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Abstract—Maintaining the performance of high-performance
computing (HPC) applications as failures increase is a major
challenge for next-generation extreme-scale systems. Recent work
demonstrates that hardware failures are expected to become more
common. Few existing studies, however, have examined failures
in the context of the entire lifetime of a single platform. In this
paper, we analyze a corpus of empirical failure data collected
over the entire five-year lifetime of Cielo, a leadership-class HPC
system. Our analysis reveals several important findings about
failures on Cielo: (i) its memory (DRAM and SRAM) exhibited
no aging effects; detectable, uncorrectable errors (DUE) showed
no discernible increase over its five-year lifetime; (ii) contrary
to popular belief, correctable DRAM faults are not predictive
of future uncorrectable DRAM faults; (iii) the majority of
system down events have no identifiable hardware root cause,
highlighting the need for more comprehensive logging facilities
to improve failure analysis on future systems; and (iv) continued
advances will be needed in order for current failure mitigation
techniques to be viable on future systems. Our analysis of
this corpus of empirical data provides critical analysis of, and
guidance for, the deployment of extreme-scale systems.

I. INTRODUCTION

Maintaining the performance of high-performance comput-
ing (HPC) applications as failures become more frequent is a
major challenge that needs to be addressed for next-generation
extreme-scale systems. Recent studies have demonstrated that
hardware failures are expected to become more common [1].
Increasing the scale of HPC systems requires the aggregation
larger numbers of individual components. More components
means more frequent failures. Current systems use powerful
error-correcting codes (ECC), e.g., chipkill-correct, to protect
against DRAM errors. However, chipkill-correct (and other
similar techniques) require the activation of a large number
of memory devices (four times more than less-protective
techniques such as single error correct double error de-
tect (SECDED)) [2]. Activating more memory devices requires
more power for each memory access. However, because of
tightening power budgets on next-generation systems [1], it is
not yet clear that chipkill-correct will continue to be viable.
Reduced device-feature sizes also have the potential to result
in more frequent failures. Understanding the implications of
these trends requires detailed knowledge of how failures affect
current leadership-class systems.

In this paper, we analyze a corpus of empirical failure
data collected over the entire five-year lifespan of Cielo, a
leadership-class computing system. Our dataset consists of:
(i) resource management logs that describe when nodes in the
system go down and when they are brought back into service;
(ii) detailed system logs containing information about all of the
detected memory failures (DRAM and SRAM) that occurred
in the system; (iii) logs of each kernel panic in the system;
and (iv) detailed logs of the hardware devices installed on
each compute node. Unlike existing studies of empirical failure
data [3], [4], [5], [6], [7], [8], [9], [10], we analyze failures in
the context of the entire lifetime of a single platform. Studying
the entire lifetime of this machine allows us, for the first time,
to answer the question of how age affects system reliability.

Given this corpus of failure data, we use several statistical
techniques to study how failures occurred on Cielo. Our
analysis reveals several important findings about failures on
current and future systems:

• Cielo’s memory (DRAM and SRAM) exhibited no aging
effects: the rate of detectable, uncorrectable errors (DUE)
showed no discernible increase over its five-year lifetime;
and the correctable DRAM FIT rate showed a modest
decrease over its lifetime (§III-D).

• Contrary to popular belief, correctable DRAM faults are
not predictive of future uncorrectable DRAM faults. No
correlation between these two fault modes was found over
the entire lifetime of the system (§III-E).

• The majority of the system down events have no iden-
tifiable hardware root cause, highlighting the importance
of developing more comprehensive and tightly integrated
logging on future machines (§III-B).

• Important system design trade-offs will need to be made
on next-generation systems for current failure mitigation
techniques to remain efficient (§III-F).

This paper is, to the best of our knowledge, the first detailed
analysis of correctable and uncorrectable memory errors over
the entire lifetime of a leadership-class system. Based on
our analysis, we provide insight into, and guidance for, the
deployment of extreme-scale systems.
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II. METHODOLOGY

A. System Description

Cielo was a leadership-class HPC system located in Los
Alamos, New Mexico. It was a Cray XE6 system running
Linux that was operated from March 2011 to May 2016.
At the time of its decommissioning, it was comprised of
approximately 8,500 compute nodes. Each compute node
contained 32 GB of DRAM and two processor sockets, each
occupied by an AMD OpteronTM 8-core processor.

Cielo consisted of 96 racks of compute nodes arranged
in 6 rows. Each rack contained 96 compute nodes arranged
in a three-level hierarchy. Each rack was composed of three
chassis. Each chassis was composed of eight slots. Each slot
hosted four compute nodes.

B. Terminology: faults and errors

Throughout this paper, we distinguish between faults and
errors, cf. [11]. A fault is the underlying cause of an error
(e.g., stuck-at bits or high-energy particle strikes). An error
is incorrect system state due to an active fault. Errors are
detected and possibly corrected by higher-level mechanisms
such as parity or error correcting codes (ECC). They may
also be uncorrected or, in the worst case, undetected.

C. System Logs

Our analysis is based on information captured by Cielo over
its lifetime. This subsection describes the four principal data
sources we obtained from Los Alamos National Laboratory.

