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Abstract—We study the usefulness of partial redundancy in
HPC message passing systems where individual node failure
distributions are not identical. Prior research works on fault
tolerance have generally assumed identical failure distributions
for the nodes of the system. In such settings, partial replication
has never been shown to outperform the two extremes(full
and no-replication) for any significant range of node counts.
In this work, we argue that partial redundancy may provide
the best performance under the more realistic assumption of
non-identical node failure distributions. We provide theoretical
results on arranging nodes with different reliability values among
replicas such that system reliability is maximized. Moreover, using
system reliability to compute MTTI (mean-time-to-interrupt) and
expected completion time of a partially replicated system, we
numerically determine the optimal partial replication degree.
Our results indicate that partial replication can be a more
efficient alternative to full replication at system scales where
Checkpoint/Restart alone is not sufficient.

Keywords—HPC, fault tolerance, resilience, replication, check-
point.

I. INTRODUCTION

With the increasing scale of modern day high performance
computing systems, faults are becoming a growing concern.
This is simply a consequence of the increasing number of
resources being used in HPC platforms. Even though, on
average, individual components fail after several years, the
sheer number of these components inside the system means
that the entire system experiences failures at a much higher
rate, usually on the order of days[1].

One of the most common techniques to deal with faults
is Checkpointing and Rollback recovery. However, as system
scale increases, the overall failure rate is also expected to
increase, which means more checkpoints need to be taken. This
causes a lot of system time to be spent writing checkpoints
and recovering from failures, rather than doing useful work.
As an alternative to checkpointing, [2] proposed replication
to improve the system reliability at large scales. In pure
replication with dual redundancy, all work is duplicated on
separate hardware resources. This allows the application to
continue execution even in the presence of failures as long
as both processes (or nodes) that are replicas of each other
have not failed. This significantly improves the mean time to
interrupt (MTTI) of the system[2][3], requiring fewer check-
points compared to the case without replication. However,
it comes at the cost of system efficiency, which is capped
at 50%. Hence, the argument for pure replication as a fault
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tolerance mechanism holds weight only at system scales at
which the efficiency of checkpointing alone drops below 50%.
To break the 50% efficiency barrier of pure replication, [4]
studied partial replication where only a subset of application
visible nodes are replicated. However, neither [4] nor any other
works since then have established any range of node counts for
which it makes sense to only partially replicate an execution.

The above mentioned fault tolerance techniques have tra-
ditionally been studied in the HPC community with the as-
sumption that all of the individual nodes in a system have
independent and identical (iid) failure distributions. While this
does simplify the theoretical analysis, there is no experimental
evidence to suggest that this assumption holds true in reality.
In fact, several studies[5][6][7][8] on failures experienced
by supercomputing systems have concluded that failures are
spatially non-uniform. One natural approach to model such
systems is to assume that individual node failure distributions
are still independent, but not identical. In this work, we
study the usefulness of partial redundancy for such systems.
It should be noted that changing the iid failure assumption
does not simply mean redoing the theoretical and numerical
analysis, but rather brings up other questions as well. One
such question, for example, that we answer in this paper, is:
which nodes in the system should be replicated and which
nodes should they be replicated with? We answer this and
other questions exploring the optimal replication factor (ratio
of total nodes used to the number of application visible nodes)
of such systems through a combination of theoretical and
numerical analyses. To the best of our knowledge, this is the
first work that assumes a non-uniform failure distribution of
individual nodes and provides theoretical insights into how
such a system should be partially replicated. Specifically, we
make the following contributions:

1)  We theoretically determine, given the total number
of nodes in a system with non-identical node failure
distributions and the fraction of nodes to be repli-
cated, the selection of nodes into replicated and non-
replicated sets and the pairing of replicas such that
system reliability is maximized.

2)  Using the system reliability to compute the MTTI
and average completion time of an execution, we
numerically determine the optimal partial replication
factor and demonstrate that optimal performance can
often be achieved through partial redundancy.

