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Abstract—MPI is a message passing based programming model
for distributed-memory parallelism that is widely used for pro-
gramming supercomputers. However, debugging and verification
of MPI programs is generally recognized to be a deep technical
challenge. This challenge is further exacerbated by a recent
increase in the use of nonblocking MPI operations for improved
scalability, since incorrect use of these operations can introduce
new classes of bugs related to data races.

In this paper, we introduce a new debugging approach based
on partial symbolic execution to identify anomalies in MPI usage.
Our approach avoids the false positives inherent in static analysis,
while still scaling to large programs. Further, our approach
can be applied to incomplete programs and explore multiple
execution paths, thereby leading to increased coverage compared
with dynamic approaches. An experimental comparison with
state-of-the-art tools for debugging MPI applications show that
our approach delivers demonstrably better precision than a state-
of-the art static tool (MPI-CHECKER) and a state-of-the art
dynamic tool (MUST), without incurring excessive overheads.

Index Terms—MPI, Symbolic Execution, Anomaly Detection.

I. INTRODUCTION

In general, a variety of verification methods is needed for
identifying different classes of bugs in programs written using
the Message Passing Interface (MPI), with different trade-
offs relative to performance and precision [1]. Both static
and dynamic verification tools have well-known limitations
in their effectiveness of detecting bugs in distributed MPI
programs. Dynamic approaches are unable to cover all parallel
execution paths in practice, because their coverage is limited
by the input sets used, and can thereby result in false neg-
atives (missed bugs). Exploring large numbers of input tests
is especially challenging for MPI programs because of the
efforts needed to configure and execute programs for different
inputs on distributed-memory parallel platforms. Many MPI
programs are poorly parameterized, which makes it hard for
HPC developers to downscale a program to smaller instances
that can be used for dynamic debugging. On the other hand,
static approaches introduce false positives (false alarms) due
to their over-approximation of program execution paths. This
is also especially challenging for MPI programs because
of the conservative nature of static analysis approaches for
parallel programs with distributed states. The fact that MPI
is commonly used with weakly-typed imperative languages
like C/C++ aggravates this problem because of the need to
analyze low-level memory operations that may include pointer
arithmetic and aliasing.

This challenge is further exacerbated by a recent increase
in the use of nonblocking MPI operations for improved scal-
ability, since incorrect use of these operations can introduce
new classes of bugs related to data races. Though nonblocking
communication APIs can provide significant performance ben-
efits, overlapping computation with communication can also
lead to increased synchronization errors in MPI applications.
For example, a common scenario is when an MPI application
reuses the message buffer that has been passed to an MPI
communication call, immediately after the communication API
invocation. In the case of nonblocking MPI calls, it is possible
for the MPI call and the user code to simultaneously access
the same message buffer without proper synchronization and
thereby corrupt the message contents, which could lead to the
program crashing or to incorrect results.

In this paper, we introduce a novel static analysis framework
based on symbolic execution for detecting MPI usage anoma-
lies in C/C++ applications. Following standard practice, we
use the word, anomaly, “to refer to any abnormality, irreg-
ularity, inconsistency, or variance from expectations” [2]. As
we will see, the anomalies detected by our approach represent
true bugs/defects in many cases; in other cases, the anomalies
may represent irregularities that could be viewed as coding
style violations. Our implementation is based on extensions
to the KLEE [3] symbolic execution engine that works on
LLVM IR [4], an instruction set that abstracts away details of
the target platform but still preserves pointer operations. By
reasoning about the low-level memory operations in LLVM
IR with symbolic execution, our approach can detect memory-
related anomalies. It also produces fewer false positives than
traditional static analysis approaches.

Most MPI-based applications are used in the high perfor-
mance computing area, which focus on large applications that
perform numeric computations and scientific simulations. This
poses multiple challenges for symbolic execution, since it may
not successfully reach later points in a program execution due
to path explosion contributing to excessive time and memory
overheads., e.g., when symbolically executing computationally
intensive loop nests. Rather than applying symbolic execution
to the whole program from the start, we demonstrate that
starting symbolic executions from carefully selected interme-
diate program points, which we refer to as partial symbolic
execution, can be a key enabler of efficient anomaly detection
for MPI programs.
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The specific contributions of this paper are as follows:
• A static verification framework for MPI programs that

uses partial symbolic execution;
• A tool built on top of our framework that is capable of

detecting several MPI usage anomalies;
• An evaluation of our approach on real-world applications,

compared with state-of-the-art static and dynamic MPI
verification tools.

As an example of real-world bugs found by our approach,
Figure 1 outlines the buggy code identified by our approach
in commit 21c4d95 of the 63KLOC ATHENA astrophysical
magnetohydrodynamics application [5]. The code in Figure 1
has two anomalies, which were found by our approach: 1)
a REQUEST OVERWRITING anomaly due to two calls to
MPI_Isend() using the same request object, and 2) a
BUFFER DATA RACE anomaly due to a race condition between
the call to MPI_Isend() and the write of send_buf[0] via
the pointer-based lvalue, *(pSnd++). These two anomalies
were confirmed by the developers of this code to be real bugs
since they later added fixes to these anomalies in the form of
calls to MPI_Wait() in commit 4ca1615.

Additional details on this and other buggy MPI examples
can be found in Section IV-B. As reported in Table III in
that section, the lightweight MPI-CHECKER static analysis
tool [6] did not report the above two bugs for Athena. While
checking of BUFFER DATA RACE bugs is not supported by
MPI-CHECKER, REQUEST OVERWRITING bugs are checked
by MPI-CHECKER but were not found in this example thereby
resulting in a false negative. This is not a surprise since many
static analysis tools cut back on soundness as a practical way
to reduce false positives, and apparently, this was the case
when MPI-CHECKER was analyzing the Athena application.
Note that static analysis can be challenging for this example
due to the need for interprocedural analysis of the call to
pack_ix2(pGrid) to identify these bugs.

Further, the MUST dynamic analysis tool [7] did not
identify the BUFFER DATA RACE bug in the Athena application
because its checking of races is confined to overlaps between
buffers that occur in MPI calls. To identify the race condition
in Figure 1, MUST would need to check all loads and stores
that occur in the program (as is done by a data race detector)
rather than just the buffer usage in MPI calls, which would
add significant runtime overhead. In summary, the above
discussion of the Athena application motivates the use of our
approach for increased precision, relative to state-of-the-art
static and dynamic analysis tools. Further details can be found
in Section IV-B.