1) Resource Management Logs: The Application Level
Placement Scheduler (ALPS) is designed to provide resource
management services on Cray supercomputers. Effective man-
agement of computational resources requires ALPS to have
accurate and up-to-date information about which compute
nodes are operational (i.e., are available for use) and which
are down (i.e., are unavailable for use). Each time that a
compute node transitions into or out of the operational state,
ALPS writes an entry to its log file. The corpus of ALPS logs
collected over the lifetime of Cielo provides us with a detailed
picture about the state of its compute nodes. We analyzed
approximately two years, June 2014 to May 2016, of Cielo’s
resource management logs.

Compute nodes can enter the down state unexpectedly
when an error occurs (e.g., an uncorrectable memory error,
a kernel panic) or for reasons that are not directly related
to machine reliability (e.g., scheduled downtime). The ALPS
logs do not explicitly distinguish between these cases. We are
primarily interested in identifying instances where compute
nodes entered the down state because of uncorrectable errors.
We assume that errors that cause a compute node to enter the
down state are independent events. In other words, an error
that causes a compute node to crash is independent of errors
that cause other compute nodes to crash. As a result, when
multiple compute nodes are in the down state simultaneously
it is likely due to the failure of a shared resource (e.g., parallel
file system, rack-level power supply). When large portions of

the machine are simultaneously in the down state, it is likely
due to administrative or facility-related issues.

The objective of our analysis is to examine the reliability
of Cielo’s compute nodes. Therefore, we want to isolate node
down events in the ALPS logs that are due to node-level
hardware failures and exclude node down events that are
due to administrative or facility-related causes. We begin by
temporally clustering down events in the ALPS logs. However,
when multiple compute nodes fail due to a single event, the
timestamps of the events in the ALPS logs are unlikely to
be exactly the same. To address this issue, we cluster events
that are temporally close together: within 60 seconds of each
other. To reduce down events in our dataset that are due to
system-level causes, we exclude clusters that contain more
than five of the system’s compute nodes since it is unlikely
that they represent node-level failures. We believe that these
efforts result in a dataset that is a more accurate representation
of failures on Cielo.

2) Memory Failure Logs: All of the DRAM on Cielo is pro-
tected by chipkill-correct ECC. When the memory controller
detects a memory error, it is designed to use ECC to correct the
error. If it is able to correct the error, the error is recorded as a
correctable error (CE). If it is unable to correct the error, the
error is recorded as a detected, uncorrectable error (DUE).
Correctable errors are recorded in registers provided by the
x86 Machine Check Architecture (MCA) [12]. The contents
of these registers are polled periodically and written to the
console log. Uncorrectable errors are recorded in an event
log after the node is rebooted. For both correctable and
uncorrectable errors, detailed information about each error is
recorded. This information includes the physical address where
the error occurred and ECC syndrome data that describes the
cause of the error. Decoding the recorded information about
each error allows us to identify the physical location of each
logged error. We examined the memory error logs collected
on Cielo from May 2011 to May 2016.

3) Kernel Panic Logs: A Linux kernel panics when it
encounters conditions that indicate that its internal state has
been corrupted and continued correct operation of the kernel
cannot be guaranteed. Causes of kernel panics include software
bugs, device driver errors, and undetected hardware errors.
Information gathered by the kernel due to a kernel panic is
written to the system log. We analyzed kernel panic logging
data collected from June 2014 to May 2016.

4) Hardware Inventory Logs: Hardware inventory logs
record details about the hardware that is in use on the system at
any given moment in time. They include detailed information
about the configuration of each node’s hardware, including the
memory device manufacaturer of each DIMM. These logs al-
low us to compare the DRAM reliability across manufacturers.
However, they lack sufficient detail to allow us to track the
movement of individual DIMMs. System administrators may
replace (or swap) DIMMs when they experience a DRAM
DUE or when they consistently experience CEs.



D. A note on data presentation

Because some of the logs we analyzed contain confidential
information, figures in this paper have been modified to avoid
disclosure of protected information. Figures 7 and 8 have their
axis values removed, the MTBF used in Figures 16a and 16b
and TABLE III is not disclosed, and DRAM vendor names are
anonymized. We therefore focus our analysis on temporal and
spatial trends in the data rather than on the absolute values of
performance metrics.

III. RESULTS AND ANALYSIS

A. Analysis of DRAM Device Usage

The daily usage of Cielo’s DRAM is shown in Fig. 1.
The DRAM devices used on Cielo were produced by three
manufacturers. Throughout this paper, we refer to them as
Manufacturers A, B, and C. Each point on this figure shows
how many millions of device-hours were recorded for a
particular manufacturer on a single day. Days when the system
was not operational are excluded. The periodic outliers above
and below the bulk of the data for each manufacturer is a
consequence of transitions into and out of daylight saving time.
When daylight saving time begins in the spring it results in a
day that is effectively 23 hours long. Similarly, when daylight
saving time ends in the fall it results in a day that is effectively
25 hours long. As a result, we record more or fewer device-
hours on these days. Additionally, the minimum device usage
in our dataset is a single outlier in September 2013. This is
due to an anomaly in the hardware inventory logs: for several
hours on September 17, 2013, the hardware inventory recorded
only two operational nodes.
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Fig. 1. Daily DRAM Usage by Manufacturer. Each point represents the
number of device hours on a single day for each manufacturer.