3)  We investigate in detail a hypothetical system involv-
ing two kinds of nodes: Good, that are less likely to
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Fig. 1. Selection and pairing of replicas to maximize reliability.

fail, and Bad, that are more likely to fail. We show
how different parameters affect the optimal partial
replication factor. Our work provides a framework
which can be used by system administrators and
job schedulers to decide which nodes to replicate in
systems where individual nodes’ mean-time-between-
failures (MTBFs), while not necessarily accurately
modeled, are known to take either a high or a low
value to a first order approximation.

Even at node counts where the performance of simple check-
point/restart drops drastically, pure replication still seems like
an overkill. Our work attempts to demonstrate that, instead of
blindly replicating every node, a smarter choice can be made
by understanding the failure characteristics of the underlying
system and replicating accordingly.

The remainder of this paper is organized as follows: section
II provides results on the system configuration that maximizes
reliability, section III presents the mathematical details of the
model and the optimization problem, sections IV, V and VI
present the results of the optimization for different types of
systems, section VII surveys some of the related work and
section VIII concludes.

II. MAXIMIZING RELIABILITY

We start with the question of how, knowing the number of
nodes to replicate, should the replicated nodes be selected and
paired. Consider a system with IV nodes with individual node
failure density functions given by h;(t),1 < i < N, where
t > 0 is the time. These functions are typically taken to be
exponential or Weibull, and characterized by failure rate \;,
where ); is the inverse of node i’s MTBF. Individual node
MTBFs can be assigned by observing their failure history. For
example, works such as [5], [6] and [7] explore the spatial
distribution of failures by analyzing the number of failures
over time at the cabinet, cage, blade and node granularities for
multiple HPC systems at the Oak Ridge National Laboratory
(ORNL) and Los Alamos National Laboratory (LANL) over
several years. Such analyses can be used to estimate MTBF
down to the level of individual nodes or group of nodes.
A more sophisticated approach to compute the reliability of
individual nodes is presented in [9].

We assume without loss of generality that the nodes are
ordered by their failure rates, such that \;(¢t) < A;41(¢) for all
1 <4 < N—1. Note that the iid failure distribution assumption
is a special case of this in which all \;’s have the same value.
In order to answer the question of optimal selection and pairing

of replicas, it is simpler to work with the nodes’ probability
of survival until time ¢ (or reliability) given by g;(t) = 1 —
fot hi(xz)dx,1 < i < N. With the nodes sorted by increasing
failure rates, we see that g;(¢) > ¢;41(¢) forall 1 <: < N—1.

Assume, for now, that a particular job requires n nodes to
execute in parallel, where n < N. Moreover, assume that the
remaining N —n nodes are to be used as replicas of some of the
n nodes, in order to provide better protection from failures. We
will relax these assumptions in subsequent sections to make n
variable in order to explore if partial replication is beneficial
at all. For now, however, we try to answer the first question:
Which of the n nodes should have replicas, and how should
they be paired with the other N —n nodes to form node-replica
pairs? We restrict ourselves to maximum dual node replication
only, so N/2 < n < N. In such a configuration, let a =
n— (N —n) = 2n— N be the number of non replicated nodes,
and b =n —a = N — n be the number of node replica pairs,
such that a + 2b = N and a + b = n. The partial replication
factor, 7, will thus be given by r = (a + 2b)/(a + b), and
1 < r < 2. Our original question can thus be reformulated as:
Given values of a and b and reliability g;(t), 1 < ¢ < N, which
2b out of the N nodes should be replicated and how should the
replicated nodes be paired so that overall system reliability is
maximized? The answer is to pick the least reliable 2b nodes
for replication. Among those 2b nodes, the least reliable node
should be paired with the most reliable node, and so on. This is
shown in Fig 1, and formally stated in the following theorem:

Theorem. Given a, b and an N node system (a + 2b = N)
with node reliability given by g;(t) and g;(t) > g;11(t) for
1 <i< N-—1let AC {1,2,....,N}, |A| = a, be
the set of non-replicated nodes and B = {(j,k) | j,k €
{1,2,...N} — Aand j # k}, |B| = b, be the set of node-
replica pairs. Maximum overall system reliability is achieved
when A={1,2,...,a} and B={(j§,2(a+b)+1—j)|j€
{a+1,a+2,...a+b}}.