II. MOTIVATION

In this paper, we focus on detecting lower level MPI
anomalies that relate to communication and buffer operations.
Since MPI APIs are not expressed as structured program
constructs, it can be easy for users to omit necessary syn-
chronization calls needed to match nonblocking calls. Also,
MPI applications are often written in C/C++ programs that
manipulate communication buffers with pointer arithmetic;

1 void bvals_mhd(DomainS *pD) {
2 ...
3 ierr = MPI_Isend(send_buf[0], cnt, MPI_DOUBLE,
4 pGrid->lx1_id, RtoL_tag,
5 pD->Comm_Domain, &(send_rq[0]));
6 ...
7 pack_ix2(pGrid);
8 ierr = MPI_Isend(send_buf[0], cnt, MPI_DOUBLE,
9 pGrid->lx2_id, RtoL_tag,

10 pD->Comm_Domain, &(send_rq[0]));
11 ... }
12 s t a t i c vo id pack_ix2(GridS *pG) {
13 double *pSnd = send_buf[0];
14 ...
15 *(pSnd++) = pG->U[k][j][i].d;
16 ... }

Fig. 1. Example of buggy code in commit 21c4d95 of ATHENA.

thus it is important to precisely analyze the low-level pointer
arithmetic to avoid the false positives that are common in static
analysis tools. Though FORTRAN programs are more strongly
typed than C/C++ programs, many of these challenges apply
to FORTRAN programs as well with respect to the need for
analyzing index arithmetic for array subscripts.

MPI_Request req[2];
uint32_t recvbuf[100], sendbuf[100];

…

MPI_Irecv(recvbuf, 10, MPI_LONG, x, 101, MPI_COMM_WORLD, &req[0]); 

1. datatype mismatch

if (recvbuf[0] == x) { 
…

  …
  MPI_Isend(sendbuf, 10, MPI_LONG, x+2, 103, MPI_COMM_WORLD, &req[1]);
  …

2. data race

  MPI_Irecv(recvbuf, 10, MPI_LONG, x+1, 102, MPI_COMM_WORLD, &req[0]);); 
}
…

3. request overwriting, 
buffer overlap

MPI_Waitall(2, req, …);

4. unmatched wait: req[1]

Fig. 2. Examples of anomalies in the usage of nonblocking MPI APIs

Figure 2 illustrates different types of MPI anomalies to
motivate our proposed approach for detecting anomalies in
MPI usage, especially in the use of nonblocking APIs. We
summarize the five anomaly types targeted by our approach
below.

1) Buffer Type Mismatch: Case 1 illustrates a buffer type
mismatch anomaly, in where there is a mismatch between the
MPI type argument and the type of the buffer variable [6].
This kind of anomaly can lead to data corruption or illegal
memory accesses on platforms where there are differences in
the sizes of the two mismatched types.

2) Buffer Data Race: Case 2 shows a data race due to
the use of a nonblocking MPI IRECV call. The reason for
this anomaly is the lack of a corresponding test/wait MPI call
to confirm that it is safe to access the buffer operand of the
nonblocking MPI call. In the absence of this confirmation,
there can be a data race on the buffer, either with a regular



memory access [8] or with another MPI call [7], which can
lead to nondeterministic results in different executions of the
program.

3) Request Overwriting: Case 3 illustrates a request over-
writing anomaly [6]. In this case, a request handle of an
ongoing nonblocking MPI operation is reused by a later
MPI operation without confirming that the previous one has
completed. This anomaly may lead to undesired outcomes,
depending on the implementation of the MPI library.

4) Unmatched WAIT or TEST: Case 4 shows an unmatched
wait/test anomaly [6], which occurs when an MPI request
handle is used by a wait or test call before it is initialized.
A request handle should be initialized by a nonblocking call,
or set to MPI REQUEST NULL, before it is used by wait or
test calls. This anomaly may lead to an invalid request error or
other undesired outcomes, depending on the implementation
of the MPI library.

5) Unmatched Point-to-point (P2P) Call: Another common
kind of anomaly in MPI programs, not shown in Figure 2, is
a mismatch between point-to-point (P2P) communication API
calls. For example, this can occur if a SEND call does not have
a matching RECV call in its target process or a RECV call does
not have a matching SEND call in its source process. This
anomaly can appear in both blocking and nonblocking MPI
calls, and can result in deadlock or other undesired outcomes.

III. CHECKING FOR ANOMALIES

This section presents our approach to using symbolic exe-
cution to detect anomalies in MPI programs.

A. Background on Symbolic execution and KLEE

Symbolic execution [3] was introduced in the 1970’s. Its use
is increasing in popularity for testing and debugging software
systems. A key advantage of symbolic execution is that it can
simulate program behavior and generate test cases in arbitrary
contexts, thereby resulting in increased precision compared
with other static analysis approaches. Compared with dynamic
approaches, symbolic execution introduces flexibility because
it does not require concrete program inputs. However, one of
its major limitations is that can incur intractably large memory
and time overheads on large programs, making it impractical
to use on full-size real-world applications [9]. As we will see,
we address this limitation by introducing the use of partial
symbolic execution for MPI programs.

KLEE [3] is a state-of-the-art symbolic execution tool built
on top of the LLVM [4] compiler infrastructure, that has been
widely used in various software verification systems. It is
especially effective for verification of small-scale system soft-
ware components since it works on a low-level intermediate
representation that can simulate memory operations precisely
and can enable flexible abstractions that helps the user identify
different types of program errors.

B. Overall Architecture

Figure 3 summarizes the architecture of our MPI anomaly
detection framework based on static pre-analysis and partial

symbolic execution. The C/C++ source code is translated to
LLVM bitcode [4] via the CLANG compiler front-end [10] .
Our anomaly detector is built on the KLEE LLVM-level sym-
bolic execution engine. We add to it MPI anomaly checking
capabilities by intercepting a selected set of instructions during
symbolic execution and maintaining extra information within
the execution states (details in Section III-C). Before invoking
our anomaly detector with the KLEE symbolic executor, we
perform a static analysis to collect program information (de-
tails in Section III-D) which is used by the anomaly detector
during symbolic execution.

C/C++ Source Files
with MPI Calls Clang

Klee 
LLVM

LLVM Bitcode

LLVM Static
Analysis

LLVM  Bitcode 
+ Static Program 

Information

MPI Anomaly 
Detector

symbolic execution

compilation

interception

Fig. 3. Anomaly detection framework based on static pre-analysis and
symbolic execution.

C. Simulating MPI Programs with Symbolic Execution

In this section, we describe our approach to symbolically
executing MPI programs with the goal of anomaly detection.
As MPI programs are intended to run with multiple processes
and different processes may have different behaviors, it is
necessary to take all ranks into consideration. Instead of
launching multiple symbolic executions for different ranks of
the program, we use one symbolic process to simultaneously
represent the state of all processes. This is achieved by using a
symbolic rank variable to represent a set of MPI processes in a
single combined state. When encountering a branch condition
with a value that depends on the process rank, the state may be
forked into two states to represent those two sets of processes
by conjoining the path conditions with constraints on the value
of the rank value. This enables reasoning about the states of
multiple processes in a single execution1. While not required
for the core symbolic execution, the number of processes is
also supplied as a concrete value to establish bounds on the
rank variables.

During symbolic execution, each instruction is executed
symbolically as in sequential programs, except for MPI calls.
Instead of symbolically executing an implementation of the
MPI library, we intercept the MPI API calls and simulate them
separately in a lightweight manner. Actual data communica-
tions are not simulated due to the use of a single symbolic
state to represent the concrete states of multiple processes.
To simulate the case that the received data can impact the
control flow, we fill the receive buffers with unbounded sym-
bolic values. This interception mechanism assumes by default
that MPI API calls are always executed successfully. For
MPI calls like MPI TEST, MPI TESTALL, MPI TESTANY

1For simplicity, our implementation currently only supports the
MPI COMM WORLD communicator. Support for additional communica-
tors is a subject for future work.



and MPI WAITANY, we fork the execution states to han-
dle all possible cases. For the sake of efficiency, we treat
MPI TESTSOME and MPI WAITSOME as MPI TESTALL
and MPI WAITALL, so as to avoid creating forks for every
possible subset for the Testsome/Waitsome operations. Doing
so may result in some false negatives, but not false positives.

