an ensemble of 247 runs.

were performed on each node (7657 runs in total) with the
N=120,000 problem size. As we were advised, the median
performance dropped very slightly to 2202 GFLOPS. Memory
controller performance counter measurements confirmed a
modestly uneven distribution of memory accesses that was,
based on prior measurements of performance vs. memory traf-
fic, consistent with this slight median performance reduction.
The slowest run of the set was at 2105 GFLOPS, about 4.4%
below the global median. We immediately noticed that the
247 slowest runs were all on a single node, which had very
small run-to-run performance variability, but a low median
performance. Comparing each trial with the corresponding
node’s median performance showed that the slowest result
across the ensemble of 7657 runs was only 0.37% below
the median performance for the node. This is an extremely
low level of performance variability, and clearly indicates that
the snoop filter conflict (which would have been expected to
impact about 40 runs (one of 200)) is no longer present.
From this final set of runs, we were able to compute run-to-
run and node-to-node variability for the HPL benchmark using
1 GiB pages. Figure 9 presents the maximum, median, and
minimum performance values across the ensemble of 247 runs
for each of the 31 nodes. The ensembles are extremely tight,
with the largest standard deviations at 0.13% of the average.
The full range of maximum performance values across nodes
is about 8.6%, or about an order of magnitude larger than the
largest range of max to min values on any of the nodes.
Finally, the reduction in performance variability provided by
using 1 GiB pages was a major contributor to our ability to in-
crease our full-system HPL performance by more than 28%2°.
As a rough estimate, we estimate that full-system performance
was improved by about 5% by sorting our nodes into four
“speed bins” and using the ability of the Intel HPL benchmark

2Ohttps://www.top500.0rg/system/179045

code to distribute work unequally across the nodes?'. The
elimination of the snoop filter conflict is estimated to have
provided an improvement of approximately 15%. Although we
are unable to provide quantitative estimates of how much it
improved overall performance, the near complete elimination
of run-to-run variability almost certainly made our other tuning
efforts (e.g., P x @ decomposition, block size, MPI tuning
parameters, etc.) more effective.

VI. ANALYSIS

The preceding results provide strong evidence that a snoop
filter conflict causes the infrequent performance drops in the
HPL and DGEMM benchmarks, but provide little insight
into why this happens, or whether the phenomenon may be
expected to be relevant to other workloads. To address these
questions, we reproduced the snoop filter conflict using a much
simpler kernel, and analyzed the CHA/L3 address mapping
hash to further elucidate the nature of the conflict.

A. Snoop Filter Conflict with an array summation kernel

It is well known that high-performance DGEMM implemen-
tations use blocked algorithms that are designed to re-use data
in the caches, typically starting with the L2 cache [5], so it
is not surprising that a snoop filter conflict that unpredictably
evicts data from the L2 cache can cause significant perfor-
mance loss. To see if this snoop filter eviction phenomenon is
likely to be of general interest, we investigated the simplest
kernel that addresses the issue of L2 cache data retention —
repeated summation of the elements of a contiguous array.
The initial array size tested was chosen to be 125,000 (8-
Byte) elements per core — requiring approximately 95% of
each 1 MiB L2 cache??. The test code reads the performance
counters on all cores and CHAs, sums the array 1000 times
(using an OpenMP parallel loop distributing the data elements
across all 24 cores), and reads the performance counters again.
In ensembles of 1000 executions of the code, the L2 miss
rate varied between the expected near-zero values and values
exceeding 40%. The cumulative probability distribution was
approximately exponential, with about 25% of the runs show-
ing > 5% miss rates and about 1% of the runs showing miss
rates of 30% or more. In each of these cases, the number of L2
cache misses reported by the core performance counters was
a near-perfect match to the number of Snoop Filter Evictions
reported by the CHA performance counters, with correlation
coefficient indistinguishable from unity (> 0.9999), a slope of
near unity (= 0.999), and an intercept (number of L2 cache
misses not accounted for by Snoop Filter Evictions) of well
under 0.5% of the total number of loads. Execution time was
approximately linear with snoop filter eviction rate, yielding
slowdowns of more than 8z for the cases with > 40% L2 miss
rates.

