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Abstract—Scientific data is growing rapidly and often change
due to instrument configurations, software updates or quality
assessments. These changes in datasets can result in significant
waste of compute and storage resources on HPC systems as
downstream pipelines are reprocessed. Data changes need to be
detected, tracked and analyzed for understanding the impact of
data change, managing data provenance, and making efficient
and effective decisions about reprocessing and use of HPC
resources. Existing methods for identifying and capturing change
are often manual, domain-specific and error-prone and do not
scale to large scientific datasets. In this paper, we describe the
design and implementation of DAC-MAN framework, which iden-
tifies, captures and manages change in large scientific datasets,
and enables plug-in of domain-specific change analysis with
minimal user effort. Our evaluations show that it can retrieve file
changes from directories containing millions of files and terabytes
of data in less than a minute.

I. INTRODUCTION

Experimental and observational data from science user
facilities are growing rapidly in data size and complexity,
requiring the use of computational, networking and storage in-
frastructure at HPC centers. However, existing HPC platforms
and tools are designed for high concurrency MPI workloads
and significantly simpler data needs. A fundamental challenge
with scientific data on HPC systems is that it is frequently up-
dated due to the changes in instrument configuration, software
updates, quality assessments or data cleaning algorithms. Data
producers [1], [2] often publish data as different data releases,
which are annotated with high-level description about the
changes. However, they often lack information at a level that
is necessary to make decisions on the impact of data change.
For example, there is a lack of information on the number
of files changed, types of changes, amount of data change.
Scientific users often re-run pipelines with entire datasets due
to lack of information about the exact data changes.

In order to deal with data changes, users reprocess the
complete new dataset, and develop ad-hoc scripts that are
often manual, domain-specific and error-prone. These manual
solutions do not scale for large scientific datasets. Thus, it
is important to capture and understand the changes in data in
order to analyze the impact on dependent results and scientific
discoveries, and make efficient and effective resource usage.

Today, there are a limited number of tools and libraries
used to detect data changes [3], [4]. Unix diff is a simple
tool to detect file changes. Python provides a few libraries
to allow users to detect changes in data and filesystem [5],
[6]. However, these tools can only work effectively with text
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files, and are not able to handle different data and file formats
representing different scientific datasets. Version control sys-
tems also provide users an infrastructure to manage and track
changes [7], [8]. However, they are mostly used to keep track
of source-code changes, which also contains textual data. In
addition, different file formats and scientific data types add to
the complexities of analyzing data change. Existing solutions
are not designed to scale for scientific datasets with large
and complex files and directory structures. Additionally, the
performance of existing tools deteriorates significantly as the
number of files increase (Figure 14 in Appendix).

In this paper, we propose an end-to-end methodology to
track changes in scientific datasets. We design and develop
a framework, called DAC-MAN', that allows users to effi-
ciently and effectively identify, track and manage data change
and associated provenance in scientific datasets. DAC-MAN
seamlessly identifies and captures changes between multiple
versions of a dataset using efficient indexing and caching
mechanisms. The framework detects changes of different types
and granularities. DAC-MAN also allows users to plug-in
domain-specific data change analysis scripts. The framework’s
current implementation provides a command-line utility that
is used to track and capture changes offline. However, the
framework is flexible such that it can also be setup for real-
time data comparison. DAC-MAN is a foundational block
that is needed to manage data and workflows from data-
intensive sciences on supercomputers. It can be integrated with
existing data management frameworks [9], [10], providing
them the necessary information required to efficiently manage
data on large HPC systems. The knowledge of data change
provided by DAC-MAN can also be used to selectively process
data, enabling workflow managers and resource managers to
efficiently and effectively use HPC resources.

The novelty of DAC-MAN is in the end-to-end methodology
of tracking and managing data change using indexing and
caching on HPC systems. Specifically, we make the following
contributions in this paper:

e We describe the design and implementation of DAC-
MAN.

e We describe our methodology to compare and capture
changes at different levels of a scientific dataset leverag-
ing a bi-directional indexing and caching.

IDAC-MAN stands for DAta Change Management



o We evaluate the performance of DAC-MAN on synthetic
and scientific datasets.

The rest of the paper is organized as follows. Section II
presents an overview of use cases and design considerations
for efficient change capture. Section III presents the design
and implementation of DAC-MAN. We present our results in
Section IV. We discuss related work in Section V and the
conclusions in Section VI.

II. BACKGROUND

In this section, we discuss a sample workflow and key
design considerations for a change capture framework.

A. Sample Workflow

We illustrate the challenges with data changes using the
NASA MODIS data. MODIS (or Moderate Resolution Imag-
ing Spectroradiometer) is an instrument aboard the Terra
and Aqua satellites. The data collected by MODIS helps
the study of global dynamics and processes occurring across
land, oceans, and lower atmosphere and is used by many
different scientists. Users download the data from the website
and perform complex pre-processing steps before using the
data. Previous work has highlighted the challenges with data
procurement and processing due to difficulties in volume, size
of data and scale of analyses [11]. For example, a year’s
data contains tens of thousands of files and is ~1 TB. High
performance file systems are designed to handle large number
of small files, resulting in performance issues in the workflow.
The pre-processing step to reproject the data to a specific
resolution and coordinate system can take ~5.8K compute
hours on a NERSC system [11].

The datasets are often updated as quality assessment and
quality control steps are performed. However, there is no
description of changes available with new versions of the
dataset. Additionally, there is limited or no provenance that
captures the source and reasons behind the change. Scientists
might use simple tools like diff to inspect the changes but often
the process is too tedious or provides incomplete information.
Hence, in the absence of any or limited provenance, scientists
often choose one of two directions for handling the change —
delay the processing or download all the data and reprocess.
For example, they may choose to delay the process of updating
the downstream products due to the complexity of the process-
ing resulting in mismatch between the versions of the products
that is often hard to track due to lack of provenance. If and
when they choose to use the new version of the data, they
download all the data, reprocess it and regenerate the outputs.
This results in a waste of compute resources and heavy use of
the file system on supercomputing resources.

B. Design Considerations

In this section, we highlight the design considerations for a
scalable data change management framework.
Scalability. One of the primary design considerations for a
change management framework is its ability to scale with

larger datasets. It also needs to allow users to scale their data
comparisons from desktops to supercomputers.