Unlike blocking communication operations, the MPI non-
blocking communication operations are initiated and com-
pleted by different MPI API calls, e.g. MPI IRECV and
MPI WAIT. We add the following information to the sym-
bolic execution state to model nonblocking calls. Inside each
execution state, we maintain two lists of nonblocking commu-
nication operation records. Each record contains the address of
the request object identifying the nonblocking operation and
the base addresses and sizes of send and receive buffers. The
two lists are:

• Active list (ActL): The list of records for non-blocking
operations that have been started but not guaranteed to
be completed; and

• Inactive list (InActL): The list of records for non-
blocking operations that are guaranteed to be completed
by an MPI TEST call but not a WAIT call.

Algorithm 1: Simulating MPI Nonblocking Operations
in the Symbolic Executor

1 function SymbExec ()
Inputs : entry: input program point, ActL: active list, InActL:

inactive list
Output: Updates to ActL and InActL

2 inst := entry;
3 while inst 6= NULL do
4 StateTransfer (inst);
5 NBStateTransfer (inst, ActL, InActL);
6 inst := NextInst (inst);

7
8 function NBStateTransfer ()

Inputs : inst: input program point, ActL: active list, InActL:
inactive list

Output: Updates to ActL and InActL
9 if IsNonBlocking (inst) then

10 ActL ∪= inst;

11 else if IsTest (inst) then
12 nbInst := GetMatched (inst, ActL);
13 if nbInst 6= NULL then

//Simulate false case
14 (ActL′, InActL′) := Fork (ActL, InActL);
15 SymbExec (NextInst (inst), ActL′, InActL′);

//Simulate true case
16 ActL \= nbInst; InActL ∪= nbInst;

17 else if IsWait (inst) then
18 nbInstAct := GetMatched (inst, ActL);
19 ActL \= nbInstAct;
20 nbInstInAct := GetMatched (inst, InActL);
21 InActL \= nbInstInAct;

Algorithm 1 summarizes how we simulate MPI nonblocking
execution in our symbolic executor. Function SYMBEXEC
starts the symbolic execution at a given program entry point

and keeps interpreting instructions until reaching the end
of the current execution path. STATETRANSFER handles the
standard symbolic state management. NBSTATETRANSFER
processes the state transfer for nonblocking MPI APIs. When a
nonblocking MPI API is invoked, a record for the nonblocking
operation is added to ActL (lines 9,10). If an MPI TEST call
is invoked to examine whether an operation in an issued state
has completed, we fork the current state into two states for
different results for this call. For the case in which the TEST
call is assigned a false result, a new symbolic execution is
performed with forked state (ActL′, InActL′). For the case
in which the TEST call is assigned a true result, indicating
that the operation has completed, we move it from ActL
to InActL (line 16). If an MPI WAIT call is invoked for a
nonblocking operation, then it will be removed from both lists
(lines 18∼21). The GETMATCHED function here matches a
nonblocking operation from the given list, if there are multiple
matched operations, it only picks up the last one.

D. Static Analysis Pre-pass

As mentioned earlier, the anomaly detector runs as a plugin
with the KLEE symbolic executor. Since the symbolic executor
interprets the input program in execution order, it can only
look “backwards” at the recorded information, but cannot look
ahead for information from program points that have not as
yet been processed. To address this limitation, we employ
a lightweight static analysis as a pre-pass to collect whole
program information that can assist the symbolic executor
by providing it with look-ahead information. The following
sections indicate how this look-ahead information can be
used to enable partial symbolic execution, e.g., how the
pointer analysis enables the lazy initialization introduced in
Section III-E1.

This static analysis prepass includes both intraprocedural
and interprocedural analyses. The interprocedural analysis
is performed to construct program structure information, in
particular, the program’s call graph. The interprocedural anal-
ysis collects MPI-related control flow information along with
supporting analyses:

1) A whole-program flow and context-insensitive pointer
analysis;

2) An analysis of MPI derived types based on pointer
analysis;

3) For each MPI call C, its unique control dependence
predecessor branch’s condition expression CDPEXPR(C);

4) For each branch expression EXPR, its control dependence
successors [11] that are MPI calls and branch expressions.
These successors are divided into two sets: Strue for those
reached via the true branch and Sfalse for those reached
via the false branch;

5) The loop structure, including the locations of loop pre-
headers, headers, and exits.

Items 3 and 4 essentially construct a special control depen-
dence tree in which each node is either a function call or a
branch expression. By leveraging call graph information, this
tree can be built across procedure boundaries, i.e., a copy of



the nodes from callee function F can be connected to each
branch expression that is the control dependence parent of a
call site that has a unique target function F.

E. Partial Symbolic Execution

The previous sections introduced the basic approach for
using symbolic execution to detect anomalies in MPI usage,
especially for nonblocking operations. The cost of running a
symbolic executor through an entire program starting from
its main function is usually prohibitively large due to the
combinatorial explosion in the number of symbolic states.
In this section, we present our partial symbolic execution
(PSE) approach that supports the start of symbolic execution
from a user-specified program point. There are two major
techniques related to PSE, lazy initialization and shadow
memory allocation.

1) Lazy Initialization: Since a key requirement for PSE
is to start symbolic execution from any function, a major
challenge is how to initialize global/heap states that are
expected to be defined on entry to that function? We address
this challenge by employing lazy initialization for heap states.
This approach is an extension of the technique presented in
[12] for heap states. Since a key focus of our work is to
handle pointer references that impact anomaly detection, we
use on-demand memory allocation to assign values to pointer
references that have unbounded values in PSE. When PSE
starts from a function F, all global variables and arguments
of F are initialized with unbounded symbolic values. If an
unbounded pointer-typed value is dereferenced, there are three
steps to be performed2: 1. allocate the memory block; 2. mark
the new bytes as unbounded symbolic values; and 3. mark the
pointer-typed values as bounded and constrain it to be equal
to the starting address of the newly allocated memory block.

To handle pointer references reached during PSE, we con-
sider three cases: 1. a newly created object; 2. reuse of
an object that has been allocated; and 3. NULL reference.
(Details are provided in function LazyInit in Algorithm 3
in Appendix B-A.) As discussed in the previous section, our
approach includes a pointer analysis in the static pre-analysis.
LazyInit takes the pointer alias information obtained from
the pointer analysis as input. If a pointer reference P is not
initialized, LazyInit checks if P has an initialized ‘Must Alias’
pointer reference Q. if so, we constrain P to point to the
memory object allocated for Q. Otherwise if there is no ‘Must
Alias’ pointer reference for P, LazyInit forks the current state
into two states. In one of the states, it allocates a new memory
object with each byte set as an unbounded symbolic value. In
the other state, it nondeterministically selects P’s referent from
the set that includes NULL and the memory objects allocated
for P’s ‘May Alias’ pointer references.