2l https://software.intel.com/en-us/mkl-linux-developer- guide-
heterogeneous- support-in-the-intel-distribution- for-linpack-benchmark

22All tests used either 2MiB or 1GiB large pages, so contiguous addresses
are guaranteed to uniformly cover the 1024 sets of the 16-way-associative
1 MiB L2 cache on this processor, allowing use of the entire cache without
suffering random conflict misses.

To further explore the scope of the problem, these tests
were repeated using different thread counts (still using 125,000
elements per core). Ensembles of 1000 trials for each thread
count showed a minimum of 10 threads (9.54 MiB) was
required to see snoop filter conflicts causing L2 miss rates
in excess of 5%, with more frequent occurrences of snoop
conflicts and higher worst-case miss rates seen for all larger
thread counts.

Initial tests with 1 GiB pages showed no evidence of cache
misses or snoop filter conflicts for contiguous address ranges
of up to ~ 24 MiB located at the beginning of any 1 GiB page.
Snoop filter conflicts do occur for this simple array summation
test at higher offsets within 1 GiB pages. Investigations into
this phenomenon are ongoing.

B. Properties of the CHA/L3 address mapping hash

The L2 misses caused by snoop filter evictions must be
due to uneven mapping of contiguous addresses across the
snoop filter entries. This could be due to uneven assignment
of lines to CHAs, uneven assignment of lines to the sets within
CHAs, or both. Simple testing with the hardware performance
counters (similar to [12], but derived independently) showed
that every aligned set of 512 contiguous cache lines maps 21
cacheline addresses to each of CHAs 0-15 and 22 cacheline
addresses to each of CHAs 16-23. This is consistent with the
pattern observed in [13], but extended from 128 cacheline
sequences (on a processor with 6 L3 slices) to 512 cacheline
sequences (on this processor with 24 L3 slices). Since only
contiguous addresses are being used in these simple con-
tiguous summation tests, this near-uniformity ensures that the
conflict cannot involve a “bulk” asymmetry of allocations to
the various CHAs, and must therefore involve a conflict in set
selection within the CHAs. Analysis is ongoing, but it is not
yet clear whether it will be possible to invert the set selection
equations in sufficient detail to analytically derive snoop filter
conflicts from arbitrary physical addresses.

VII. SUMMARY

An infrequent, but significant, performance drop was ob-
served when running the HPL benchmark on clusters of dual-
socket servers equipped with Xeon Platinum 8160 processors.
We were able to reproduce the frequency and magnitude of
the performance drop using a simpler single-socket DGEMM
benchmark. Extensive studies using hardware performance
counters eventually enabled us to identify the mechanism
underlying the performance loss — unfortunate combinations
of physical addresses causing a conflict in the Snoop Filters
which causes data to be evicted from the L2 caches while it is
still in use. At low eviction rates, the majority of these evicted
cache lines are held in the L3 for re-use, and the overhead
of re-loading them from the L3 to the L2 caches does not
materially impact performance. As the eviction rate increases,
an increasing fraction of the evicted lines are not found in the
L3, and the added latency of retrieving the data from DRAM
memory begins to add to the execution time.

When using 2 MiB large pages, a significant (> 10%)
performance drop occurs on roughly one out of every 200
sockets. HPL benchmark runs using more than 100 nodes
quickly run into a situation in which several nodes are running
slowly in every trial, resulting in load imbalance and reduction
in the overall system performance.

For this benchmark, the use of 1 GiB large pages reduces
both the frequency and magnitude of the performance vari-
ability to negligible levels. This, in turn, provided a significant
fraction of our full-system HPL performance increase of more
than 28%. Unfortunately, this is not a practical approach for
production use, as the use of 1 GiB pages often requires
application modification, and changing the number of reserved
1 GiB pages (either up or down) requires a system reboot.