To determine the overall reliability for a given partial
replication configuration, we observe that, for a node-replica
pair (j,k), application failure occurs when both nodes in
the pair fail. Hence, the reliability of pair (j, k) is given by
1—(1—g;(t))(1—gx(t)). For sets A and B as defined above,
the overall system reliability R(t) can thus be written as

Rit)=[Ta®) JI 0 -Q-gE)A-a®) ©
i€A (j,k)EB
For simplicity, we remove variable ¢ and obtain
R=1[g¢ I O-0-g)1—-a)) (@)
i€A  (j,k)EB

We prove the above theorem in two lemmas. First we prove
that maximum reliability is achieved when the set of non-
replicated nodes consists of the most reliable nodes.

Lemma 1. R is maximized when A = {1,2,...,a}.

Proof: Assume by contradiction that we have a config-
uration in which A # {1,2,...,a}. This means there is a
node with higher reliability in the replicated set and a node
with lower reliability that is not replicated. In other words,
Jdg; where i € A and ¢ > a and 3 a pair (j, k) € B such that



at least one of j or k is in {1,2,...,a}. Assume without
loss of generality that j € {1,2,...,a}. This means that
j < 1, and we know, from the ordering of node reliability, that
g; > g;- The contribution of nodes ¢, j, k in this configuration
to system reliability, R, is given by ¢;(1 —(1—g¢,;)(1—gx)) =
9i(g; + gx — gj9x). We have
9i(95 + 9k — 9j9k) = 9i9j + 99k — 9i9;j Ik
< 9i9j + 99k — 9i9;9k (since g; < g;)

=g;j(1 =1 —g)(1—gr))
(3)

Since g;(1— (1—g;)(1 - gi)) < g;(1— (1 - g.)(1—g)) with
equality iff g; = g;, we observe that if we exchange nodes 4
and j between sets A and B, while keeping everything else
the same, we obtain a system with reliability R’ such that
R’ > R. We can keep performing these exchanges as long as
A #{1,2,...,a}. Each exchange step will either improve the
system reliability, R, or keep it the same. Hence, R will be
maximized when A = {1,2,...,a}. [ ]

We now move to the second part of the theorem regarding
the pairing of replicas. Rewriting R = R4Rp where Ry =
[lica9i and Rp =] ; yep(1— (1 —g;)(1 — gx)), we focus
solely on Rp since R4 is determined from lemma 1. Our job,
then, is to show that, given 2b numbers g; > g2 > - -+ > gop,
Rp is maximized when B = {(j,20+1—j) | j € {1,2,...b}}.
To simplify the expressions, we will rewrite Rp in terms of
the node failure probabilities, p; = 1—g;, 1 <7 < 2bas Rp =
H( ke (1 —p;jpi). The ordering of the failure probabilities
then becomes p; < py < -+ < pop.

Lemma 2. Rp is maximum when B = {(j,2b+1—j)|j €

1,2,...,0}).

Proof: We prove this through induction on b. When b =
1, there are only 2 nodes, and only one possible pairing, so
B ={(1,2)} trivially.

For the inductive hypothesis, assume that the lemma is true
for b = k. For b = k + 1, we first prove that, for Rp to be
maximum, (1,2k + 2) € B. Assume by contradiction that
(1,2k + 2) ¢ B. This means that 3(1,4), (j,2k +2) € B
where i,j € {2,...,2b — 1 = 2k + 1}. Similar to lemma
1, we will show that swapping the nodes in the two pairs to
get B’, where (1,2k + 2),(4,j) € B’, will improve system
reliability. The contribution of pairs (1,%), (j,2k + 2) to Rp
is given by (1 — p1p;)(1 — pjpar+2). We have

(1 = p1pi) (1 — pjpar+e) = 1 — p1pi — PiP2k+2 + P1PiPjD2k+2
<1 —pip2k+2 — PiD;j + P1PiDjP2k+2

= (1 — p1pak+2)(1 — pip;)

“)
The inequality on the second line is obtained by noting that
p1 < p;j and p; < pog4o. By rearrangement inequality[10],
we know that pip; + p;pas > pip2k+2 + pip; which leads
to the inequality obtained above. This means that for any B
such that (1,4), (j, 2k +2) € B, we can get Rp: > Rp where
B = (B~ {(L1), (j.2k+ 2)}) U {(1,20), (i, j)}. Using the
same argument as in lemma 1, we conclude that Rp is maxi-
mum when (1, 2k + 2) € B. We can thus write the maximum
Rp as Rp = (1 — p1pak+2) Ry where Ry is the combined
reliability of all node-replica pairs other than (1,2k + 2).