Ability to generate and share data change summaries.
Data producers often need to summarize and share changes
for data releases to the users. Hence, the framework should be
capable of summarizing and sharing the changes to users in a
meaningful way.

Classification of different types of change. Users often need
to distinguish between metadata and data-level changes in
scientific datasets. It is important to classify the changes into
different types, allowing users to make informed decisions
based on the importance and significance of the change.
This allows users to selectively process the data. Hence, the
framework should be able to define the different types of
changes and classify the data.

Compare remote repositories. In science environments, often
two datasets are not co-located on the same system. Different
versions of the dataset may exist on two remote locations,
e.g., two supercomputing facilities. It is important to capture
the changes between such datasets without transferring all the
data over the network to a common location.

Support domain-specific change analysis. Scientific datasets
come in different file and object formats. Such datasets often
need domain-specific analysis for understanding the semantic
changes in the data. The framework should allow users to plug-
in and scale external scripts for data change comparisons.
Compatible with existing software ecosystems. Software
ecosystems in scientific collaborations and supercomputing
centers can be diverse and complex. It is critical that the tool
is compatible with existing software stacks in collaborations.
Data repositories for large collaborations are distributed on
different systems or filesystems and under control of different
users or groups. A data change framework cannot disrupt these
social structures and/or assume it can own and control the
data.

III. DESIGN AND IMPLEMENTATION

DAC-MAN provides the end-to-end methodology and work-
flow needed to effectively and efficiently determine, track and
manage change across datasets. DAC-MAN is designed and
implemented to work with current filesystems and software
ecosystems in scientific collaborations and HPC systems. It
uses a parallel indexing technique to determine the changes in
the data that is then used for quick look-ups for user queries.
Also, since data change queries are likely to be repeated
across directories and subdirectories, DAC-MAN manages a
cache that stores pre-computed change results. The combined
approach of parallel indexing and caching enables us to
provide efficient data change comparisons over large datasets
that are increasingly using HPC systems.

Figure 1 shows the high-level architecture of the DAC-
MAN framework. The framework has two main components
— a) change tracker, and b) query manager — that track
the changes in data and manage the data change related
queries respectively. In the interactive mode, a user queries
for the changes by specifying two directories that contain
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Fig. 1: DAC-MAN architecture. Users query for the changes between two directories that contain different versions of a dataset. The query
manager requests the change tracker to compare the files in the directories. The directories are indexed and the indexes are saved in the
indexing area. The change tracker uses the indexes to calculate changes in the files and saves the change information in the caching area.
The query manager returns the changes from the caching area to the user.

the different versions of a dataset. The query manager looks
for the requested change in the caching area. The caching
area maintains any previously calculated change information
between the two directories. If the change information is
already in the cache, it returns the results back to the user.
Otherwise, the query manager requests the change tracker
to compare the files in the specified directories. The change
tracker fetches the metadata and indexes for the files if they
exist. If the index does not exist, it generates the index for the
data. The change tracker uses the indexes to do a comparison
between the files, and saves information about the file changes
in the caching area. The use of index for comparison ensures
that our comparison is efficient and ‘fast’. A user can request
a) a higher-level summary of file changes (i.e., which files
changed) or b) a fine-grained comparison of two files (i.e.,
what has changed between two files). If the user queries for
file changes, the query manager retrieves the changes directly
from the cache. If the user queries for data changes, the
query manager fetches the changed files, and requests the
change tracker to compare the data in files. The change tracker
compares the data and returns the results back to the user
through the query manager.

The change detection steps in DAC-MAN consist of a
collection of sequential and parallel tasks, resulting in a
‘change capture workflow’ that includes steps for scanning
of the directories, parallel indexing of the data, comparison of
the data and parallel diff (More details in Appendix C.)

A. Indexing

DAC-MAN creates a bi-directional index, which contains
both forward and reverse indexes on the dataset. In other
words, the forward index maps a file to the hash of its data,
and the reverse index maps the data hash to the file. The
forward index is used by DAC-MAN to compare files with
the same relative paths in two dataset versions. It is used to
check if a file has been modified or is unchanged. The reverse
index is used to compare the data hashes to find out any path-
related changes in the files. The use of bi-directional indexes
allow DAC-MAN to capture both data and metadata changes in
the dataset. In addition, indexing in DAC-MAN also creates a
dictionary object where keys are the file names, and the values

are lists of all different paths that contain the files of the same
name.

DAC-MAN builds the file indexes in parallel. On a single
node, DAC-MAN uses Python multiprocessing and on a multi-
node cluster, it uses MPI for parallel indexing. DAC-MAN
maintains an internal queue to keep track of the names of
files to be indexed. Each process fetches a file name, builds the
index, and removes the associated file entry from the queue.
The workers continue this process until all the files in the
queue are indexed. Finally, DAC-MAN saves these indexes on
the disk that is used for efficient change comparison.

DAC-MAN recursively indexes all the directories and subdi-
rectories of a dataset. This alleviates the users from indexing
the subdirectories and computing the changes for each sub-
directory of a dataset separately. DAC-MAN maintains all the
indexes in a separate indexing area on the filesystem. Since the
indexes are saved directly on the filesystem, they are extremely
light-weight and allows for fast comparison because there are
no associated overheads. Since the indexing area in DAC-MAN
is a separate directory where the indexes are stored, users
can easily copy the indexes between multiple machines. This
allows for comparing datasets that are not co-located on the
same system.

B. File Comparator

DAC-MAN implements a file comparator that can compare
arbitrarily large number of files and directories. When two
directories are compared, files in the two versions are classified
into the following types — a) added, b) deleted, c¢) modified, d)
metadata-only and e) none/unchanged. DAC-MAN uses a set
of rules to classify the files into these different types.

A file is classified as unchanged only if its file proper-
ties (path and name) and data remain unchanged. A file is
added/deleted, if no corresponding comparison is found in the
other version of the dataset, i.e., there is no matching file path,
name or data for the file in the other version. A file is classified
as modified if its data changes, but one or more file properties
(i.e., metadata) remain the same. Finally, a file is said to have
metadata-only changes if there is a file with the same data, but
with one or more different file properties. Appendix D lists the
rules for classifying changes into different types.
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Fig. 2: DAC-MAN reshapes multi-dimensional scientific datasets into
one-dimensional arrays, and uses element-wise comparison between
the corresponding records.