Further testing and analysis has shown that the snoop filter
conflict uncovered in the analysis of HPL and DGEMM also
occurs (with varying frequency and intensity) with any attempt
to hold contiguous blocks of 10 MiB or larger for re-use in the
aggregate L2 cache of the Xeon Platinum 8160 processor. This
phenomenon occurs when using 2 MiB or 1 GiB pages. With
1 GiB pages, the eviction rate is predictable, but for 2 MiB
pages we are currently unable to predict what combinations
of high-order bits will induce high snoop filter eviction rates.

VIII. CONCLUDING REMARKS

With the benefit of several months of review (and the
constraint of page limits on papers), it is difficult to avoid
describing the path of this investigation in a linear, streamlined
way. This is, of course, not how such investigations happen.
Performance anomalies that occur on the order of once every
one hundred runs could be due to a bewildering variety of
factors, many of which are never satisfactorily explained.
In this case, we were “helped” by the resilience of the
problem — despite numerous changes in software and runtime
configuration, the snoop filter conflict remained an infrequent,
but unwelcome visitor.

We have not seen evidence of this performance variability
impacting other applications on our clusters, but at a frequency
of one out of two hundred nodes, it is entirely possible that it
has occurred and been ignored. Moving forward, we plan to
collect CHA performance counter data on snoop filter evictions
as part of our routine system monitoring.

If there is a moral to this story, it is that with increas-
ingly complex processors, assumptions about behavior that
have always worked in the past may need review. In this
case, we have shown that even though 2 MiB pages ensure
freedom from conflicts within a single L2 cache, they do not
ensure freedom from conflicts when using many (nominally
independent) L2 caches concurrently. Sites with Xeon Scalable
processors with different core counts may be interested in
repeating this analysis on their systems.

ACKNOWLEDGMENT

This work was funded by the National Science Foundation,
award number 1663578.

APPENDIX A
ARTIFACT DESCRIPTION: HPL AND DGEMM
PERFORMANCE VARIABILITY ON THE XEON PLATINUM
8160 PROCESSOR

A. Abstract

This appendix describes the test environment and method-
ology used in the characterization and analysis of HPL and
DGEMM variability, and to demonstrate the existence of
snoop filter conflicts on a simple contiguous array summa-
tion kernel on systems using the Intel Xeon Platinum 8160
processor.

B. Description
1) Check-list (artifact meta information):

o Algorithms: dense linear system solver using LU factorization,
dense matrix multiplication, parallel array summation

« Programs: binary executables (distributed by Intel), serial and
OpenMP C programs, launching and post-processing scripts

o Compilation: Intel 17.0.4 C/C++ compiler (20170411), Intel
18.0.0 C/C++ compiler (20170811)

o Binary: xhpl binaries provided by Intel

o Run-time environment: CentOS 7.3 (kernel 3.10.0-513),
CentOS 7.4 (kernel 3.10.0-693)

« Hardware: Any server configured with at least one Intel Xeon
Scalable processor with 24 L3 slices enabled (Xeon Platinum
8160 or Xeon Platinum 8168)

« Run-time state: Multi-user mode (runlevel=3), with Transpar-
ent Huge Pages enabled

« Execution: Memory and thread binding controls in scripts

o Output: output files produced by workload under test, perfor-
mance counter output files (time series)

o Experiment workflow: download and install any or all of
the three test codes, modify the run scripts to execute a suitable
large ensemble of results (recommended to be many hundreds of
trials), sort performance results to identify performance outliers,
review performance counter results for the periods during which
the slow trials were executing

o Publicly available?: Partial (see notes below)

2) How software can be obtained (if available): The Intel

xhpl binaries used were provided to us directly by Intel. These
do not include version numbers, but they do print a build date

in the output files.

o The binary used for the results discussed in Section III
prints “puilt on Oct 11 2017 at 20:00:00.7

e The binary used for the single-node results dis-
cussed in Section V prints “built on Dec 7 2017 at
12:09:52.”

o The binary used for the multi-node results discussed
in Section V prints “built on Mar 20 2018 at
07:36:38.7

The latter two versions include 1 GiB page support. We do not
know if this feature is supported in publicly available versions
of the code, or whether it will be supported in future versions.