' can also be considered as the reliability of 2k nodes
making k pairs which, according to the inductive assumption,
is maximum when the 2k nodes are paired as stated in the
lemma. The overall reliability, Rp, is therefore maximized
when B = {(j,2(k+1)+1—-4) | j € {1,2,...k 4+ 1}}
which concludes the proof. [ |

Lemma 1 and lemma 2 combined complete the proof of
the theorem.

At this point, one may also wonder if a similar result can
be obtained for replication degrees greater than 2, for example
if triple replication is also allowed. In that case, the only result
we can obtain is the following

Lemma 3. If B contains replica groups with degrees >
ie. x € B — |z| > 2, R is still maximized when A
{1,2,...,a}.

2,

Proof: The proof proceeds by contradiction in the same
way as lemma 1 by taking a tuple in B which has an element
i where i < a, and similarly a j € A where j > a. It can then
be shown that swapping ¢ and j between the two sets causes R
to increase. We omit the detailed steps since they are identical
to that of lemma 1. ]

The same result, however, does not extend to the case
of deciding, for example, which nodes should be doubly
replicated and which should be triply replicated. In this paper,
we restrict our focus to partially redundant systems where
nodes are at most doubly replicated.

It should be noted that, although the proof in this section
is formulated in terms of node reliabilities, the result holds
for any time interval in which the relative ordering of the
individual nodes’ likelihoods of failure is known. This means
that if, at different time intervals, the ordering of nodes
based on their likelihoods of failure changes, the optimal
configuration, while still determined based on the result in
this section, will be different during different time intervals.
Handling such configuration changes in practical settings may
be possible through an adaptive method to switch replicas on
the fly, as in [11]. A theoretical analysis to determine when to
change the configuration, taking into consideration the cost of
reconfiguring the system during execution, is beyond the scope
of the current work and is left for future work. In this paper,
we will only consider cases where the nodes failure densities
are exponential, or Weibull with the same shape parameter. In
both of these cases, the relative ordering of node reliabilities
remains the same throughout the lifetime and is determined
from the individual node MTBFs.

III. EXPECTED COMPLETION TIME

In the previous section, we looked at how the nodes should
be grouped into replicas when the number of nodes to be repli-
cated is fixed. In other words, the number of application visible
nodes n was already decided, a and b were then determined
from the equations a+2b = N and a+b = n, and the goal was
to intelligently pick nodes to be placed in sets A and B based
on their individual reliability g1 (t) > g2(t) > -+ > gn(t).
In that case, it made sense to look at system reliability alone,
because the number of nodes to use and the partial replication
factor was fixed. In the rest of this paper, however, we attempt



to answer the more general question: Given an N node system
with node reliability g;(¢t) > g2(t) > --- > gn(t), how
many of the N nodes should be used and what should be
the optimal partial replication factor? This makes both a and b
as variables to be determined since the equations relating them
to n and N become the following inequalities: a + 2b < N
and a +b = n > 1. This question cannot be answered by
considering system reliability alone. Although a higher value
of n will reduce the work per node due to parallelism, system
reliability will go down making failures more likely. On the
other hand, higher replication factors are likely to add more
runtime overhead to the application, although they lead to
a more resilient configuration. These trade offs can only be
captured by computing the expected completion time for given
a and b, and then picking the values of these variables that
yield the minimum completion time.