There are also cases when a direct comparison of
a file is not easily available. For example, two dataset
versions may contain multiple files that have the same
names, but different paths. These files may be orga-
nized in separate subdirectories. For example, a dataset
may contain a file with name foo under three differ-
ent paths — /dataset/foo, /dataset/some/foo and
/dataset/other/foo. Since files with different paths and
same names may result in multiple comparisons, DAC-MAN
implements a conflict resolution strategy to do one comparison
per file for performance reasons. It makes use of the dictionary
object created during indexing, which contains the mapping
of file names to all the associated paths. DAC-MAN uses this
dictionary only when a file does not have identical paths, but
have the same name in the two versions of the dataset. DAC-
MAN marks these files as conflicts. The conflict resolution
strategy then uses a heuristic to yield the best possible match
using the edit distance [12] between the file paths. It fetches all
the associated paths of a file from the dictionary object that is
created during indexing of a dataset, and selects the path with
the minimum edit distance. In case, more than one path has
the minimum edit distance, DAC-MAN selects the first path in
the list. Once the corresponding file path is selected for the
conflicted file, DAC-MAN classifies the file as metadata-only
change and saves the compared file path in the other version.

The heuristic uses the indexes rather than the data in files
for faster conflict resolution and file comparison. The heuristic
also limits change identification to only one comparison per
file. The other alternative is to compare a file to all the
associated paths with matching file names. However, this is
not a scalable solution as it may lead to mXn comparisons,
where there are m and n occurrences of a file with the same
name in two versions of a dataset respectively.

The classification of changes allows DAC-MAN to sim-
plify and speedup change retrieval when users query for the
changes. DAC-MAN also uses this classification to calculate
data changes for the files that are modified. However, users
can explicitly specify two arbitrary files to be compared, and
DAC-MAN uses the relevant data comparator for calculating
the data changes between files.

C. Data Comparator

As discussed earlier, scientific datasets can be represented
using different file formats and structures including comma

separated values, tables, arrays etc. DAC-MAN implements
several “data adaptors” to support data comparison for dif-
ferent scientific datasets. The currently implemented adaptors
use specific libraries [13], [14], [15] to read and transform data
from several scientific data formats [16], [17] into a common
format that is understood by the DAC-MAN data comparator.
Additional data adaptors can be similarly implemented for
other scientific data formats.

The common format that the data comparator understands
is called a “DAC-MAN record”. A DAC-MAN record is a flat-
tened representation of any arbitrary multi-dimensional array.
Each element of a DAC-MAN record contains a key and one
or more values that the key uniquely identifies. This allows for
comparing the values by matching corresponding keys in two
records. A DAC-MAN record is a flattened one-dimensional
array, where the index of an array element is the key and
the array element is the value. Thus, the data comparison
is simply reduced to an element-wise comparison of the two
arrays as shown in Figure 2. Other data comparison algorithms
for finding changes in data can also be implemented in the data
comparator. However, many of the existing algorithms [4], [18]
have polynomial time complexity and can be extremely slow
for large scientific datasets.

A domain-specific change analysis often uses statistics [19]
or other techniques [20], [21] that might apply to a specific
dataset like XML, images, etc. DAC-MAN allows users to
develop their own data comparator scripts and use them
as plug-ins. The script needs to accept the file names as
command-line arguments. When the script is plugged-in, DAC-
MAN uses the pair of files to be compared as the command-
line argument to the script. The plug-in feature allows users to
efficiently scale-up domain-specific scripts. since DAC-MAN
parallelizes data change calculation using MPI.

D. Caching

DAC-MAN uses the indexes to compute file and data
changes. Once the changes between two datasets are com-
puted, DAC-MAN saves the results in a cache. The cache acts
like a staging area (similar to Git) in DAC-MAN for faster
retrieval of file changes, if users query for the changes multiple
times. It only saves the metadata about the file changes,
associating the type of change (as classified in Table II) for
each file in the dataset. When a user queries for data changes,
DAC-MAN first retrieves the list of modified files from the
cache, and then compares them using the data comparator.
The cache is persistent because the results are saved on
disk. Hence, it is only limited by the available space of
the underlying filesystem. The results in the cache are only
overwritten when files in the directories change. They are
never deleted except if the user explicitly clears the cache.

DAC-MAN maintains a list of tags to identify and record
change results in the cache. Once a user queries for the
changes between two datasets, DAC-MAN saves the query
and its results in the cache, and creates a tag for it. Each
tag is a unique identifier that corresponds to the hash of the
directory paths for which the change is computed in the query.



DAC-MAN creates the tags using the absolute paths of the
directories, and hence, creates a unique tag for every dataset
irrespective of how the user queries for the changes. If the
same query is issued multiple times, DAC-MAN uses the tag
to retrieve the change results directly from the cache.

DAC-MAN also uses this cache to directly fetch the changes
in the subdirectories of a dataset. DAC-MAN indexes and
computes the changes recursively for all the directories and
subdirectories of a dataset. Thus, it does not recompute the
changes for the subdirectories separately if the top-level di-
rectory changes are already cached since subdirectory level
changes are a subset of the total dataset changes. When a user
queries for the changes of two respective subdirectories in the
datasets, DAC-MAN derives the subset of changes by filtering
only the results that match the subdirectory paths specified in
the query. However, once the subdirectory changes are filtered
and derived from the dataset cache, the change results are
saved in the cache, and a tag is created that associates the
changes to the subdirectories.

The caching area in DAC-MAN is similar to a staging area,
where all the changes are saved for fast retrieval, without the
need for computing the changes every time a user queries
for it. DAC-MAN currently saves all change results as files
on the disk. This provides a light-weight solution to capture
and analyze changes. However, users can also use relational
databases or object stores for complex change analysis and
sharing change results. The architecture of DAC-MAN allows
users to plug-in components for saving change results into
databases and other forms of persistent stores.