The source code and scripts to reproduce the remainder of

the results of this work can be obtained from three public
repositories:

e https://github.com/jdmccalpin/simple-MKL~-
DGEMM-test contains a simple driver and scripts for
running the DGEMM benchmark code.

e https://github.com/jdmccalpin/periodic—
performance-counters contains the source code for
the program that runs in the background, collecting
hardware performance counter data periodically while
the code under test is executing.

e https://github.com/jdmccalpin/SKX-SF-
Conflicts contains the code to repeatedly sum a
(nominally) L2-containable array, with built-in interfaces
to the hardware performance monitors. This code also
has the ability to use the performance counters to
determine the mapping of physical addresses to L3 slices
(as discussed in section VI.B.).

3) Hardware dependencies: The tests were run on two
clusters of dual-socket servers equipped with Xeon Platinum
8160 processors. These are 24-core processors with a nominal
frequency of 2.1 GHz, a maximum all-core Turbo frequency
of 2.0 GHz when running AVX512 code, and a guaranteed
AVX512 frequency of 1.4 GHz. HyperThreading is enabled
in the BIOS, but all tests reported here used only one Logical
Processor per physical core. The clusters are from different
vendors, but are configured with comparable interconnect
and DRAM (one dual-rank 16 GiB DDR4/2667 DIMM per
channel, for a total of 192 GiB/node).

The phenomenon investigated in this work was demon-
strated on many nodes in each of these clusters. There is no
evidence that any nodes are “immune” to the phenomenon. In
particular, the slowdowns were observed on all 31 nodes from
“vendor B”, which included 21 different patterns of disabled
L3 slices in the CAPID6 register. The phenomenon can be
reproduced with a single socket of a two-socket system, and
(based on the underlying mechanism) should be independent
of the number of sockets populated.

4) Software dependencies: The xhpl tests are dependent
on binary software distributions from Intel.

The codes from the simple-MKL-DGEMM-test and
SKX-SF-Conflicts require a version of the Intel 2017 or
2018 C/C++ compiler, including the MKL library (which
contains the high-performance DGEMM implementation). The
code from the periodic-performance-counters project
requires only a C compiler with OpenMP support (we used
the Intel 2018 C/C++ compiler).

Neither the xhpl or the DGEMM benchmarks include
an infrastructure for reading performance counters, but the
DGEMM project includes an example script showing how to
use the binary from the periodic-performance-counters
project to obtain concurrent performance counter measure-
ments. This script can easily be adapted to work with the
xhpl benchmark codes, if desired.

5) Datasets: No input data is required.

C. Installation

1) SKX-SF-Conflicts: The project must first be cloned to
the local machine, using

$ git clone https://github.com/\
jdmccalpin/SKX-SF-Conflicts

The README.md file in the project contains a description
of the two versions of the code: SnoopFilterMapper.c
(which is specialized for use with 2 MiB pages), and
SF_Test_Offsets.c (which is specialized for use with
1 GiB pages). The README .md file contains an outline of the
structure of the code, with extensive porting notes and a de-
scription of the expected run-time environment configuration.

2) perf_counters: The perf_counters infrastructure
must first be cloned to the local machine, using

$ git clone https://github.com/jdmccalpin/
periodic-performance-counters

The file "READ.ME” contains a list of configuration steps
that must be reviewed for machine-specific or site-specific
issues. The code and/or Makefile will need to be updated
accordingly.