Parameter Description
Total number of system nodes
Number of application visible nodes
Number of non replicated nodes
Number of replica pairs
Partial replication factor (1 <r < 2)
Communication ratio (0 < a <'1)
Serial portion of application code
Work duration on single node
Work duration on n parallel nodes
Work duration with replication factor r
Mean Time To Interrupt (MTTI)
Checkpointing cost
Checkpointing interval

ﬂQiﬁE%QQ%@@ﬁZ

A. Job Model

The first thing to determine, as n becomes variable, is the
amount of work that will be distributed over each node and
executed in parallel. Assuming that a particular job on a single
node takes W units of time to finish execution, we use the
following job model[12] to determine, W,, ,the time required
to execute the same job on n parallel nodes without failures:

Wp =0 —-71)W/n+W ®)

where 0 < v < 1 represents the sequential part of the job.
Smaller values of ~y indicate higher potential for parallelism
in the application. Larger values of v, on the other hand,
offer diminishing returns with increasing parallelism. Since
increasing the value of » = (a + 2b)/(a + b), while keeping
a + 2b fixed, means reducing n = a + b, higher values of ~
are more favorable towards replication. In this work, most of
the analysis we perform and the results we report will be for
values of v equal to, or close to, 0. This is for two reasons:
i) as explained above, lower values of v are more favorable
towards no replication versus replication, and ii) HPC jobs
typically should be highly parallelizable, and so ~ is small
in those settings. One could also use more sophisticated job
models, taking into account the kind of computation and/or
domain decomposition that the application performs. However,
any model that is less than perfectly parallel is more favorable
towards replication. Thus, by focusing on the perfectly parallel
job model, we can ensure that conclusions drawn from the
cases in which replication (full or partial) performs better than
no-replication can be generalized to other job models as well.

B. Overhead of Replication

In addition to reducing the nodes over which work is
parallelized, increasing replication also increases the overhead
to message passing applications because of the communication
required between replicas in order maintain consistency among
them. The replication system then guarantees that every replica
receives the same messages in the same order and that a copy
of each message from one rank is sent to each replica in the
destination rank[2]. This requires duplicating the communica-
tion of a process to its replica as well. While [2] provided
estimates of overhead of replication based on implementation
on a real system, that work only applies to full replication.
An approach to model the overhead of partial replication was
proposed in [4] using «, the ratio of application time spent in
communication under no replication. According to that model,
for an application executing under partial replication factor r,
the time, W.,., that includes the overhead of partial replication,
is given by

W,=010-a)W, +raW,, =W, + (r—1)aW,, (6)

where W,, is computed using Eq. 5. The rationale provided in
[4] for this model is that every message involving a replicated
node will be duplicated. Hence, the additional communication
overhead will be linearly related to the replication factor, r.
The experimental results in [4], though, showed Eq. 6 actually
underestimated the overhead of partial replication. Similarly,
[13] reported overheads with replication factor of 1.5 which,
in some cases, went as high as 70% of the overhead of
full replication (r = 2). Since this would indicate that the
communication overhead of replication is not linear w.r.t the
replication degree, which is the assumption for Eq. 6, we
update it as

W, =Wy +Vr — LaW, (N

This estimate, while yielding the same overhead for full
replication as Eq. 6, provides a more pessimistic overhead for
partial replication compared to Eq. 6. Moreover, it matches
with the experimental result of [13] on real systems since, for
r = 1.5, the overhead will be 1/ V2 2 0.71% of the overhead
of full replication. We, therefore, use Eq. 7 to compute and
add the overhead of partial replication.

C. Combining with Checkpointing

Having figured out the failure-free execution time, W,., of a
partially replicated application, we now proceed to compute the
expected completion time of such an application under failures.
Since even a fully replicated system is subject to failures
when both nodes that are replicas of each other fail, both
[2] and [4] combined checkpointing with a fully or partially
replicated system. However, the checkpointing interval would
be larger compared to the no replication case since it depends
on the mean time to interrupt (MTTI). The MTTI, M, can be
computed using the reliability as:

M= / Rt @®)
0

where R(t) is given by Eq. 1. Although, in subsequent
sections, we will discuss closed form approximations for the
MTTI for some specific cases of systems with exponential
node distributions, in general it is not possible to evaluate the



integral in Eq. 8 analytically. We, therefore, resort to numerical
integration to obtain the MTTI for our results.