2) Shadow Memory: To accommodate states for lazy ini-
tialization, we employ the idea of a shadow memory to track
the boundedness of values. When a pointer gets dereferenced,

2Details are provided in function NewObject in Algorithm 3 in Ap-
pendix B-A.

we need to check if it needs lazy initialization based on the fact
that the pointer variable has an unbounded symbolic value. The
information regarding whether a pointer value is unbounded
or not is maintained by the shadow memory associated with
it.
General issues related to shadow memory:

Let N be the size of a pointer in bytes. We create a shadow
memory object for every N bytes in the heap, stack and
data segment. The shadow memory object stores a pointer
to the metadata storage for the N bytes. For the purpose of
tracking unbounded pointers, only one bit of metadata is used
to indicate whether or not the N bytes store an unbounded
pointer value.

The shadow objects are tied to bytes in memory, and the
metadata are tied to values. Different bytes in memory can be
associated with the same metadata but not the same shadow
objects. In this paper, we make two assumptions regarding
memory and pointer operations: 1. the pointers stored in
memory are aligned, which means it is safe to use one shadow
memory object for every N bytes. 2. no negative offset value
is involved in pointer arithmetic instructions. We now briefly
summarize the constraints for handling shadow memory during
symbolic execution:

• The metadata bits of global variables and the entry
function’s arguments are initialized as true (indicating an
unbounded value) at the start of PSE;

• For the load instruction case when a value is loaded
from a memory address to a register, the address of the
corresponding metadata object is also loaded from its
shadow memory and saved into the register;

• For the store instruction case when a value is stored
from a register to a memory address, the address of the
metadata object is also saved from the register to the
corresponding shadow memory;

• When a pointer value stored in a register is dereferenced,
its corresponding metadata is loaded from the address
saved in the register;

• If the metadata shows that an unbounded symbolic value
is dereferenced, lazy initialization is applied and the
metadata bit is set to false;

• For CAST or ASSIGNMENT operations, the destination
register receives the metadata address saved by the source
register;

• For a pointer arithmetic instruction, lazy initialization is
performed when the base pointer address is unbounded,
and the result value’s metadata address is set to null (i.e.,
the result is not an unbounded pointer);

• For instructions that do not contain pointer-related oper-
ations, their result value’s metadata address is set as null.

Implementation specific issues and optimizations:
In C/C++ languages, a pointer may point to either a concrete

object (i.e., primitive type) or a composite object (e.g., an array
or struct/class). For a composite object (e.g., an array) whose
initial size cannot be identified during lazy initialization, we
have to use a default size, which can be set by the user, to
allocate the object. For handing a pointer offset value in a



pointer arithmetic-related instruction, we choose a size that
makes the constraint “OFFSET < LENGTH” satisfiable.

To optimize the overall performance, we reduced the num-
ber of loop iterations visited by symbolic execution. As
mentioned in Section III-D, the static analysis identifies the
preheaders, headers, exits and back edges of loops in the
program. During PSE, the symbolic executor maintains a stack
of loops and an iteration counter for each loop. A loop L is
pushed on the stack when the symbolic executor reaches L’s
preheader. L’s iteration counter is incremented at its header.
When the symbolic executor reaches L’s exit and L’s iteration
counter exceeds a user-specified threshold, the exit branch is
taken and L is popped from the stack.

F. MPI Anomaly Detection

TABLE I
MPI ANOMALY DETECTION RULES

(1) buffer type mismatch
mismatch(xi) :- MPI CALL(xi , Ti), ¬MATCH(TYPE(xi), Ti)

(2) buffer data race (overlap)
ActL ⊇ {bufx,lenx, R} :- NONBLOCKING READ(bufx, lenx)
ActL ⊇ {bufx,lenx, W} :- NONBLOCKING WRITE(bufx, lenx)
data race :- READ(bufy , leny),

∃ {bufx, lenx, W} ∈ ActL,
OVERLAP({bufx, lenx}, {bufy , leny})

data race :- WRITE(bufy , leny),
∃ {bufx, lenx, W} ∈ ActL,
OVERLAP({bufx, lenx}, {bufy , leny})

data race :- WRITE(bufy , leny),
∃ {bufx, lenx, R} ∈ ActL,
OVERLAP({bufx, lenx}, {bufy , leny})

(3) request overwriting
ActL ⊇ r :- MPI REQUEST(r)
ActL\=r, InActL\=r :- MPI WAIT(r)
ActL\=r, InActL∪=r :- MPI TEST(r)
request overwrite :- MPI REQUEST(ri), ri ∈ ActL

(4) unmatched WAIT or TEST
ActL ⊇ r :- MPI REQUEST(r)
ActL\=r, InActL\=r :- MPI WAIT(r)
ActL\=r, InActL∪=r :- MPI TEST(r)
unmatched wait :- MPI WAIT(ri),

ri /∈ ActL, ri /∈ InActL
unmatched test :- MPI TEST(ri),

ri /∈ ActL, ri /∈ InActL

(5) unmatched P2P call
OPCS ← OPPSITE(E, calli) :- E = CDPEXPR(calli)

HASMPIRANK(E)
MATCHEDPAIRS ← (calli, c) :- ∃ c ∈ opcS , RANK(c) = RANK(calli),

ISCOMMPAIR(c, calli)
calli has unmatched p2p call :- MATCHEDPARIS = ∅

As mentioned in the previous sections, our MPI anomaly
detector intercepts the KLEE symbolic executor’s instruction
handling and maintains extra states for checking MPI-related
anomalies. Algorithm 2 presents the anomaly detection mech-
anism that runs together with nonblocking state transfer in
the symbolic executor (lines 11∼15). The auxiliary analysis
was applied before the symbolic execution (line 2). The
anomaly detection function checks each intercepted instruction
and updates the MPI-related states. There are five anomalies
handled by the implementation developed for this paper. The

exact anomaly detection rules are summarized in a Datalog-
like representation in Table I), with further details discussed
below.

Algorithm 2: Anomaly Detection via Symbolic Execu-
tion

1 function MainProc ()
Inputs : P: input program, F: start function
Output:

2 InterProcAnalysis (P);
3 startInst := GetFunctionEntry (F);
4 ActL := ∅; InActL := ∅;
5 anomalyS := SymbExec (startInst, ActL, InActL);
6 if anomalyS 6= ∅ then
7 Alarm (anomalyS);

8
9 function SymbExec ()

Inputs : entry: entry point, ActL: active list, InActL: inactive
list

Output: anomalyS : the set of anomalies
10 inst := entry;
11 while inst 6= NULL do
12 StateTransfer (inst);

//Check anomalies on current instruction
13 anomalyS ∪= AnomalyDetect (inst, ActL, InActL);
14 NBStateTransfer (inst, ActL, InActL);
15 inst := NextInst (inst);

16 return anomalyS ;
17
18 function AnomalyDetect ()

Inputs : inst: current instruction, ActL: active list, InActL:
inactive list

Output: anomalyS : the set of anomalies
/*Apply anomaly detect rules from Table I

and return collected anomalies */

Buffer Type Mismatch: Rule (1) in Table I checks the type of
the buffer arguments in a MPI call against the corresponding
MPI DATATYPE handles. We maintain a map from instances
of MPI DATATYPE to types in LLVM IR used by KLEE,
including the MPI primitive types and MPI derived types (a
derived type detection algorithm is presented in Algorithm 4
in Appendix B-A). A given buffer’s type is checked against
the type obtained from the map using the MPI type handle as
the key.
Buffer Data Race: Rule (2) in Table I identifies data races
in nonblocking MPI calls that may read/write buffers. For
each memory read, it checks if it accesses a RECV buffer
from an ongoing nonblocking MPI call. Similarly, it checks if
each memory write accesses a SEND or RECV buffer from an
ongoing nonblocking MPI call.