The data in this figure show that per-manufacturer device
usage was extremely stable over the lifetime of Cielo. For the
purposes of this paper, temporal trends in machine behavior
cannot be attributed to variations in DRAM device manufactur-
ers. The total per-manufacturer share of DRAM device-hours
is shown in Fig. 2. Although the per-day variation in device
usage is low, the total DRAM device usage varies significantly
per calendar year. Fig. 3 shows how many millions of DRAM
device-hours were recorded over each calendar year. Nearly
70% of the device usage occurred during 2013, 2014, and

Manufacturer A

14.90% Manufacturer B

61.86%

Manufacturer C

23.23%

Fig. 2. Total DRAM Usage by Manufacturer.
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Fig. 3. Total DRAM Usage by Year and Manufacturer. Each colored
region corresponds to the number of DRAM device-hours of operation for
each of the three DRAM manufacturers.

2015. Because the machine experienced several outage periods
in early 2016 and was decommissioned in May 2016, the
DRAM device usage for 2016 is a small fraction (less than
1.5%) of the total. As a result, variability in data collected
during 2016 may be because it is based on a much smaller
sample than the other years in our dataset.

B. Analysis of memory DUEs

To better understand the role that memory DUEs play in
overall system reliability, we examined the resource manager
logs and correlated node down events with the occurrence of
memory DUEs.1 The process of matching node down events to
DUEs is inexact. Fig. 4 shows the results of our analysis. This
figure divides the node down events into three categories based
on their identified root cause. Memory DUEs were responsible
for only a modest fraction (≈ 27%) of all node down events.
For the majority of the recorded node down events we were
unable to definitively identify a root cause. This experience is
not unique to Cielo; many studies have documented similar
challenges with root cause analysis. Our experience with this
analysis highlights the need for more tightly integrated logging
infrastructure on future leadership-class systems.

To understand memory reliability on Cielo, we examined
the temporal distribution of memory DUEs observed over the

1As described in Section II-C, the resource manager logs that we analyzed
covered a fraction of Cielo’s lifetime. As a result, we excluded memory errors
that occurred outside of the interval covered by the resource manager logs
from the root cause analysis described in this section.



Kernel
Panics

8.45%

Memory DUEs

26.64%

Unknown

64.91%

Fig. 4. Root Causes of Node Down Events.

lifetime of Cielo. We discovered several instances in which
a long period of time elapsed between recorded errors. It is
possible that these outliers represent periods of exceptionally
reliable operation. However, we believe that it is more likely
that they represent outages: periods when the machine was
taken down for administrative reasons (e.g., software/hardware
upgrades or repairs). We observe congruent episodes in the
Resource Manager logs, however, we do not have access to
appropriately annotated data that would allow us to definitively
identify the administrative state of the machine during these
long intervals when no errors were recorded. Therefore, we
eliminated all of the fault-free intervals from our dataset
that are more than three standard deviations from the mean.
We identified three such periods. We have also consolidated
uncorrectable faults that occurred multiple times within 30
seconds of each other on the same node into a single fault.2

In the remainder of this paper, all of our analysis of the time
between memory DUEs is performed on this reduced dataset.

To determine the temporal independence of these DUE
events, we used the technique developed by Aupy et al. [13]
for detecting failure cascades: periods when the density of
failures is statistically unlikely. To determine the presence
of failure cascades, the authors’ approach computes the lag
plot ratio of the sequence of observed failures. If the lag
plot ratio is high (≥ 4), the authors conclude that failure
cascades are present. If the lag plot ratio is low (≤ 2), then
failure cascades are not present. Intermediate values indicate
that failure cascades may be present. Using this approach, we
calculated the lag plot ratio of three subsets of our DUE data.
The lag plot ratios of the DRAM and SRAM faults, 1.82 and
1.31, respectively, indicate that there are no signs of failure
cascades. However, the lag plot ratio of the combined dataset,
2.13, means that we cannot rule out the presence of failure
cascades, i.e., there may be some temporal dependence in this
dataset.

Given this dataset, Fig. 5 shows the distribution of memory
DUEs across the nodes of the system that experienced one
or more memory DUEs. This figure compares the number of
faults that were observed on Cielo’s compute nodes to the
expected distribution. The expected distributed is computed

2Because uncorrectable faults generally require nodes to be rebooted, these
faults almost certainly represent a single node-down event.
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Fig. 5. Uncorrectable Faults per Node. This figure shows how DUEs are
distributed among compute nodes that experienced one or more DUEs.