E. User Interface

DAC-MAN provides a command-line utility and a program-
ming interface. It is currently implemented in Python and uses
Python’s scandir library as it avoids making unnecessary calls
to retrieve file system attributes. We use the editdistance
library for calculating the minimum edit distance between two
strings, which we use for comparing file paths. When the
commands are run on a single node, it uses Python multi-
processing for parallel indexing and data change analysis. It
allows scaling on multiple nodes through MPI.

Users use the dacman diff command to query changes
between two datasets. This command allows users to retrieve
both filesystem and data changes (using the ——datachange
option). Additionally, users can plug-in their own scripts
through this command for doing domain-specific data change
analysis. The diff command also allows users to scale
change analysis across multiple nodes using MPI.

If the changes are not available in cache, then dacman
diff implicitly indexes the data, computes, and caches the
changes. Alternatively, users can also explicitly index the data
using dacman index. Explicit indexing provides users the
flexibility to index the data remotely and compare the changes
locally. This is possible since indexes can be copied and used
for identifying changes on another machine, without the need
for moving the actual data. This is a powerful feature of DAC-
MAN as it allows directories and files on separate machines

to be compared without necessarily moving all the data to
a single place. The index command also allows users to
explicitly scale out indexing on an HPC system and pre-
compute the indexes to enable fast change detection.

F. Plug-ins

The default data comparator in DAC-MAN may be in-
sufficient for detailed change analysis of complex scientific
datasets of different formats. Also, there may be a need for
more detailed change analysis based on the results provided by
DAcC-MAN. Thus, users can define their own data comparators
and plug-in scripts in DAC-MAN to compute data changes.

Users can use the command-line utility to specify external
scripts as plug-ins for doing data comparisons. Additionally,
users can also use the Python programming interface to define
and use data comparators for specific datasets.

G. Data Provenance

Provenance information about the datasets is embedded in
the different types of changes captured by DAC-MAN. DAC-
MAN keeps track of the datapaths and associated metadata
information (e.g., ownership, creation date etc.), provenance
information is automatically included in the data captured
by DAC-MAN. This information can be converted into W3C
PROV standards [22] using existing tools like ProvToolBox
or Komadu [23]. Additionally for scientific workflows, the
change information corresponding to a dataset, as captured
by DAC-MAN, can be used to derive the relationship between
inputs and outputs of a workflow. For example, if part of the
input and output data changes simultaneously for a workflow,
DAC-MAN retrieves the corresponding changes, where the
changed inputs can be associated with the changed outputs
allowing users to track provenance across dataset revisions.
Finally, any changes in binary executables or workflow de-
scriptions can also be identified by DAC-MAN, associating
the outputs to the corresponding entities that generated them.

DAC-MAN also enables using the provenance information to
analyze the impact of changes. Previous work has focused on
capturing provenance from execution traces of scientific work-
flows [24], log files [25] and program instrumentations [26].
These provenance traces can be compared using DAC-MAN
for any changes in the workflow parameters, and the asso-
ciated inputs and outputs. Users can then use DAC-MAN’s
data comparators, or use domain-specific comparison tools to
analyze the changes in these traces for evaluating the impact
of data change.

H. Usage on Supercomputers

The command-line utility in DAC-MAN allows users to
identify and capture changes ‘on demand’ from different
versions of a dataset. Additionally, it can also be used as
a monitoring tool using cron, capturing change information
from frequently changing datasets. The programming interface
allows users to integrate change identification and capture into
their existing data processing pipelines.

Our design process for DAC-MAN is based on user research
methods. User research methods enabled us to understand the



Metric | Description

Directory Scan

Time to recursively scan a directory and save
file metadata (seconds).

Time to index the data in a directory (seconds).
Time to retrieve changes between two datasets
(seconds).

Index Creation
DAC-MAN diff

Total Time Directory Scan + Index Creation + DAC-MAN
diff (seconds)
Index Size Size of DAC-MAN indexes (MB).

TABLE I: Metrics for evaluating DAC-MAN.

design requirements for DAC-MAN. Subsequently, we have
used usability studies to evaluate early prototypes. The usabil-
ity studies showed that the functionality of the prototypes was
well-aligned with the varying needs of the users. Users can use
DAC-MAN on their desktops by directly using the command-
line interface. Additionally, users can submit DAC-MAN in a
batch job script, allowing it to scale to multiple nodes using
MPI. Thus, users are able to scale their data change analyses
on large scientific datasets. DAC-MAN has also been designed
to allow users to easily write their own data comparators or
plug-in scripts for specific domains.

IV. EVALUATION

In this section, we evaluate the performance of DAC-MAN
in the context of synthetic and scientific datasets. We compare
the performance of DAC-MAN with state-of-the-art solutions
and evaluate the scalability with increasing data sizes. We also
evaluate the performance on different types of data changes.
Finally, we evaluate the overheads of using DAC-MAN.

A. Evaluation Setup

We evaluate our system on NERSC’s Cori supercomputer.
It is a Cray XC40 supercomputer with 1630 compute nodes.
Each node has 32 cores and has 128 GB DDR4 2133 MHz
memory and four 16 GB DIMM:s per socket. Each core has its
own L1 and L2 caches, with 64 KB and 256 KB, respectively.
We use Cori’s Lustre filesystem for storing data, indexes and
metadata information. The filesystem has a peak performance
of approximately 700 GBps. We evaluate the performance both
on the login and compute nodes (at scale). All experiments are
repeated three to five times, and we use the mean across the
runs for our results. Variability across runs was minimal and
hence, not represented in the graphs.