The ongoing nonblocking calls are stored in the active list
(ActL, defined in Section III-C), which is maintained inside
every execution state in KLEE. The code for checking this
anomaly is inserted into KLEE’s memory operation execution
function so that each time there is a read/write operation, the
data race check is executed.
Request Overwriting: Rule (3) in Table I describes how to
find an overwritten request handle. When a request handle is



passed to a nonblocking call, we check if it is used by an
ongoing nonblocking call to decide whether there is a request
overwriting anomaly.

Since ongoing nonblocking calls are recorded in ActL
maintained by KLEE, we implement the check by comparing
the address of the request handle with that of each nonblocking
call in ActL.
Unmatched WAIT or TEST: When processing WAIT or TEST
operations (shown in the rule (4) of Table I), our anomaly
detector checks if a request handle in the arguments is used
by a MPI nonblocking call that has not been waited on as yet.

The check is performed by looking up the address of the
request handle in both ActL and InActL stored for the current
KLEE execution state. If there is no matching call found in
either list, an unmatched WAIT or TEST anomaly is reported.
Unmatched Point-to-point (P2P) Call: Based on our restric-
tion of simulating multiple processes in a single symbolic
execution, the matching of P2P communication API calls
cannot be performed precisely. Since MPI applications often
use control flow branches with condition expressions that
contains rank values to distinguish code running on different
processes, if KLEE can check both true and false cases for
these rank value-related control flow branches, then it can
also identify some of the matched P2P APIs (e.g., SEND/RECV
pairs).

As mentioned in Section III-D, we employ static analysis
to establish the connection between P2P calls with branch
expressions (i.e. CDPEXPR) that contains rank values. For
a given P2P call, we check if there is a corresponding sender
or receiver from the code region that is control dependent on
the same branch (shown in the rule (5) of Table I).

IV. EVALUATION

A. Experimental Setup

We created a prototype implementation of our approach us-
ing LLVM 3.6.2. We evaluated our tool on a Linux workstation
with an Intel Core i7-3770K processor running at 3.50GHz
with 16GB of RAM. We evaluated our approach with C
programs, since there is limited support for C++ in KLEE.

We collected 6 MPI programs as our benchmarks. Two of
them are real-world applications: AMG2013 and ATHENA,
that are approximately 75KLOC and 63KLOC in size respec-
tively. NPB.IS and NPB.DT are two benchmarks from the
NPB benchmark suite [13]. The remaining two benchmarks are
OPENFFT and SORT. Many of these benchmarks have been
used in past work, e.g., MPI-CHECKER used AMG2013 and
OPENFFT, and MUST used the NPB benchmarks for their
evaluations respectively.

Table II gives the basic statistics of the benchmarks, includ-
ing their size in lines of code, their numbers of static MPI call
sites, as well as of static non-blocking MPI call sites. Since our
approach is based on partial symbolic execution (PSE), we do
not have to start the execution from the main function. The last
column of Table II gives the entry points used to initiate PSE
for each benchmark. Other detailed execution configurations
are given by Table VI in Section A-C.

The symbolic execution related configurations used for each
benchmark are presented in Appendix A-C Table VI, includ-
ing the number of processes simulated, interpretation-related
parameters (e.g., maximum depth of fork, maximum solver
time and the maximum number of loop iterations visited), and
the default size assumed for lazy allocation.

To evaluate the effectiveness and performance (details in
Section IV-B and IV-C), we compared our PSE approach with
static and dynamic verification tools. For the static case, we
chose MPI-CHECKER [6] which provides a state-of-the-art
lightweight MPI verification mechanism based on the analysis
of the abstract syntax tree (AST) level program representation.
Limited by its high-level abstraction and lightweight design,
MPI-CHECKER cannot achieve the same level of precision
as our KLEE based approach that is capable of modeling
branch conditions and reasoning about heaps. For lightweight
checking, MPI-CHECKER has been integrated into the official
release of LLVM CLANG compilation toolchain.

For the dynamic case, we chose MUST [7], which focuses
on detecting MPI anomalies related to non-blocking MPI APIs.
As a typical dynamic verification tool, MUST instruments the
target program and runs the instrumented program to obtain a
trace for analysis. It can precisely analyze a concrete execution
of the given program, but it is limited by its input dependent
nature. For the input of the dynamic test, we used the standard
test data provided by benchmark vendors.

B. Effectiveness

Table III shows statistics regarding the effectiveness of PSE
compared with MPI-CHECKER and MUST on 6 benchmarks.

For AMG2013, MPI-CHECKER reported 2 REQUEST
OVERWRITING and 1 UNMATCHED WAIT anomalies from the
same code region that is covered by PSE. Those are all false
positives. Figure 4 shows the code extracted from AMG2013
that causes the false positives. The anomaly report of MPI-
CHECKER indicates that with the knowledge that myid is
greater than 0, after assuming the condition at line 7 to
be false in the first iteration, MPI-CHECKER makes another
assumption that children_complete does not equal to
zero at line 3 in the second iteration. This is due to the
bitwise AND operation inside the branch condition, which is
beyond MPI-CHECKER’s constraint reasoning capability. PSE
and MUST did not report any anomaly for AMG2013.

Both PSE and MUST reported REQUEST OVERWRITING
anomalies in 8 locations of ATHENA. MUST identified the
anomalies as requests that are not freed, and issued a number
of reports for an anomaly in the same location because it
was triggered multiple times in different loop iterations. PSE
reported at most one anomaly at each program point. PSE
also identified BUFFER DATA RACE anomalies in several line
ranges, which are not supported by MUST. MPI-CHECKER
missed both of those anomalies in ATHENA due to its less
precise modeling of heap data.