Distribution Memory type
All memory DRAM SRAM

Exponential -8852.1 -1397.6 -7704.4
Weibull -8839.3 -1378.3 -7698.4
Gamma -8842.2 -1379.0 -7706.3

TABLE I
VALUE OF THE BAYESIAN INFORMATION CRITERION (BIC) FOR THREE

GROUPINGS OF DUE DATA. VALUES THAT CORRESPOND TO THE
SELECTED MODEL (OR MODELS) SELECTED ARE HIGHLIGHTED IN BOLD.

by assuming that errors occur uniformly at random across all
nodes of the system. The actual results match the expected
results closely: the vast majority of compute nodes (94%) that
experienced memory DUEs never experienced more than one.

C. Distribution fitting of memory DUEs

In this subsection, we attempt to fit the time between mem-
ory DUEs to a statistical distribution. Although distribution
fitting is inexact, identifying a mathematical model of how
errors occur facilitates important modeling and forecasting
research on how next-generation systems will perform.3

Fig. 6 shows quantile-quantile (Q-Q) plots that compare the
distribution of the intervals between memory DUEs and three
statistical distributions that are commonly used to model fail-
ures in large-scale systems: exponential, gamma, and weibull.
In addition to fitting a distribution to the entire memory
DUE dataset (Fig. 6a), we also consider the intervals between
DRAM DUEs (Fig. 6b) and SRAM DUEs (Fig. 6c). The data
in Figures (a) and (c) show that our empirical data fits all three
distributions well; the differences between the distributions is
small. This is because the mean and standard deviation of
our empirical data are very nearly equal. Gamma and weibull
distributions degenerate to an exponential distribution when
the mean and standard deviation are equal. The DRAM DUE
data indicate different behavior. The fit between our empirical
data and the three distributions is noticeably different across
the distributions. This is because the standard deviation of our
empirical DRAM DUE data is much larger than the mean.
The data in this figure suggest that the gamma distribution is
the best fit of the DRAM inter-occurrence interval.

3Identifying a distribution that fits error data can have significant benefits.
However, fine-grained decisions between similar statistical distributions may
not be necessary to accurately model application performance [14].
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Fig. 6. Fitting Memory DUEs to Known Statistical Distributions. Quantile-quantile (Q-Q)plots comparing the distribution of the inter-occurrence periods
of memory DUEs on Cielo to well-known statistical distributions that are frequently used to characterize failures.
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Fig. 7. Empirical cumulative distribution function of memory DUEs over
the lifetime of Cielo. These data demonstrate that the statistical distribution
of failures was relatively stable over the life of the system.

The Bayesian Information Criterion (BIC) provides a crite-
rion for choosing between statistical models [15]. The value
of the BIC for the three subsets of DUE data shown in Fig. 6
are shown in TABLE I. This approach selects the model
with the largest BIC. For each of our DUE datasets, the
Weibull distribution has the largest BIC value. To evaluate
the relative strength of the evidence for choosing between
these distributions, we apply the rules of thumb described by
Raftery [16]. This approach considers the absolute difference
between BIC values for different statistical models. For all
memory DUEs, the evidence that the Weibull distribution is a
better fit than the gamma is not particularly strong. However,
there is very strong evidence that both are superior to the
exponential distribution. For SRAM DUEs, there is strong
evidence that Weibull is a better fit than either of the other
distributions. For DRAM DUEs, there is not good evidence to
support a choice between the gamma and Weibull distributions.
However, there is strong evidence that both are superior to the
exponential distribution.

D. Temporal stability of memory DUE events

Given that we have detailed logs collected over the entire
lifetime of Cielo, we can study the impact of device age on
memory DUEs. Fig. 7 shows the empirical cumulative density
function (CDF) for data collected over each calendar year of
Cielo’s operation. This figure also includes the empirical CDF

of the entire corpus of data and the theoretical distribution
of the exponential distribution used in Fig. 6a. We observe
that the memory DUE data that was collected from 2013-
2015 fits the theoretical exponential very closely. In 2011 and
2012, the distribution was slightly more heavily-tailed than the
exponential distribution. In other words, in these two years
there were periods when the interval between memory DUEs
was longer than the overall average. In 2016, for which we
have only a partial year of data (cf. Fig. 3) the tail of the
distribution is almost non-existent.

The distribution of the time intervals between memory
DUEs is shown in Fig. 8. The boxplots in this figure describe
the statistical distribution of these intervals for all memory
structures (Fig. 8a), SRAM (Fig. 8b), and DRAM (Fig. 8a),
for each year of Cielo’s lifetime. Fig. 8a is another represen-
tation of the data shown in Fig. 7. The distribution of inter-
occurrence intervals for SRAM DUEs is very stable from year-
to-year. In contrast, the intervals between DRAM DUEs are
much less stable. While there is fluctuation in these data, there
is no discernible evidence to suggest that Cielo’s DRAM was
becoming less reliable over time. In fact, the median inter-
occurrence interval was longer than average in 2015 and 2016.