To compute the checkpointing interval, 7, we use
Daly’s[14] approximation to the optimum checkpointing in-
terval, given a checkpointing cost, C' and the MTTI M. This
approximation was derived for exponential failure distribu-
tions. The failure distribution of a partially replicated system
is not exponential even when the node failures are expo-
nentially distributed[15]. However, [3] observed that Daly’s
approximation still yields results close to optimal even when
the underlying failure distribution is not exponential. Hence,
we use it as a reasonable approximation for the optimal
checkpointing interval.

In order to determine the expected completion time, we
employ the approach used in [16] and [17] that approximates
the completion time of a system with a generic failure dis-
tribution by computing the extra work done in an execution.
The extra work during an execution consists of the time spent
writing checkpoints and the lost work due to the failures. By
considering each failure as a renewal process, the average
fraction of extra time during an execution can be taken to be
the same as the fraction of extra time between two consecutive
failures. Let F'(t) = 1 — R(t) be the cumulative failure
distribution and f(¢) = F'(t) be the failure density function.
The extra time between consecutive failures will be given by

* M

e}
E(extra) = / %f(t)dt +kr = ¢ +Ekr (9

0
where k is the average fraction of work lost during a check-
pointing interval due to failure. To compute k, note that k7
is equal to the expected time of failure within an interval of
length 7. If we divide the time into segments of length T,
where segment ¢; = [7(¢ — 1), 7i), and ¢ > 0 is an integer, we
can compute the expected time of failure, f;, within segment
t; as f; = f:(’i_l)tf(t)dt/pi where p; = f:(li_l) f(t)dt is
the probability of failure striking in interval ¢;. The average
value of the failure within a 7 interval will then be given by
Yoie (fi = 7(i—1))p; which we can divide by 7 to obtain k.
Since p; approaches 0 as ¢ increases, the value of this sum
converges quickly, so a simple summation of the first few
terms suffices. Even though the sum converges much earlier,
for increased accuracy, we used the first 20 terms to compute
the sum and obtain the value of k.

Once we obtain E(extra), the useful work done between
consecutive failures is given by M — E(extra), where M is
the MTTI. On average, therefore, the time it takes the system
to complete a unit amount of work will be equal to M /(M —
E(extra)). Thus, the expected time it takes to finish work W,
will be given by

M
EW,)=W,—
(We) =W, M — E(extra)

where W, is determined from Eq. 7. This is the equation that
we use to compute and compare the expected completion time
of a system under different partial replication factors.

(10)

D. Optimization Problem

The purpose of computing the expected completion time
was to find the replication factor 7 that minimizes it for a given
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the failure-free time it takes to finish the same work on all /N nodes without
replication or checkpointing. Node MTBF = 5 years. Checkpointing cost is
taken to be 60 seconds. & = 0 and also v = 0.

system. We thus formulate the search for r as an optimization
problem as follows:

minirglize EW,)
subject to a+2b< N
n=a+b>1

where r = (a + 2b)/(a + b) and a and b can only take
nonnegative integer values. The inputs include work W, total
number of system nodes NN, individual node reliability func-
tions 1 > gy(t) > --- > gn(t) > 0, checkpointing cost C,
the parameter v, and communication ratio, «. In subsequent
sections, we will discuss our findings and results about the
optimal r for different kinds of systems. In our results, we
report the expected completion time normalized by Wy, which
is calculated from Eq. 5, and represents the time it takes
to execute the job on all N nodes without replication or
checkpointing and under no failures.

IV. SYSTEM WITH IID NODES

We start off with the simplest possible scenario, a system
where the individual node failure distributions are identical.
This has been the traditional assumption when analyzing fault
tolerance techniques in HPC systems. Our goal is to explore
whether there are cases in which partial replication, where
r is strictly between 1 and 2, results in the lowest expected
completion time. It should be noted that, since all nodes are
identical, it does not matter which individual nodes are picked
for replication or how they are paired together.

A. Exponential Distribution

We first consider a system where node failure probabilities
are exponentially distributed. When taking both v and « as 0,
our optimization never yielded an optimal value of r strictly
between 1 and 2 for any scenario we tested. This can also be
seen in figure 2 where the expected completion time according
to Eq. 10 (normalized by the time it takes to run the same job
on N nodes without any fault tolerance and without failures)
with different partial replication degrees is plotted against the



total number of nodes in the system. We see that the minimum
time is always attained either when r = 1 or r = 2. The trend
was the same for other node MTBF values, with the crossover
between full and no replication occurring at higher node counts
as the node MTBF increases.