Figure 1 (in Section I) shows the anomalies introduced
in ATHENA at commit 21c4d95 when non-blocking sends
were adopted. As discussed in Section I, PSE detects the



TABLE II
CHARACTERISTICS OF MPI BENCHMARKS USED IN OUR EVALUATION

Benchmark Description LOC # of MPI # of nonblocking entry function
calls MPI calls

AMG2013 A parallel algebraic multigrid solver 74,901 402 59 HYPRE DATAEXCHANGELIST
for linear systems

Athena A grid-based application for 63,012 86 24 BVALS MHD
astrophysical magnetohydrodynamics [5]

OpenFFT A high performance FFT library 6,498 196 70 OPENFFT EXEC C2C 3D
NPB.IS Distributed parallel bucket sort 711 20 1 MAIN
NPB.DT Data traffic simulation 892 16 0 MAIN
Sort Distributed parallel quick sort 127 12 2 MAIN

TABLE III
EFFECTIVENESS COMPARISON AMONG PARTIAL SYMBOLIC EXECUTION (PSE), MPI-CHECKER(MC) AND MUST. RESULTS ARE ONLY PRESENTED FOR

3 BENCHMARKS, BECAUSE ALL THREE TOOLS REPORTED ZERO ANOMALIES FOR THE REMAINING 3 BENCHMARKS (OPENFFT, IS, DT).

Benchmark ANOMALY TYPE POSITION IS REAL REPORTED
FILE NAME LINE NUM ANOMALY PSE MC MUST

AMG2013 REQUEST OVERWRITING exchange data.c 453
√

exchange data.c 455
√

UNMATCHED WAIT exchange data.c 471
√

Athena BUFFER DATA RACE bvals mhd.c 2368∼2410
√ √

bvals mhd.c 2439∼2481
√ √

bvals mhd.c 2507∼2549
√ √

bvals mhd.c 2575∼2617
√ √

REQUEST OVERWRITING bvals mhd.c 259
√ √ √

bvals mhd.c 263
√ √ √

bvals mhd.c 285
√ √ √

bvals mhd.c 306
√ √ √

bvals mhd.c 362
√ √ √

bvals mhd.c 366
√ √ √

bvals mhd.c 388
√ √ √

bvals mhd.c 409
√ √ √

Sort BUFFER DATA RACE sort.c 136∼146
√ √ √

1 whi le (!terminate) {
2 ...
3 i f (!children_complete) {
4 ierr = MPI_Testall(tree.num_child,
5 term_requests,
6 &children_complete,
7 term_statuses);
8 i f (children_complete & (myid > 0)) {
9 MPI_Isend(NULL,0,MPI_INT,tree.parent_id,

10 term_tag,comm,&request_parent);
11 ... }
12 } e l s e {
13 ...
14 i f (terminate) {
15 i f (myid > 0)
16 MPI_Wait(&request_parent,&status_parent);
17 ... } } }

Fig. 4. An example that causes MPI-CHECKER to report false positives.

above-mentioned two kinds of anomalies inside it. The non-
blocking send operation at line 3 is not checked for completion
before a call to pack_ix2 function, which writes to the send
buffer. This is identified as a BUFFER DATA RACE anomaly.
After that, another non-blocking send operation is initiated

and the request handle of the previous non-blocking operation
is reused without confirming the completion of that operation.
This is identified as a REQUEST OVERWRITING anomaly.

For SORT, PSE identified BUFFER DATA RACE anomalies
caused by a load of a value from the buffer of an ongoing
MPI IRECV operation. The value is used to determine the
buffer length of a subsequent MPI RECV call. MUST caught
this anomaly in the form of a mismatch of buffer length
between MPI SEND and MPI RECV. However, the program
halted afterwards without doing any further anomaly detection.
We did not test OPENFFT with MUST since MUST can
only be applied to a complete program, while OPENFFT is a
library.

Based on the above observations, PSE can identify all
anomalies reported by the MUST dynamic analyzer, as well
as some that are not identified by MUST. Compared with
the lightweight static approach, MPI-CHECKER, PSE avoided
most of false positives and identified more true positives.

C. Performance

Table IV compares the performance of our approach with
that of static/dynamic approaches. (Since the performance of
dynamic approaches is highly dependent on the program inputs



used, we just used inputs that could be considered reasonable
for debugging purposes.) We collected performance statistics
for both execution time and memory usage. Columns 2∼4
show the execution time comparison. Due to the cost of
interpreting a program in low-level IR (i.e., both interpretation
and symbolic states generation/maintenance are expensive)
and shadow memory allocation/management, PSE ran slower
than other approaches, especially for ATHENA that is memory
intensive and executes pointer operations frequently. In most
of the cases, MPI-CHECKER is the cheapest approach, MUST
is more efficient in some cases, depending on the input size
used for dynamic verification.

Columns 5∼7 show the memory usage comparison. PSE
employs shadow memory allocation which is about 10×
compared with normal symbolic execution, but it still used less
memory than MPI-CHECKER for ATHENA and OPENFFT due
to the partial execution. MPI-CHECKER shows lower cost than
MUST.

Table V shows the performance of PSE under different
configurations. We vary the number of processes simulated and
the maximum fork depth while keeping other configurations
unchanged as in Table VI. By comparing the data under
the same fork depth configuration but different numbers of
processes, it can be seen that the increase in the number of
processes does not hurt the performance of PSE. This means
that our approach is scalable in terms of the number of MPI
processes that it can handle. It can also be observed that
changing the depth limit of forking largely impacts the time
and memory consumption for the three real-world applications,
which indicates that there are still a number of states not
explored because of the limited fork depth. This is an expected
result of PSE, when applied to all three applications, because
of a large amount of possible states that could exist due to
lazy initialization.

Overall, these results show that debugging based on sym-
bolic execution is a viable approach in terms of both effective-
mess and efficiency. The longest execution time was 1960.14
seconds, which is just over 30 minutes. We hope that our work
will, in turn, motivate future work on further performance
improvements for symbolic execution, e.g., via the use of
parallelism within the symbolic executor.

TABLE IV
EXECUTION TIME (SECS) AND MEMORY USAGE (MB) COMPARED WITH

MPI-CHECKER(MC) AND MUST.

Benchmark EXEC TIME(SEC) MEM USAGE(MB)
PSE MC MUST PSE MC MUST

AMG2013 28.57 96.70 8.54 220 418 677
Athena 1960.14 27.13 119.19 277 333 700
OpenFFT 75.21 4.76 N/A 74 312 N/A
NPB.IS 206.21 1.00 9.15 1,926 85 654
NPB.DT 9.54 1.60 8.49 1,316 128 714
Sort 0.11 0.39 6.38 27 65 682

V. RELATED WORK

Static and dynamic anomaly detection for MPI program
Testing and debugging parallel program are always challeng-
ing problems due to the need for both precision and efficiency.
There have been both static and dynamic approaches that were
developed. The dynamic tools used to profile the program and
generate the trace for verification. In this paper, we did ex-
periments on the Marmot Umpire Scalable Tool (MUST [7])
which is a dynamic tool for detecting nonblocking MPI
API related anomalies. Based on runtime profiling, MUST
employs a graph-based deadlock detection approach for MPI,
which also covers future MPI extensions.

ISP [14], [15] tackles the correctness evaluation problem
for MPI programs in the form of a “Scalable and Distributed
Dynamic Formal Verifier”. Based on runtime profiling, ISP
replays MPI calls in distinct schedules, to simulate different
outcomes of non-deterministic behavior. The range of enforced
distinct outcomes derived from non-deterministic behavior is
then verified, which leads to a better coverage than replay
techniques that do not enforce different schedules. However,
both MUST and ISP relies on profiling of MPI commuication
APIs, thus it can not identify data race anomalies. Chen et
al. introduced SyncChecker [8], which focuses on checking
synchronization errors when MPI programs use nonblocking
communication. It performs both application level and library
level profiling to detect whether the use of the message
buffers in nonblocking communication is well synchronized
between MPI programs and the underlying MPI library. Pham
et al. introduced SimGridMC [16], that uses dynamic partial
order reduction and state equality algorithm to to solve state
space exploration problem and enhances the efficiency of
dynamic MPI verification. Both SyncChecker and SimGridMC
instrument low level buffer synchronous operations, they can
identify the racy cases for buffer operations, but not for high
level anomalies (i.e. type mismatch and unmatched wait).