Fig. 8 also shows that the intervals between DRAM DUEs
were, on the whole, shorter in 2012 and 2014. Additional detail
about the occurrence of DRAM faults is shown in Fig. 9. The
data in this figure show the average fraction of DRAM faults
per day over the lifetime of Cielo. We compute this fraction
by dividing the number of DRAM faults that occurred on a
single day by the total number of DRAM faults. To reduce
noise and highlight temporal trends in the data, the daily
average is computed using an exponentially weighted moving
average [17, §6.4.3]. We selected the value of the smoothing
parameter (α) for the moving average to minimize the sum of
the squared errors. The orange line represents uncorrectable
DRAM faults. The blue line represents correctable DRAM
faults. These data show that the abnormally short intervals
between DRAM DUEs observed in 2012 and 2014 were
principally due to two short periods of time (one early in 2012
and one in the middle of 2014) in which DRAM DUEs were
abnormally high. Based on the data that is currently available
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to us, we cannot identify the root cause of these isolated
spikes in DRAM DUEs. By way of comparison, Fig. 10
shows the same set of data for all memory faults. The orange
line represents all uncorrectable memory faults. The blue line
shows the monthly trends for all correctable memory faults.
These data show that uncorrectable faults are more or less
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Fig. 11. Correctable FIT Rate per DRAM Device.

evenly distributed over the lifetime of Cielo.
Examining the occurrence of correctable DRAM faults pro-

vides additional information about how device aging impacted
the reliability of Cielo’s memory. The data in Fig. 11 show the
failures-in-time (FIT)4 rate for correctable DRAM faults for
each DRAM device manufacturer over the lifetime of Cielo.
These data show that, with the exception of 2016, there is
an overall downward trend in the FIT rate; Cielo experienced
fewer failures per hour of device operation near the end of
its operational life than it did at the beginning. The data from
2016 may represent a change in this trend, but they should
be carefully considered because they represent many fewer
device-hours than the data from the other five years (cf. Fig. 3).

On the whole, these data indicate that there is no discernible
trend that would indicate that Cielo’s memory was becoming
less reliable over its lifetime. This result is unexpected; the
lifetime of processors is typically between five and seven
years [18]. As a result, we would have expected to see
aging effects on Cielo. Although decisions about machine
decommissioning are complex and multi-factored, this result
suggests that Cielo’s memory may have had additional years
left in its operational life.

4Failures-in-time is commonly used to describe hardware device reliability.
It represents the number of failures, on average, that would be expected to
occur in one billion (109) hours of device operation.



0 2 4 6 8 10

Number of correctable DRAM faults experienced

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

c
ti

o
n
 o

f 
n
o
d
e
s
 e

x
p
e
ri

e
n
c
in

g
 c

o
rr

e
c
ta

b
le

 D
R

A
M

 f
a
u
lt

s

All nodes

Nodes with uncorrectable DRAM faults

Fig. 12. Correctable DRAM Faults per Node. The blue points represent the
fraction of all compute nodes that experienced a given number of correctable
DRAM faults. The orange points represent the fraction of the compute nodes
with one or more uncorrectable DRAM faults that experienced a given number
of correctable DRAM faults. The lines connecting the points are provided only
for readability.

All Correctable Faults Correctable DRAM Faults
per Node per Node

All Nodes with All Nodes with
nodes DUE nodes DUE

1st quartile 6 6 0 0
Median 7 8 0 0
3rd quartile 9 10 0 1
Mean 7.54 7.74 0.33 0.54

TABLE II
STATISTICS COMPARING THE NUMBER OF CORRECTABLE FAULTS

EXPERIENCED BY NODES THAT EXPERIENCED ONE OR MORE DUES TO
THE NUMBER OF CORRECTABLE FAULTS EXPERIENCED BY ALL NODES.

E. Relationship between correctable and uncorrectable
DRAM faults

Correctable DRAM faults may signal the initial stages of
device failure and may presage a future uncorrectable DRAM
fault.5 In this subsection, we examine the relationship between
correctable and uncorrectable DRAM faults on Cielo.

Fig. 12 shows how correctable DRAM faults are distributed
across the compute nodes. The blue points represent the
distribution for all compute nodes; the orange points represent
the distribution for all nodes that have experienced one or more
uncorrectable DRAM faults. Summary statistics comparing the
distributions of these datasets are presented in TABLE II.
These data show that the distribution of correctable DRAM
faults across nodes that have experienced an uncorrectable
DRAM faults is very similar to the distribution over all nodes.
The average number of correctable DRAM faults is slightly
higher (0.33 vs. 0.54) on nodes with uncorrectable DRAM
faults, but the difference is small. The upshot is that controlling
for the occurrence of uncorrectable DRAM faults does not
skew the distribution of correctable DRAM faults; the data
show that these nodes experience approximately the same
number of correctable DRAM faults as if they were selected
uniformly at random from all compute nodes. In other words,
more frequent correctable DRAM faults do not appear to be
correlated with the occurrence of uncorrectable DRAM faults.

5This is commonly the rationale used to support page offlining [19], [20]
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Fig. 13. Temporal arrangement of compute nodes that experienced uncor-
rectable DRAM faults preceded by by one or more correctable DRAM faults.
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Fig. 14. Spatial arrangement of compute nodes that experienced uncorrectable
DRAM faults preceded by by one or more correctable DRAM faults. The
color of the squares represents the number of compute nodes from Fig. 13
that belong to each rack of Cielo.