We further investigate this scenario analytically with the
goal of determining if 1 < r < 2 is ever optimal for uniformly
exponential node distributions when ~ and « are both 0.
Assuming that the configuration uses all of the system nodes
N, so that a + 2b = N, and individual node failure rate is A,
we can write the MTTI, M, as:

(o)
M = / e" N1 — (1 —e)?)bdt
s (1)
_ 2N/ (e—/\t/z)N—b(l _ e_)‘t/Q)bdt
0
Since obtaining a closed form expression for the above integral
is not possible, we try to provide a closed form approximation
for M. Setting x = e~ /2 & t = —In(22)/) in the above
expression, we get
oN  r1/2
M = —/ a1 — )b (12)
A Jo
We employ Laplace’s method of approximating integrals[18]
to derive an approximation of the above expression. We can
rewrite the function inside the integral as z(N==1 (1 —2)® =
eWN=0=Df() where f(z) = In(x) + bin(1 —z)/(k —b — 1).
Assuming 2b < N, within the interval of integration f(x) is
maximum at z = 1/2 which is the endpoint of the integration,
so the integral can be approximated as

1/2 b
0 N=b=DF(2) 3
1/2)"
- N-2-1

Plugging this into the expression for MTTI above we obtain

M = 1/A(N — 2b — 1). This reasonably approximates the

MTTI as long as 2b is not close to IV, which corresponds to

the full replication case. To the best of our knowledge, this is

the first closed form approximation of the MTTI of a partially

replicated system with exponential node failure distributions
with rate A.

Having obtained a closed form approximation for M in
terms of N and b, we will infer the behavior of the expected
completion time. Using Young’s[19] expression for the ex-
pected completion time we get

B C (r+0)?
E(W)—W(I—I—?—FW

where we take 7 = +/2C'M which is also Young’s ap-
proximation for the optimum checkpoint interval. Assuming
that a perfectly parallel job takes unit time on N nodes
without checkpoints and failures, the work per node will
be r units when the system is partially replicated, since
r = (a + 2b)/(a + b) = N/n. This means that W, = r,
and E(W,) then is given by

[2Cc C C?

) (14)

——No replication (r=1)
—&-25% replication (r=1.25)
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Fig. 3. Expected Completion Time for different values of r for exponential
node distribution. Node MTBF = 5 years, v = 0.00001, Checkpointing cost
= 60 seconds, o = 0.2

Since both » and M can be defined in terms of b and N,
and since N is fixed, E(W,) is a function of b. By taking
the first and second derivative of this expression wrt b, we
find that this expression has no local minimum over the range
0 <b < N/2aslong as M > C. For conciseness, we omit the
calculations. This means, though, that the minimum of E(W,.)
occurs only at one of the endpoints of r which correspond to
either no replication or full replication. While eq. 15 is an
approximation for the expected completion time, this analysis
supports our numerical results that partial replication never
yields optimal performance for jobs with o = v = 0
and when individual node failures are iid with exponential
distributions. This is also consistent with the findings of [15]
where it was observed that in cases where replication is better
than no replication, full replication offers the best performance.

When o > 0, it may theoretically be possible to have cases
where the optimal 7 is strictly between 1 and 2. This is because
there can be cases in which the expected completion time with
a = 0 is minimized when r = 2, but that minimum may shift
to r < 2 if @ > 0. That being said, we did not observe this for
any values of parameters that we tried. As for when v > 0,
although it may be possible for 1 < r < 2 to be optimal,
we again did not observe any such case. Figure 3 shows one
example with both « > 0 and v > 0. We observe that, although
the crossover between full and no replication happens earlier
compared to Fig. 2, partial replication again does not win
against the two extremes. Hence, our conclusion from this
subsection is that partial replication is almost always never
optimal for systems with iid exponential node distributions.