Static verification approaches typically result in more false
positives due to their over-approximations of the underlying
abstractions. MPI-Checker [6] is a lightweight static analysis
tool that is implemented in LLVM/CLANG. It checks the
correct usage of MPI APIs via traversing the C/C++ program
presented as abstract syntax tree (AST). Due to the lack of
precise control flow information and inter-procedural infor-
mation, the ratio of false positives is high. Strout et al. built
the interprocedural control-flow graphs (ICFGs) [17] for MPI
programs, and modeled communication APIs as additional
ICFG edges. This technique can help the interprocedural
dataflow analysis for MPI programs.
Symbolic execution for anomaly detection
Symbolic execution can simulate program behavior and gener-
ate test cases in arbitrary contexts, and deliver more precision
compared with other static analysis approaches. It also brings
more flexibility compared with dynamic approaches that need
to be input dependent and reduces overhead for running the
whole program. KLEE [3] is a popular state-of-the-art symbolic
execution tool built on top of LLVM [4], and it can simulate



TABLE V
EXECUTION TIME (SECS) AND MEMORY USAGE (MB) OF PSE UNDER DIFFERENT CONFIGURATIONS.

Benchmark AMG2013 Athena OpenFFT
# of procs, max fork depth 8, 11 16, 11 8, 12 16, 12 2, 14 4, 14 2, 15 4, 15 2, 11 4, 11 2, 12 4, 12
EXEC TIME(SEC) 11.73 11.74 28.57 27.65 1140.13 1117.67 1960.14 1909.8 42.55 42.3 75.21 75.85
MEM USAGE(MB) 215 215 220 220 220 221 277 278 68 68 74 75
Benchmark NPB.IS NPB.DT Sort
# of procs, max fork depth 8, 11 16, 11 8, 12 16, 12 11, 11 22, 11 11, 12 22, 12 2, 11 4, 11 2, 12 4, 12
EXEC TIME(SEC) 166.86 148.32 206.21 161.24 9.36 9.52 9.54 9.43 0.11 0.1 0.11 0.1
MEM USAGE(MB) 1940 1490 1926 1539 1316 1316 1316 1316 27 26 27 26

a wide range of program behaviors from the system level
to high-level abstractions. Ramos and Engler introduced an
under-constrained symbolic execution mechanism [18] with
KLEE, that improves scalability by directly checking individual
functions, rather than whole programs.

There have been multiple past works that use symbolic
execution to verify MPI programs. Fu et al. introduced a KLEE
based tool [19] that records the MPI APIs’ status and applies
a lazy matching mechanism that identifies the communica-
tion pairs until the execution touches the block operations.
In [20], Bergan et al. introduced a technique to evaluate the
symbolic synchronous technique during symbolic executing
multithreaded applications. They proposed a context-specific
dataflow analysis that can precisely approximate the initial
context with low overhead to avoid some infeasible-path ex-
plosion. In [21], Li et al. discussed automatically creating para-
metric flows for symbolic execution. Their technique enhances
the verification of CUDA program via checking for data races
only across a pair of threads per parametric flow. Siegel et
al. introduced concurrency intermediate verification language
(CIVL) [22] approach, that translates parallel programs like
MPI or libraries into CIVL-C program, which is a dialect of
C with concurrent extension, and uses symbolic execution to
model check the programs.
Lazy initialization for symbolic execution
In this paper, we employed lazy initialization for both scalar
variable and heap fields to enable the partial symbolic execu-
tion. The lazy initialization technique was introduced in [12],
which can generate the test for those heap address with unclear
initialization states. Their approach is to nondeterministically
choose if a heap address should be initialized/uninitialized, or
alias to other address. There are several works that improve
lazy initialization, like delaying aliasing choices [23] and
checking initializations against invariants [24]. Hillery et al.
introduced generalized symbolic execution (GSE) [25], which
gives a method for initializing input references in a symbolic
input heap using guarded value sets that exactly preserves
GSE semantics. Their initialization technique can be used
to ensure that guarded value set based symbolic execution
engines operate in a provably correct manner with regards to
symbolic references as well as provide the ability to generate
concrete heaps that serve as test inputs to the program.

In our work, we employ partial symbolic execution that
works on a selected program region, starting from the user-
specified function. The initialization of heap fields is based on

lazy initialization that is extended to support for weakly typed
programming languages and takes pointer alias information to
assist the selection of shadow memory objects. By leveraging
the advantages of symbolic execution, our approach has the
capacity to explore multiple execution paths in a program,
thereby avoiding the false negative limitations of dynamic
analysis approaches in which each execution with a concrete
set of inputs may only explore one execution path in a
program. Our approach can also avoid the false alarms that are
inherent in past approaches based on static program analysis.
Based on these advantages, our approach can detect MPI
communication API-related anomalies, especially for racy
anomalies that impact various program configurations.

VI. CONCLUSIONS AND FUTURE WORK

This paper introduced a new static analysis framework for
MPI-based parallel programs using partial symbolic execution,
as well as several techniques to detect anomalies in MPI
usage built on top of this framework. We built our prototype
of this partial symbolic execution (PSE) based anomaly de-
tection system on top of the KLEE [3] symbolic execution
engine. Our evaluation with two real-world application and
four MPI benchmarks show that PSE is effective in detecting
the MPI communication API-related anomalies (especially for
nonblocking communication operations) with high precision
and acceptable overhead compared with state-of-art static and
dynamic verification tools (i.e., MPI-CHECKER and MUST).

In this paper, we evaluated our anomaly detection approach
for MPI applications that use a single MPI COMM WORLD
communicator. As future work, we plan to extend our symbolic
executor to support multiple communicators. There may also
be opportunities to relax some of the assumptions made in
our approach, e.g., no misaligned pointer accesses, and no
negative offsets in pointer arithmetic. Finally, we are exploring
approaches to parallelize our partial symbolic execution to
further improve its compile-time performance.
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APPENDIX A
ARTIFACT DESCRIPTION: DETECTING MPI USAGE
ANOMALIES VIA PARTIAL PROGRAM SYMBOLIC

EXECUTION

A. Implementation and Environment

The prototype of our MPI usage anomaly detector is
implemented as an extension to KLEE (commit d19500e)
with LLVM 3.6.2. Its source code can be downloaded from
https://github.com/fkye/PSE-MPI.

We built and tested it using GCC 5.5.0 on a Linux work-
station with an Intel Core i7-3770K processor running at
3.50GHz and 16GB of RAM. The constraint solver we used
is Z3 version 4.6.0.