If correctable DRAM faults presaged uncorrectable DRAM
faults, we would expect to observe a sequence of correctable
DRAM faults to occur in close temporal proximity to uncor-
rectable DRAM faults. Fig. 13 shows the temporal relationship
between correctable and uncorrectable DRAM faults for all of
the compute nodes that experienced one or more uncorrectable
DRAM faults and one or more correctable DRAM faults. We
have excluded those nodes for which all of the uncorrectable
DRAM faults occurred before any of the correctable DRAM
faults. Additionally, the majority of nodes that experienced un-
correctable DRAM faults experience zero correctable DRAM
faults, cf. Fig. 12. These data show that were no instances on
Cielo where a correctable DRAM fault is temporally related
to a subsequent uncorrectable DRAM fault. In those cases
where uncorrectable DRAM faults are preceded by correctable
DRAM faults, the temporal lag is significant. Even the shortest
interval (i.e., Node 2573) is nearly two weeks long.

Fig. 14 depicts the spatial arrangement of the nodes shown
in Fig. 13. Each square represents one of the 96 racks that
comprised Cielo (see Section II-A). The squares are color-
coded to indicate the number of nodes in each rack that
experienced an uncorrectable fault that was preceded by a
correctable fault. Given the small number of nodes under
consideration, it is difficult to draw statistically meaningful
conclusions from this figure. However, it does appear that these
nodes are disproportionately located in the first eight columns.

The data in Fig. 9 provides additional evidence that there is
not a strong correlation between correctable and uncorrectable
DRAM faults. This figure shows the average fraction of faults
per day on Cielo. As discussed in Section III-D, there were
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represent the fraction of all compute nodes that experienced a given number
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of correctable memory faults. The lines connecting the points are provided
only for readability.

two spikes in uncorrectable DRAM faults: one in early 2012,
and one in the middle of 2014. However, the data in Fig. 9
show that there was no corresponding spike in the number
of correctable DRAM faults. Statistical analysis bears this
out: the Pearson correlation coefficient [21] for the number
of correctable and uncorrectable DRAM faults per day is:
r = −0.05 6. Similarly, the data in Fig. 9 also demonstrate
that there is not a strong correlation between correctable and
uncorrectable faults from all sources. The Pearson correlation
coefficient for these two temporal sequences is: r = 0.03.

Performing the same analysis on all correctable faults yields
a similar conclusion. Fig. 15 shows how many correctable
faults occurred on each compute node. The blue points
represent the number of correctable faults detected on all
compute nodes. The orange points represent the number of
correctable faults that were detected on compute nodes that
also experienced one or more correctable faults. This figure
shows that the shapes of the distribution are very similar.
A more detailed comparison of the distributions of these
two datasets is presented in TABLE II. This table contains
summary statistics for the two distributions. The quartiles
of the distributions are very similar; these data suggest that
nodes that have experienced one or more uncorrectable faults
may experience slightly more correctable faults, but the mean
number of correctable errors (7.54 for all nodes vs. 7.74
for nodes that have experienced correctable faults) show that
any difference between the two datasets is small. These data
suggest that the rate that nodes with uncorrectable faults
experience correctable faults is essentially indistinguishable
from the rate that all nodes experience correctable faults;
the number of correctable faults that occur on a node is not
strongly correlated with the occurrence of uncorrectable faults.

Although we have shown that there was not a strong
correlation between correctable and uncorrectable faults, our
analysis is subject to the DIMM replacement policy on Cielo,
see Section II-C4. The replacement policy means that it is

6Coefficients near 1 denote a total positive linear correlation, 0 is no linear
correlation, and −1 is total negative linear correlation.
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Fig. 16. Implications of Cielo’s reliability on the application efficiency of
future systems.

possible that a DIMM that was replaced in response to a
correctable fault avoided a subsequent uncorrectable fault,
thus concealing correlated faults from our analysis. Although
we do not have precise data on the occurrence of DIMM
replacements, we can establish on upper bound on the number
of DIMMs that were replaced due to correctable faults. We
know that correctable faults led to replacement only when the
fault was the result of multiple errors. As a result, we know
that no more than 1.9% of Cielo’s DIMMs could have been
replaced in response to a correctable fault.

Based on this analysis, we can draw one of two possible
conclusions: either (i) the replacement policy was perfect, all
correctable faults that signaled the imminent occurrence of an
uncorrectable fault led to the replacement of the DIMM before
the uncorrectable fault occurred; or (ii) correctable faults are
not strongly correlated with the occurrence of subsequent
uncorrectable faults. In either case, we can say that correctable
faults were not reliable predictors of the uncorrectable faults
that actually occurred during Cielo’s lifetime.