This code requires root privileges to access the /dev/mem
and /dev/cpu/x/msr device drivers. It can either be run as
root, or (if OS security policies do not block this) tagged as
a setuid root binary.

3) DGEMM: The DGEMM driver code must first be cloned
to the local machine, using

$ git clone https://github.com/\
jdmccalpin/simple-MKL-DGEMM-test

The default target for make builds four binaries from the
simple_MKL_DGEMM_test.c source code, differing only in
the method used to allocate the three arrays used by the
DGEMM routine. The script run_ensemble.sh is set up
to run the DGEMM benchmark 200 times, saving the output
in 200 separate log files. Each execution of the benchmark
code calls the DGEMM routine 12 times, reporting both
per-iteration measures and cross-iteration statistics (excluding
the first call, which is normally slow due to MKL library
initialization overhead).

The script run_with_perf_counters.sh shows how to
integrate the ensemble testing with background performance
measurements using the perf_counters executable from the
periodic-performance-counters project. In this exam-
ple, the performance counters run in the background during
the entire ensemble of runs, so performance counter data from
a specific run requires looking up the starting and ending TSC
values (provided in the DGEMM output log files) with the
TSC values in the performance counter output file.

4) xhpl: After obtaining the xhpl distribution(s) from
Intel, follow the instructions provided by Intel for config-
uring the input data files. Asymptotic performance is typ-
ically obtained using problem sizes of 100,000 or larger.
Due to the larger problem sizes required to obtain asymp-
totic performance, these are much slower than the DGEMM
runs. The run_with_perf_counters.sh script from the
simple_MKL_DGEMM_test project can be easily adapted to
run the xhpl binaries with background performance counters.
In this case it is recommended that the NUMTRIALS variable in
the script be set to 1, so performance counter data is collected
for a single execution of the xhpl benchmark.

D. Experiment workflow

The easiest way to demonstrate the snoop filter conflict is
with the code from the SKx-SF-Conflicts project. Once
configured and built, the script run_ensemble.sh will run
the SnoopFilterMapper executable 100 times. The default
array size should be L2-containable, so the L2 miss rate
should be very close to zero. On a Xeon Platinum 8160 using
2 MiB pages, an ensemble of 100 trials will contain a handful
with L2 miss rates in excess of 20%, and with snoop filter
eviction counts that are effectively perfectly correlated with the
L2 cache miss counts. With the default performance counter
settings, the log files will contain the snoop filter eviction
count (summed across all CHAs on socket 0) in the output
line starting with CHA_PKG_SUMS pkg 0 counter 0, while
L2 cache misses are collected by core performance counter 2,
and the sums can be found in the output file in lines starting
with CORE_PKG_SUMS pkg 0 counter 2.

The DGEMM and HPL tests take much longer to run and
require more labor-intensive post-processing, but the workflow
is similar: run an ensemble of jobs and look for correlations
between snoop filter eviction counts, L2 fill counts, and
execution time.

The original tests were launched to the various nodes using
system-specific (unportable) scripts. Fortunately, any method
of launching jobs will suffice, as long as the nodes being
tested are not shared. Typically an experiment consists of
running the code under test multiple times (within a single
batch job) on many nodes concurrently. Once these jobs have
completed, slow runs are identified using simple grep, awk,
and sort commands on the output files. For the DGEMM
tests, the portion of the performance counter output corre-
sponding to the slow execution is identified using the starting
TSC times in the DGEMM output file, and these starting
and ending times are used to find the start and end sample
numbers in the performance counter output files. The lua
script post_process.lua requires the first command-line
argument to be the performance counter output file name,
but optional second and third arguments provide the starting
sample number (defaults to the first sample) and ending sample
number (defaults to the final sample) for the analysis.

E. Evaluation and expected result

All of the three test codes should show a wide range of
snoop filter eviction rates, though with different performance
sensitivities. For DGEMM and HPL, roughly 1% of runs are
expected to be 15% slow due to snoop filter evictions. With the
SnoopFilterMapper code, roughly 1% of runs are expected
to show L2 miss rates (due to snoop filter conflicts) of greater
than 30%.