B. Datasets

We use scientific datasets from Sloan Digital Sky Survey
(SDSS) and Fluxnet, containing different versions of cosmol-
ogy and environmental sciences data respectively (more details
in Appendix A). Also, we use synthetic datasets to evaluate the
effect of different characteristics of data on DAC-MAN. Our
evaluations focus on the scalability of DAC-MAN for large
scientific datasets. These datasets are selected based on their
diversity of types, characteristics and quantity. SDSS datasets
contain large number of files, mostly binary and image data
with different types and amounts of change in the dataset.
Fluxnet contains smaller number of files, commonly in CSV
format. Synthetic datasets are randomly generated binary data
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in files and the changes are in fixed increments to help evaluate
the performance trends in DAC-MAN. Appendix E summarizes
the different characteristics of the datasets used in evaluation.
Sloan Digital Sky Survey (SDSS). We evaluate DAC-MAN
using three subsets of the SDSS dataset, each with two dif-
ferent versions of the dataset. SDSS datasets primarily consist
of FITS files [16], which contain both images and binary data
tables. The three SDSS datasets have different characteristics
in terms of size of the data and types of changes. The SDSS
datasets are — i) Redux, which contains versions 5.6.5 and
5.7.0 from SDSS data release 11 and 12 with a total of ~9.7
million files (/4.4 million in one version, and &5.3 million
in another version) and ~10 TB total file size between the
two versions. ii) Resolve, that contains =4.5 million files
with a total file size of ~550 GB divided into two versions
corresponding to the SDSS data release 13 generated using the
resolve algorithms, and iii) Sweeps, that contains two versions
of the reduced sweep imaging catalog data files in SDSS data
release 13 with a total of ~45,000 files and ~1.2 TB of data.
The Redux dataset has a large number of modified files, with
very few files that remain unchanged. The Resolve dataset has
very few changes, and most of the data remained unchanged.
The Sweeps dataset mostly contains metadata-only changes.
Fluxnet. Fluxnet data releases consist of datasets measuring
the CO., water, and energy fluxes in North, Central and South
America. For the Fluxnet dataset, we use the Fluxnet2015 and
La Thuile data releases [1]. There are =~2500 files in the two
datasets with a total of ~1.7 GB of data in size. The Fluxnet
data corresponds to the dataset, which requires domain-specific
analysis for calculating data changes as all the old files from
the La Thuile data release (V) have been removed, and new
files have been added in the Fluxnet2015 data release (V1).
Specifically, the measurements in Fluxnet2015 are collected by
grouping together several years data, whereas for La Thuile
data, every year’s data is in a separate file. Additionally, the
names of the files are changed.

Synthetic Dataset. The synthetic datasets are generated by
creating files using random data. Each synthetic dataset has
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Fig. 5: Time to complete each stage in DAC-MAN for a synthetic dataset of 100,000 files with different types of changes. The total time
to identify and retrieve changes remain unchanged, except when all the files are deleted in one version of the dataset.

two versions to compare. The total number and size of each
synthetic dataset is dependent on the goal or dimension of
the specific experiment. The different dimensions based on
which the experiments are executed are — i) type of change
(Appendix D), ii) number of files changed, iii) total number of
files in a dataset, iv) individual file size, and v) the directory
structure and layout of files across different subdirectories. For
a systematic evaluation of DAC-MAN, each synthetic dataset
is generated by varying only one dimension and keeping the
others fixed. We use the synthetic dataset to understand DAC-
MAN’s performance with different dataset characteristics to
provide a systematic and controlled evaluation of DAC-MAN
under several changing parameters.

C. Tools and Metrics Used for Comparison

In this section, we list the tools and metrics used for
evaluating DAC-MAN. We compare DAC-MAN with Unix diff
utility and Git [27]. Git allows users to identify changes in
two directories through its diff option. Users can specify the
—-—-no—-index flag to compare any two arbitrary directories.
Python is being increasingly used in HPC environments and
thus, we also compare the performance of DAC-MAN with
Python’s filecmp library. Specifically, we evaluate the per-
formance using ‘shallow’ and ‘deep’ options in filecmp. The
‘shallow’ option only uses the file metadata to identify files
that are changed. The ‘deep’ option compares the contents
of the files to determine the changes. We also compare
the performance of identifying data changes using the DAC-
MAN'’s data comparator and Python’s difflib library.

We evaluate the performance of DAC-MAN using a specific
set of metrics listed in Table I. We use the total runtime of
DAC-MAN that includes the time to scan the data, index them,
and save and retrieve the change results from the cache. We
measure the time to retrieve changes with different frequencies
in DAC-MAN to understand the effect of caching. Finally, we
measure the storage overheads of creating indexes.

D. Comparison to Existing Tools

Figure 3 compares the performance of DAC-MAN to exist-
ing tools for identifying file changes with increasing number
of files. We compare the performance on synthetic dataset,
where each file is 4KB in size, and the tests are run on a
single node (=32 cores). The Y-axis is in log scale. For DAC-
MAN, we use the total time to compute and retrieve changes
including directory scan and indexing.

DAC-MAN performs significantly faster than other state-
of-the-art tools. For 100,000 files, DAC-MAN is ~ 120x
faster than Git and Unix diff, and filecmp’s deep compari-
son, and ~ 100x faster than filecmp’s shallow comparison.
This is because DAC-MAN takes advantage of the multicore
architecture, creating the indexes in parallel, and then using
the indexes to compare files. This is significantly faster than
individually comparing the files, which involves opening the
files, reading them and comparing the data. The performance
of the shallow comparison deteriorates with increasing number
of files because it uses large number of metadata operations
on the Lustre filesystem. This creates a bottleneck because
of the performance limitation of Lustre’s metadata server. In
contrast, DAC-MAN compares files based on indexes rather
than data and does a fast scan using Python’s scandir library
which avoids making unnecessary calls to the metadata server.

For smaller datasets, the difference between DAC-MAN and
the other tools is not significant because of the indexing
overheads. The total time to identify the changes for smaller
datasets is generally small. Hence, the performance gains
of using the indexes for comparison, is overshadowed by
the overheads of creating the indexes in DAC-MAN. For
larger datasets, using indexes in DAC-MAN for comparing
the datasets improves the performance by three orders of
magnitude (= 3000x, only for the ‘diff’ step). Hence, for
larger datasets DAC-MAN performs better than other tools
even with the indexing overheads.

E. Scalability of DAC-MAN Indexing

Figure 4a shows the time taken to index the synthetic dataset
with 1,000,000 files each of 4 KB in size with increasing
number of compute resources. As can be seen from the figure,
the time taken to index the files reduces as we allocate more
cores for indexing. On a single node (=32 cores), DAC-MAN
uses Python’s multiprocessing module to parallelize index
creation. On a multi-node HPC cluster (>64 cores), DAC-
MAN uses MPI to parallelize indexing. There is a 3x speedup
when we allocate 1024 cores for indexing 1,000,000 files using
DAC-MAN.