F. Implications for fault tolerance

Understanding the reliability of Cielo’s memory over its
lifetime allows us to consider how fault tolerance may impact
performance on next-generation systems. This section exam-
ines the performance of a hypothetical HPC application on
a system with a failure rate equal to the rate measured over
Cielo’s lifetime. Our idealized application uses a state-of-the-



art coordinated checkpoint/restart library [22], [23] to ensure
application progress across DUE. We use the Young/Daly
model of application execution [24], [25] with failures and
checkpointing, to calculate application efficiency on a next-
generation system. This model assumes that uncorrectable
faults are derived from an exponential distribution. In Fig. 6,
we demonstrate that this is a reasonable assumption for
Cielo. Application efficiency is the fraction of an application’s
runtime that is used to perform useful work. Therefore, an
efficiency of 90% means only 10% of an application’s time-to-
solution is used for fault tolerance activities (e.g. checkpoint-
ing, restarting). Hard targets for application efficiency have not
been established, but we believe that checkpoint/restart will
remain viable if application efficiency remains above 80%.

In Fig. 16a, we examine how the relationship between
aggregate checkpoint volume and the aggregate checkpoint
bandwidth affect application efficiency. For the purposes of
this figure, we examine the (optimistic) case where a next-
generation machine will experience failures at the same rate
as Cielo. Because next-generation machines will be much
larger, this assumption means that the decrease in reliability
due to scale will be entirely offset by advances in device
reliability. For reference, Cielo supported approximately 256
TiB of DRAM and its aggregate filesystem bandwidth was
160 GB/s. Additionally, the parallel filesystem bandwidth of
current leadership-class machines is greater than 1 TB/s (see
e.g., Trinity parallel filesystem bandwidth, 1.45 TiB/s, and
aggregate burst buffer bandwidth, 3.3 TiB/s [26]). This figure
demonstrates that if we can maintain the memory failure rate
observed on Cielo and filesystem bandwidths continue to grow,
application efficiency would exceed 80% even if the total
checkpoint volume exceeds 1 PiB.

Assuming that the decrease in reliability associated with
larger machines will be entirely offset by increased reliability
due to technological advances in device design and fabrication
is perhaps too optimistic. In Fig. 16b, we examine how the
relationship between checkpoint commit time and system re-
liability affects application efficiency. In this figure, reliability
is expressed in relation to Cielo. On the far right of this figure
we consider the most optimistic case: a system that is even
more reliable than Cielo despite its increased size. The rest
of the figure shows how an application might perform on a
next-generation system that is less reliable than Cielo. To keep
application efficiency above 80%, the checkpoint commit time
needs to be kept below approximately one minute or we need
to develop technology that will offset a significant portion of
the reliability impact of building larger and larger systems.

In TABLE III, we further consider the implications of
Cielo’s reliability for next-generation systems. For this anal-
ysis, the relevant parameters for these systems are: total
volume of system memory, checkpoint volume, and memory
reliability. We express the checkpoint volume as a fraction of
system memory and base our values on the work of Lujan
et al. [27]. We consider three different memory reliability
scenarios: (i) fixed system reliability, an optimistic scenario
in which a future system is as reliable as Cielo despite being

Optimistic Pessimistic
Strawman Strawman

System memory 4 PiB 8 PiB
Checkpoint volume 0.25 0.75(fraction of total memory[27])

Viable Checkpoint Bandwidth
> 944 GiB/s > 5 TiB/s(fixed system reliability)

Viable Checkpoint Bandwidth
> 6 TiB/s > 140 TiB/s(fixed reliability per byte)

Viable Checkpoint Bandwidth
> 64 TiB/s > 384 TiB/s(SEC-DED ECC)

TABLE III
CONSIDERING THE IMPLICATIONS OF CIELO’S RELIABILITY ON

NEXT-GENERATION SYSTEMS. VIABLE CHECKPOINT BANDWIDTH IS THE
BANDWIDTH TO STORAGE REQUIRED TO KEEP APPLICATION EFFICIENCY
ABOVE 80%. THE FEASIBILITY OF EACH BANDWIDTH IS INDICATED BY

COLOR: GREEN (ACHIEVABLE IN THE NEAR FUTURE); ORANGE (WITHIN
EXASCALE PROJECTIONS); AND RED (BEYOND CURRENT PROJECTIONS).

much larger; (ii) fixed device reliability, a more pessimistic
scenario in which the number of failures per byte of memory
does not change, but the total volume of memory increases
significantly; and (iii) SEC-DED ECC, a scenario in which the
decrease in reliability of a future system is due to the fact that
memory is protected by SEC-DED ECC instead of Chipkill-
correct. The rate of uncorrected errors in memory protected by
SEC-DED ECC has been shown to be 42× greater than for
Chipkill [28]. To highlight the impact of memory reliability,
we fix the reliability of all other system components.