B. Benchmarks

We used the following benchmarks to evaluate our tool:
• AMG2013 can be obtained from [26]. For the concrete

execution required by the MUST dynamic analysis tool,
we used the test input file provided inside the source tree
as the input.

• Athena is available at [5]. The data race bugs were
introduced in commit 21c4d95 and fixed in commit
4ca1615. For evaluation, we used the code in commit
a25e5fa, which happens to be one commit before the
fixed version. The input file for the concrete execution
of MUST is tst/3D-mhd/athinput.field loop.

• OpenFFT can be downloaded from [27]. This benchmark
is not executed concretely in our evaluation because it
is a library instead of a complete program, and thus no
input is needed.

• NPB.IS and NPB.DT come from the NPB 3.3.1 bench-
mark suite, which is available at [13]. We used the “W”
problem size for both benchmarks in our evaluation.

• Sort is a benchmark program used by SyncChecker [8]
for evaluation. No input is required for this benchmark.

C. Execution

The benchmarks are compiled into single LLVM bitcode
files. Our tool takes the bitcode files as well as their entry
functions and execution configurations as input. The entry
functions are listed in Table II. Table VI gives the execution
configurations for each benchmark including the number of
processes simulated, interpretation-related parameters (e.g.,
maximum depth of fork, maximum solver time and the max-
imum number of loop iterations visited), and the default size
assumed for lazy allocation.

APPENDIX B
ADDITIONAL TECHNICAL DETAILS

A. Additional Algorithms for Partial Symbolic Execution

Algorithm 3 presents the lazy initialization of pointer states
with pointer alias information (see LazyInit function). The
NewObject function presents the logic for handling allocation
of new objects.

Algorithm 4 shows how to identify MPI derived types. It
employs a backward program slicing pass from the derived

Algorithm 3: Lazy Initialization
1 function NewObject ()

Inputs : p: pointer reference, T: pointer’s type, MemMap: the
pointer to allocated memory map

Output: allocated memory object
/*Allocate a new memory block for the

pointer-type value. */
2 p := Alloc (T);
/*Mark new bytes as unbounded symbolic

values. */
3 p := MarkBytesAsUnbounded (p);
/*Mark the pointer-typed value as bounded

and constrain it to be equal to the
starting address of the newly al located
memory block. */

4 p := MarkPointerAsBounded (p)
/*Register the allocated memory object to

type T. */
5 MemMap[p] ∪= MemBlock (p);
6 return p
7
8 function LazyInit ()

Inputs : p: pointer reference, T: pointer’s type, MemMap: the
map between pointer references and allocated memory
obje cts, F: current function, AA: pointer alias
information

Output: the memory object for p
9 if p is uninitialized then

/*Get p’s must alias pointer reference.
*/

10 q := MustAlias (p, AA); if q 6= ∅ then
11 if q is initialized then

/*Initialize p with q’s memory
object. */

12 MemMap[p] := MemMap[q];

13 else
/*Allocate a new memory object. */

14 MemMap[p] := NewObject (T, MemMap);
15 MemMap[q] := MemMap[p];

16 else
/*Fork the current state and allocate

a new memory object for the new
state. */

17 newState := ForkCurrentState ();
18 newObj := NewObject (T, newState.MemMap);
19 newState.MemMap[p] := newObj;

/*Get may alias pointer references’
allocated memory objects. */

20 mayAlias := MayAliasObjects (p, AA);
/*Nondeterministically select one of

the two options. */
21 fld := NonDetSelect (null, mayAlias);

/*Check if function F’s pre-condition
is violated with p’s shadow memory
allocation. */

22 if ViolatePreCond (fld, F) then
23 Cancel ();

24 MemMap[p] := fld;



TABLE VI
CONFIGURATIONS FOR SYMBOLIC EXECUTION.

Configuration AMG2013 Athena OpenFFT
Number of processes 8 2 2
Max fork depth 12 15 12
Max solver time (s) 1 1 1
Max loop iterators 1 1 1
Default lazy array size 1 2 1
Configuration NPB-IS NPB-DT Sort
Number of processes 8 11 2
Max fork depth 12 12 12
Max solver time (s) 1 1 1
Max loop iterators 1 8 1
Default lazy array size 1 1 10

type creation operation to identify the MPI primitive types
that compose the derived type. For each derived type, De-
rivedTypeAnalysis gathers its primitive type component set
and registers it in an internal table that can be queried via
GetCompTys.

Algorithm 4: MPI Derived Type Analysis
1 function DerivedTypeAnalysis ()

Inputs : P: MPI program, T: derived type handle, AA: alias
analysis

Output: CompTys: a set of MPI primitive types
2 CompTys := ∅;
/*Backward slicing from the derived type
creation call of T. */

3 OpSet := BackwardSlicing (T, P, AA);
/*Get the type array assignment operations
used for composing derived type. */

4 TyArrOps := GetTypeArrayOps (OpSet);
5 foreach TyAssign in TyArrOps do
6 ty := GetRHS (TyAssign);

/*Check if RHS is a MPI primitive type.
*/

7 if IsMPIPrimTy (ty) then
/*Get the corresponding C primitive

type. */
8 CompTys.Insert(GetPrimTy (ty));

9 else
10 CompTys := ANY TYPE;
11 break;

12 if CompTys = ∅ then
/*If the slicing can not identify the

type array operations, we make the
derived type as any type. */

13 CompTys := ANY TYPE;

/*Register the derived type with its
corresponding C struct type. */

14 RegisterDerivedTy (T, CompTys);
15 return CompTys;

Algorithm 5 is used to compare a buffer type with a
MPI datatype handle. If the input MPI datatype is a derived
type, Match uses GetCompTys to obtain its primitive type
component set and compare it with the buffer type. If one of
them is a wildcard type, they are considered to be matched.

If the buffer type is a composite type and its components are
different from that of the derived type, then they can not be
matched to each other. If the derived type is composed of a
single primitive type, it is treated like that primitive type.

Algorithm 5: MPI Buffer Type Matching
1 function Match ()

Inputs : Tbuf : C primitive type, Tmpi: MPI datatype handle
Output: Boolean result

2 if Tbuf = void or Tmpi = MPI Byte then
3 return true;

4 if IsMPIPrimTy (Tmpi) then
/*Get the C primitive type. */

5 Tc := GetPrimTy (Tmpi); if Tbuf = Tc then
6 return true;

7 else
8 return false;

9 else
/*IsMPIDerivedTy (Tmpi) = true */
/*Get C primitive type components. */

10 Sc := GetCompTys (Tmpi);
11 if Tc is ANY TYPE then
12 return true;

13 if Tbuf is a composite type then
14 Sbuf := Tbuf ’s components;
15 return Sbuf = Sc;

16 if Tc is composed of one C primitive type Tbase then
17 return Tbuf = Tbase;

18 return false;

B. Check Coverage
The details of API coverage for our anomaly checkers

is summarized in Figure 5. The BUFFER TYPE MISMATCH
checker works for all MPI communication calls. The other
checkers do not support persistent communication calls. The
BUFFER DATA RACE checker supports all nonblocking calls
using the MPI COMM WORLD communicator.
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Fig. 5. The coverage of MPI APIs for each anomaly detector related to
nonblocking APIs.