Figure 4b shows similar scalability for SDSS Redux dataset
as that of synthetic dataset. The indexing time starts to
decrease as more resources are allocated to DAC-MAN. There
is a 4x speedup when 2048 cores are allocated to do parallel
indexing. The time to index the datasets includes reading
the files in parallel and computing their data hashes. The
results show that the use of a parallel file system (like Lustre)
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Fig. 6: Time to complete each stage in DAC-MAN for the synthetic
datasets with varying number of files (each of size 4 KB) and file
sizes (total of 200,000 files). The total time increases as the number
of files and file sizes increase due to indexing overheads.

enables parallel I/O that allows for indexing performance
to be improved as more resources are allocated to DAC-
MAN. However, the results show that performance does not
scale at the same rate, when more compute resources are
allocated since DAC-MAN indexing is I/O intensive. Indexing
involves reading several files in parallel gets affected by the
I/O limitations of the underlying filesystem. Previous studies
have shown that reading large number of files in parallel affects
the metadata server of the parallel file system (Lustre) [28].
Additionally, the performance is also limited by the I/O
bandwidth of the underlying filesystem [29]. Some of these
performance bottlenecks can be eliminated by using high-
speed storage systems, like Burst Buffers where the metadata
server overloading can be minimized [30], [31].

FE. Effect of Number of Changes on Total Time

Figure 5 shows the total time to identify and retrieve
changes when there are different types of changes in the
dataset. X-axis represents the number of changed files in the
revision directory with respect to the base directory. For this
experiment, we use the synthetic dataset with 100,000 files in
the base version, where each file is 4 KB in size.

As can be seen from Figure 5a, the total time to identify
and retrieve changes is extremely small when all the files in
revision are deleted. This is because the total number of files
to be indexed in the revision directory is reduced to zero.
For the other cases in Figure 5a, the number of deleted files is
comparatively small (< 10%) as compared to the total number
of files in the dataset. Hence, the change detection time is
unaffected by the deletions.

Figure 5b shows that number of file modifications does not
change the time to identify and retrieve change information if
the number of files and file size remains the same. Similarly,
Figure 5c shows that the amount of metadata-only changes
(where the data remains unchanged, and the file properties
change) does not impact the time to identify and retrieve
change information. Hence, data or metadata changes by itself,
have no effect on the total runtime of DAC-MAN.

G. Effect of Indexing Overheads on Total Runtime

In this section, we evaluate the indexing overheads of DAC-
MAN with different file characteristics. Figure 6a shows the
total time to identify and retrieve changes when the number of
files change in the synthetic dataset. Each file is 4 KB in size.

The majority of the total time is used in indexing the datasets
since these experiments are run on a single node with 32 cores.
It is also important to note that the time to scan the directories
and retrieve the data changes increase with increasing number
of files. However, directory scan time is very small (= 12
seconds) as compared to the indexing time (= 400 seconds)
for 1,000,000 files.

Figure 6b shows the time to identify and retrieve changes
when the file size changes in the synthetic dataset. X-axis
represents the individual file size. As the file size increases,
the change detection time increases due to increase in indexing
time. The indexing time increases because DAC-MAN indexes
the files based on the hash of the data. This requires reading
all the data in the file and hence, with increasing file size more
data is to be read and hashed, to build the index.

Figure 7 shows the time to identify and retrieve changes
in SDSS and Fluxnet datasets. Since, the Redux dataset in
SDSS has a large number of files (approx. 5 million files in
each version, around 10 TB of data), directory scanning and
indexing take most of the change detection time. However,
once the data has been indexed, the time to retrieve changes
is significantly small (= 32 seconds). For smaller datasets
(e.g.,Fluxnet and Sweeps), the indexing and scanning times
are significantly lower than that of the Redux dataset because
there are fewer files to be indexed.

H. Effect of Caching on Retrieving Changes

Figure 8a shows the time to retrieve the changes when the
number of files in the synthetic dataset changes. Retrieving the
changes for the first time increases with the increasing number
of files. This is because DAC-MAN computes the changes and
saves it in the persistent cache when a diff is requested for
the first time. However, if a user queries for the changes in
datasets which are already computed, DAC-MAN retrieves it
in constant time from the cache.

Figure 8b shows that the change retrieval time in DAC-MAN
is independent of the size of data. DAC-MAN uses the indexes
to compute and retrieve the changes and does not use the data
in files directly to compute the changes.

Figure 9 shows the query response time for retrieving
changes at different subdirectory levels. The results show the
time to retrieve changes from subsequent subdirectories of a
synthetic dataset. For this experiment, we use the synthetic
dataset containing a total of 1,000,000 files. There are four
subdirectories with 200,000 files in each subdirectory. The X-
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Fig. 7: Time to complete each stage of change detection in DAC-
MAN with SDSS (Redux, Resolve and Sweeps) and Fluxnet datasets.
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file sizes (for 100,000 files). Time to retrieve changes for recurring
queries is constant and significantly less due to caching.

axis represents the level of the subdirectory, where level O
refers to the top directory, level 1 refers to a subdirectory
within the top directory and so on. Change results can be di-
rectly retrieved for any level of subdirectory using the top-level
directory indexes since indexing the top level directory with
DAcC-MAN indexes all the files and subdirectories recursively.
Figure 9 shows that as we query for changes from deeper
subdirectories for the first time, the retrieval time reduces.
This is because the total number of files decreases with the
increasing depth of subdirectories. However, as is the case
with other change retrieval queries, if the subdirectory changes
are already computed and cached, then the recurring identical
query yields the results in constant time.

Figure 10 shows the time to retrieve changes from the
scientific datasets. For large datasets like Redux, the change
results are retrieved in ~ 30 seconds when DAC-MAN pre-
computes the changes and the results are saved in the cache.
When the changes are computed for the first time, they are
retrieved in ~ 85 seconds. For the Resolve dataset, changes
are retrieved 10 x faster when the results are saved in the cache
as compared to retrieving the changes for the first time. For
smaller datasets like Sweeps and Fluxnet, the cache does not
provide the same level of improvement, but is still at least 2x
faster than when the results are retrieved for the first time.