Given these parameters, we consider two possible configu-
rations of a next-generation system: a pessimistic configuration
in which the volume of system memory is large and the volume
of checkpoint data is a large fraction of total system memory;
and an optimistic configuration in which the volume of system
memory is relatively small and the volume of checkpoint data
is a modest fraction of total system memory. Although these
targets represent a significant increase over Cielo, they still
fall short of what is projected for exascale systems, cf. [29].
We then determine the checkpoint bandwidth7 necessary to
achieve at least 80% application efficiency for our three scenar-
ios. The results in TABLE III show that in the optimistic case,
it may be possible to offset decreases in memory reliability
with increases in checkpoint bandwidth for all of the reliability
scenarios. In the SEC-DED ECC scenario, achieving an aggre-
gate checkpoint bandwidth of 64 TiB/s may be challenging,
but some have forecasted that it may be possible to deploy
a parallel file system with this performance in the relatively
near future, cf. [30] (projecting that an exascale system might
include a file system with ≈ 60TiB/s of aggregate bandwidth).
For the pessimistic strawman, even relatively modest declines
in memory reliability would require checkpoint bandwidths
that are likely infeasible in the near future. As a result, the
viability of checkpoint/restart on next-generation systems will
likely depend on minimizing the volume of checkpoint data
that applications require for restart.

7Checkpoint bandwidth is the rate at which checkpoints can be written to
some form of stable storage (e.g., a parallel filesystem, burst buffers).



IV. LESSONS LEARNED

In this section, we share the lessons that we have learned
from analyzing the failure data that was collected over the
lifetime of Cielo and discuss the implications of the data for
next-generation systems.

No discernible aging effects were observed: As com-
ponents on Cielo aged, we expected them to become less and
less reliable [18]. However, we observed no discernible aging
effects on Cielo. Our data shows that the memory structures
encountered memory DUEs at roughly the same rate at the
end of the system’s life as they did at the beginning.

Correctable DRAM faults were not reliable predictors
of uncorrectable DRAM faults: Correctable DRAM faults
have long been thought to be indicators of DRAM device
defects that will manifest as uncorrectable DRAM faults in the
future, cf. [19], [20]. However, the analysis in this paper shows
that there is no meaningful relationship between correctable
and uncorrectable DRAM faults. On Cielo a significant frac-
tion of uncorrectable DRAM faults occurred on nodes that had
not yet experienced a single DRAM fault. Even in those few
instances where an uncorrectable DRAM fault was preceded
by a correctable DRAM fault, the temporal distance between
the two events was large, in most cases many months.

Failure analysis is challenging: We made several ob-
servations about the challenges we faced in trying to analyze
failures on Cielo. For example, we lacked sufficient informa-
tion to identify the cause of node down events in the Resource
Manager logs. Moreover, to the extent that we were able
to identify the root cause, the process of correlating events
across different log files tedious and challenging. Based on
our experience with Cielo, we believe that effective failure
analysis requires the following.

Unified data storage. On Cielo, failure data was collected in
different log files that were maintained by different software
entities. A unified data storage service would reduce (or
eliminate) some of the challenges associated with reconciling
data stored in different files and formats.

Proactive RAS services. When software component detects
a failure (e.g., the scheduler determines that one or more nodes
are no longer available), it is important to gather information
from other system components to provide context even if those
components have not yet detected abnormal behavior. Relying
on individual components to detect abnormal behavior may
not be sufficient to understand the source of a failure.

Data Analytics Tools. The volume of failure data that is
collected over the lifetime of a leadership-class machine can
be significant. Tools that are designed to extract meaning from
large data sets (e.g., Apache Spark) may provide additional
insight into how leadership-class systems fail.

Efficient failure mitigation through checkpoint/restart
will require continued advancement: If system reliability
remains constant, current theoretical checkpoint bandwidths
are sufficient to achieve greater than 80% application effi-
ciency. However, if reliability decreases as expected (e.g., due
to increased scale and/or power constraints), the viablity of

checkpoint/restart will depend on advancements to minimize
the time required to commit a checkpoint.

V. RELATED WORK

The study of failures in production systems has been an
active research topic for over a decade [31], [32], [33], [34],
[35], [36], [37], [38], [39]. Failures have been studied in HPC
systems [3], [10], [7] and commercial data centers [5], [4],
[40], [19]. The circumstances under which DRAM devices
fail have also been studied [41], [40], [9].

Siddiqua et al. [42] presented a study demonstrating that
the incidence of each DRAM correctable fault mode on Cielo
was stable over time. Gupta et al. [43] studied five vastly
different systems of varying sizes and hardware and software
configurations to discover common failure trends that are
across HPC systems. The data set covering the longest period
of operation that they considered was collected on the Jaguar
XT4 system from 2008-2011.

Our work is distinct from these existing studies in sev-
eral important ways. First, we analyze data from a recently
decommissioned system; because it is a recent system it
more accurately represents current systems than older systems
that have been studied. Second, we examine the corpus of
failure data from the entire lifetime of a leadership-class
HPC system. This allows us to provide a detailed study of
hardware aging effects on both SRAM and DRAM. It also
allows us to analyze the performance of failure mitigation,
in this case checkpoint/restart, to gain insight on current and
future systems. Finally, to the best of our knowledge, this is
the first study to examine the relationship between correctable
and uncorrectable DRAM faults.

VI. CONCLUSION

Deploying and using the first Exascale system will require a
detailed understanding of how failures occur. In this paper, we
provide a detailed analysis of failure data collected over the
entire lifetime of Cielo, a recent leadership-class HPC system.
The results of our analysis provide novel insight into how
failures and fault tolerance will affect application performance
on current and future systems.
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