F. Experiment customization

Numerous possibilities for customization are implied in the
discussions above.

G. Notes

None.

[1]

[2]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

REFERENCES

D. Molka, D. Hackenberg, R. Schone, and W. E. Nagel, “Cache
coherence protocol and memory performance of the Intel Haswell-
EP architecture,” in 2015 44th International Conference on Parallel
Processing, Sept 2015, pp. 739-748.

A. Kumar. (2017, August) The new Intel Xeon Scalable Processor
(formerly Skylake-SP). Intel Corporation. [Online]. Available:
http://www.hotchips.org/wp-content/uploads/hc_archives/hc29/HC29.
22-Tuesday-Pub/HC29.22.90-Server-Pub/HC29.22.930- Xeon-Skylake-
sp-Kumar-Intel.pdf

Intel® 64 and IA-32 Architectures Software Developer’s Manual Vol-
ume 3 (34, 3B, 3C & 3D): System Programming Guide, Intel Corpora-
tion, December 2017, document 325384-065US.

Intel Xeon Processor Scalable Memory Family Uncore Performance
Monitoring Reference Manual, Intel Corporation, July 2017, document
336274-001US.

K. Goto and R. A. v. d. Geijn, “Anatomy of high-performance
matrix multiplication,” ACM Trans. Math. Softw., vol. 34, no. 3, pp.
12:1-12:25, May 2008. [Online]. Available: http://doi.acm.org/10.1145/
1356052.1356053

A. Jaleel, J. Nuzman, A. Moga, S. C. Steely, and J. Emer, “High
performing cache hierarchies for server workloads: Relaxing inclusion
to capture the latency benefits of exclusive caches,” in 2015 IEEE 21st
International Symposium on High Performance Computer Architecture
(HPCA), Feb 2015, pp. 343-353.

D. E. Lenoski and W.-D. Weber, Scalable Shared-Memory Multipro-
cessing. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
1994.

J. H. Kelm, M. R. Johnson, S. S. Lumettta, and S. J. Patel,
“WAYPOINT: Scaling coherence to thousand-core architectures,”
in Proceedings of the 19th International Conference on Parallel
Architectures and Compilation Techniques, ser. PACT ’10. New
York, NY, USA: ACM, 2010, pp. 99-110. [Online]. Available:
http://doi.acm.org/10.1145/1854273.1854291

D. Sanchez and C. Kozyrakis, “The ZCache: Decoupling ways and
associativity,” in 2010 43rd Annual IEEE/ACM International Symposium
on Microarchitecture, Dec 2010, pp. 187-198.

M. Ferdman, P. Lotfi-Kamran, K. Balet, and B. Falsafi, “Cuckoo direc-
tory: A scalable directory for many-core systems,” in 2011 IEEE 17th
International Symposium on High Performance Computer Architecture,
Feb 2011, pp. 169-180.

P. Conway, N. Kalyanasundharam, G. Donley, K. Lepak, and B. Hughes,
“Cache hierarchy and memory subsystem of the AMD Opteron proces-
sor,” IEEE Micro, vol. 30, no. 2, pp. 16-29, March 2010.

C. Maurice, N. Scouarnec, C. Neumann, O. Heen, and A. Francillon,
“Reverse engineering Intel last-level cache complex addressing using
performance counters,” in Proceedings of the 18th International
Symposium on Research in Attacks, Intrusions, and Defenses -
Volume 9404, ser. RAID 2015. New York, NY, USA: Springer-
Verlag New York, Inc., 2015, pp. 48-65. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-26362-5_3

Y. Yarom, Q. Ge, F. Liu, R. B. Lee, and G. Heiser. (2015) Mapping
the Intel last-level cache. IACR Cryptology ePrint Archive. [Online].
Available: https://eprint.iacr.org/2015/905.pdf