I. Space Overheads

Indexing. Figure 11a shows the amount of space taken by
DAC-MAN indexes when the number of total files change
in the synthetic dataset. As can be seen from the figure,
with increasing number of files, the total index size increases.
However, when compared to the total data size, the index size
is minimal. For 2,000,000 files and a total 7.6 GB of data,
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Fig. 9: Time to retrieve changes for synthetic datasets containing
1,000,000 files of 4 KB size each, divided into separate nested
subdirectories. Time to retrieve changes first-time decrease as we
go deeper into the subdirectories because the number of files per
subdirectory reduces.
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dataset with DAC-MAN. DAC-MAN can plug-in and scale any user
script to identify and capture data changes from large scientific
datasets.

the total index size is 236 MB. The index sizes stay small
since they only save the hash of the data in a file, which is
substantially small compared to the actual data in file. Also,
as the data hashes are fixed in size, changes in file size do not
affect the size of DAC-MAN indexes as shown in Figure 11b.
Caching. Figure 12 shows similar trends for caching in DAC-
MAN as that of indexing, i.e., cache size increases as the
number of files in the datasets increase. However, if the
number of files remain the same, but their sizes change, the
cache size remains the same. DAC-MAN only saves filenames
and associated change types in the cache, which is only
dependent on the total number of files in the datasets.

J. Computing Data Changes

Figure 13 compares the results of plugging in different diff
tools with DAC-MAN for identifying data changes. The figure
shows the results of detecting data changes for varying degree



of changes in a synthetic dataset with 100,000 files of 4 KB
size each on a 32 core node.

The results also show that Unix diff performs faster than
DAC-MAN’s in-built data comparator and Python’s difflib.
The current implementation of the DAC-MAN data comparator
simply compares two one-dimensional arrays with O(n) time
complexity, n being the size of the smaller array. However,
there are overheads of transforming the data from any arbitrary
file into ‘DAC-MAN records’. This extra processing for obtain-
ing richer change results affects the overall performance while
calculating data changes in large files. For non-text based files,
Unix diff simply shows if the file is different or not. In contrast,
DAC-MAN can identify the changed values in the datasets
using DAC-MAN records.

V. RELATED WORK

Change Identification. Unix diff [32] is the most commonly
used tool for finding changes in text files. Version control
systems like Git [7] and Subversion [8] use the text diff
algorithm to find changes in small text files efficiently. Git
LFS (Large File Storage) [33] provides an efficient solution
to manage changes in large files by locally storing the contents
in a cache, and using text pointers to the files. However, Git
LFS does not provide any means to computing or displaying
changes in large files. bsdiff [34] efficiently calculates diffs
from executable files. Although this is useful in applying
patches to large binary executables, the resulting diffs do not
yield meaningful results for analyzing the impact of changes
as required in scientific datasets.

Bitemporal databases [35], [36] and slowly changing dimen-
sions [37], [38] have been proposed to keep track of historical
changes in data warehouses. Several algorithms have been
proposed to capture changes from different types of data like
XML [20], hierarchical data [18] and RDF repositories [21].
Machine learning and image processing techniques have been
proposed to detect changes in image data [39], [40]. Several
other tools exist for identifying changes in files and other types
of data [32], [41], [42], [43]. All these algorithms and tools
are coupled to specific file and data formats, and are not used
for big data. DAC-MAN provides a generic way to capture
changes to data and allows for these tools and algorithms for
domain-specific change analysis at scale.

Change metrics. Levenshtein distance [12] is a common
metric that calculates the minimum number of edits required
for changing one string into another. Other edit distances are
also proposed to measure the number of changes [44], [45].
Hutchinson metric [46] identifies the differences between two
images in fractal image processing. DAC-MAN calculates the
number of DAC-MAN records added, deleted and modified.
Users can also plug-in domain-specific change analysis scripts
into DAC-MAN and define their own metrics.

Data provenance. Data provenance [47] captures the deriva-
tion history of data. Provenance keeps track of the entire data
generation pipeline to understand the reason for change, and is
useful in reasoning about the change, rather than detecting the
change itself. Past research has focused on using provenance

for identifying changes in storage systems [48], e-science
workflows [49], databases [50], and scientific data [51]. Cur-
rent provenance capture methods include software packages
and services [52], [53], provenance-aware solutions [54], [48],
and language extensions [55]. Workflow tools [56], [57] inte-
grate provenance capture into the workflow lifecycle in order
to analyze changes between multiple runs and the lineage of
outputs. DAC-MAN allows users to identify, capture and track
data changes that is an integral part of provenance. Missier
et al. [24] compare provenance traces to check for workflow
reproducibility. Such tools can be integrated with DAC-MAN
to explore provenance of the changed datasets.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we describe the design and implementation of
a scalable change tracking and management framework DAC-
MAN for large scientific datasets. DAC-MAN uses indexing
and caching to minimize the overheads of large-scale data
comparison. Our evaluation shows that DAC-MAN can retrieve
changes from large datasets in the order of a few seconds. The
DAC-MAN framework allows users to compare datasets on
separate systems, and lets users specify custom scripts that are
automatically scaled for domain-specific change detection and
analyses. Our future research will focus on providing abstrac-
tions for defining data comparators in DAC-MAN, which will
simplify domain-specific change analysis for a large number
of scientific data formats.

DAC-MAN provides a strong foundation for detecting and
tracking data change that is needed for understanding the ef-
fects of changes on downstream data products. DAC-MAN can
be used to make data and resource management decisions on
HPC systems by integrating with existing data and workflow
management systems to provide the necessary information for
selectively and efficiently processing data on supercomputing
systems. Our user research methods have helped us identify the
need for an interactive visual data change exploration interface.
The user research methods lead to an iterative R&D process
and DAC-MAN will continue to evolve through continuous
user feedback and usability studies.
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APPENDIX

A. Use Cases

In this section, we illustrate three different use cases that
motivated the design of DAC-MAN.
Data Release Changes in Cosmology. The Sloan Digital Sky
Survey (SDSS) [2] collects imaging data of the sky through the
optical telescope at Apache Point Observatory in New Mexico,
United States. The SDSS data team produces different data
releases over time that is accessible to users through an archive
server. Each data release consists of a large directory tree
with millions of files and terabytes of data. Additionally, the
directory tree can be extremely complex due to the existence
of symbolic links and several levels of subdirectories. Changes
between the data releases often include renaming of files,
change of file paths, and changing the data within the files.
Users have to identify and understand the different types of
changes between these data releases for making informed
decisions on data reprocessing and analysis.
Measurement Changes in Environmental Sciences.
Fluxnet [1] provides an integrated, processed dataset from
over 400 independent flux tower sites that environment
scientists can use to analyze the impact of complex
biophysical systems on the environmental changes. Currently,
these datasets are processed only every few years due to the
complexity and amount of data. Each processing cycle results
in a different data release, containing an updated version of
the previous release along with new data for additional years.
The last two data releases, La Thuile (which contains data up
to 2007) and Fluxnet2015 (which contains data up to 2015),
have changes in column names, floating-point precisions,
and file naming conventions, to name a few. Some of these
changes may affect only the metadata associated with the
datasets (changes in column names, file naming conventions),
and the underlying measurement data may still be the same.
Data Management on Supercomputers. Scientific workflows
require large amounts of data to be stored and copied/moved
between the different tiers of a multi-tiered storage system in
an HPC environment. Effective and efficient management of
HPC resources for data-intensive computing will require us to
make intelligent decisions on when, how and what of the data
should be stored and moved. The lack of tools to detect data
changes results in multiple copies of the data to co-exist and
unnecessary data movement.
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Fig. 14: Scaling issues while detecting changes in large datasets at
NERSC. Existing tools like Unix diff, Git and Python filecmp library
perform poorly as the number of files in the dataset increases.
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Fig. 15: Change capture workflow in DAC-MAN. DAC-MAN scans
and indexes the data for implementing a fast and portable solution to
identify and retrieve changes.

B. Scalability of Existing Tools

Figure 14 shows the scalability issue of some widely used
tools with increasing amounts of data. The graph shows the
time to identify changes using existing tools on a single node
at NERSC. The performance deteriorates significantly as the
number of files increase.

C. Change Capture Workflow

Figure 15 shows the change capture workflow that is used by
DAC-MAN to identify, track and retrieve changes. The change
capture workflow is presented as a way for users to configure
and setup DAC-MAN based on the data characteristics and
needs of the users.

There are four steps in the workflow. The first step (i.e.,
Scan) crawls the data directories, saving the directory struc-
tures and associated file metadata. The second step indexes
the files in parallel. The third step uses the indexes to compare
the files in the two data directories and saves the changes in
a cache, such that it can be reused. The fourth and final step
retrieves the changes when a user executes a diff command
or could be a summary of all changes in the datasets that is
generated automatically.

The parallel indexing step allows DAC-MAN to do a ‘fast’
comparison. This is because instead of comparing the data
for each file, it just uses the indexes to determine the type of
change. The type of change can either be structural, where
only the metadata of a file changes but the contents remain
the same, or semantic, where the actual values and meaning
of data change between the two versions of a file.

The change capture workflow provides flexibility to the
users for keeping track of file and data changes. Users can



Change type Path Name Data Description
changed changed changed
None/Unchanged No No No File metadata (like file path and file name), and data are unchanged between two files
Modified No No Yes Data change§, but one or more file properties remain the same allowing DAC-MAN
Yes No Yes to compare files based on names and/or paths
No Yes No Data remains same, but one or more file properties differ requiring DAC-MAN to
Metadata-only Yes No No find corresponding file names and/or file paths for identifying metadata-only changes
Yes Yes No
Added/Deleted Yes Yes Yes Neither data nor file properties/metdata can be compared

TABLE II: Rules for identifying types of change. DAC-MAN uses only files that are modified for data change analysis. Any other type of
change excludes the files from further analysis unless explicitly specified by the user.

[ Dataset [ Files (Vo) [ Files (V1) ] Added [ Deleted [ Modified | Metadata [ Unchanged |
Synthetic 0 ...1,000,000 10 ... 1,000,000 10 ... 100,000 10 ... 100,000 10 ... 100,000 10 ... 100,000 0
Redux 4,440,895 5,257,718 827,345 10,522 4,424,011 0 6,362
Resolve 2,254,513 2,254,528 26 11 0 0 2,254,502
Sweeps 31,630 9,865 0 21,765 0 9,865 0
Fluxnet 673 1,629 1,629 673 0 0 0

TABLE III: Different datasets evaluated by the DAC-MAN framework. Based on the different performance metrics, we induce different
types and amounts of changes between versions of the synthetic dataset. Redux has versions 5.6.5 and 5.7.0 of the SDSS redux dataset
from data release 11 and 12. Resolve contains two versions of the SDSS data release 13 generated using resolve algorithms. Sweeps dataset
contains two versions of data from the reduced sweep imaging catalog data files in SDSS. Fluxnet dataset compares ‘Fluxnet2015’ and ‘La

Thuile’ data releases.

invoke separate steps of the workflow explicitly depending
upon the data/directory properties. For example, directories
where files are created and deleted very frequently, users
can execute the scan and index steps frequently. This is
because when the files in the directories are updated, then
the previously computed changes become stale. The change
capture workflow is then used to rebuild all the indexes and
recompute the changes. Directories with WORM (write-once
read-many) property need to index the directories and compute
changes only once. Since the computed changes should never
be stale for such datasets, users can directly retrieve the
changes from the cache. Hence, depending on the type of
dataset, the different steps of the change capture workflow can
be used to run as separate services for identifying, tracking and
retrieving changes.

The change retrieval step in the workflow allows users to

retrieve changes at different granularities. If the user queries
for file changes, the result returns the differences with respect
to files in the two directories. If the user queries for data
changes, this step uses the file comparison results to calcu-
late data changes between the modified files from the two
directories.

D. Classification of Changes

Table II summarizes the different types of changes and
associated rules for classifying the files into each type. These
rules are based on the changes in directory paths, file names
and data changes within the files.

E. Evaluation Dataset

Table III lists the different characteristics of the datasets
used in evaluating DAC-MAN.