B. Weibull Distribution

Fig. 4 shows the completion times when individual node
failures are given by the Weibull distribution. In practice,
values of the shape parameter between 0 and 1 are used for
real world failures. In this paper, we show results with the
parameter value of 0.7. Similar trends were observed with
value of 0.5, but are omitted due to space limitations. In
comparison to Fig. 2, we see that the crossover between full
and no replication happens much earlier. Additionally, there are
node counts where partial replication with degrees 1.25 and 1.5



25 T T T

[N

—+—No replication (r=1)
—-25% replication (r=1.25)
—*—50% replication (r=1.5)
——75% replication (r=1.75)
——Full replication (r=2)

n

Expected Completion Time normalized to WN

1 I | | |
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Total Number of Nodes, N

Fig. 4. Expected Completion Time for different values of r with Weibull
node failures. For the distribution, shape parameter = 0.7 and MTBF = 5 years.
Checkpointing cost = 60 seconds and o = v = 0.

have lowest completion times. The range of node counts for
which this happens is still quite small, however. The behavior
remains almost similar when « or y are made > 0, except
that the crossover points are shifted. Increasing « shifts the
crossover points to the right. For example, with o = 0.2, the
crossover between no replication and 7 = 1.25 happens around
9000 nodes instead of 7000 nodes. Increasing 7y, on the other
hand, brings the crossover points to the left towards smaller
node counts. For example, v = 1075 causes the crossover
between r = 1 and r = 1.25 to happen at 6500 nodes instead
of 7000 nodes. Moreover, just like in Figure 4, there is only a
very small range of node counts for which partial replication
provides the lowest completion time.

Our main takeaway point from this section is that when
the nodes in the system have identical failure distributions,
which has been the traditional assumption in fault tolerance
research for HPC, partial replication rarely provides any gains
in performance against full and no replication. Depending on
the number of nodes in the system, the choice should then
only be between running an application under full replication
or running it with no replication at all.

V. SYSTEM WITH TwWO TYPES OF NODES

We now move one step further by considering a system
where nodes are of two kinds: i) Good, which have a low
probability of failure, and ii) Bad, which have a higher
probability of failure. We assume that all the Good nodes have
the same failure distribution and all the Bad nodes have the
same failure distribution. This can be a scenario in a system
where individual system nodes can be approximately divided
into two categories: those which are more prone to failures
and those which are less prone to failures.

Let Ng be the number of Good nodes and Np be the
number of bad nodes, such that N+ Ng = N. Thanks to the
main result of section II, we know that if partial replication is
to be employed, we should start replicating from the lower end.
Moreover, within the nodes to be replicated, pairing should be
done as indicated by Figure 1. Using this knowledge, we can
enumerate all possible cases for different partial replication

O Good Node O Bad Node i H

ae1 OO OO000000O0OQQ Horeiaton
w2 OOO00000000000!
s OOO00000000000
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Fig. 5. Possible cases of partial replication for system with Good and Bad
nodes. Nodes within the replicated set are paired according to the arrangement
depicted in Figure 1. For this figure, the number of Good nodes is taken to be
higher than the number of Bad nodes. If the number of Good nodes is strictly
lower than the number of Bad nodes, cases 5 and 6 above will not happen.

degrees of a Good-Bad node system. This enumeration is
depicted in Fig. 5. Starting from the no replication case,
increasing replication degree would mean initially replicating
the Bad nodes among themselves. Case 3 is the boundary of
case 2, when all of the Bad nodes have been replicated. As the
replication degree is further increased, some of the Good nodes
enter the replicated set as well. Case 4 thus contains two kinds
of replica pairs: a Good node paired with a Bad node, and a
Bad node paired with a Bad node. Case 5 is again a boundary
of case 4 where all replica pairs consist of a Good and a Bad
node each. The full replication case contains additional node
pairs depending on the difference between the number of Good
and Bad nodes.

We will explore how the average completion times of these
different cases fare against each other in different settings.
Such an analysis can be useful for system administrators in
deciding the optimal replication scheme that will result in the
lowest job completion time on average, based on information
about system nodes and other parameters.

A. Exponential Distribution

Assuming all the nodes in the system have exponential
failure distribution, we can take the failure rate of Good nodes
as Ay and the failure rate of the Bad nodes as )\, where
Ag < M. Since case 2 in Fig. 5 is quite similar to the
partially replicated iid system in section IV, we first attempt
to approximate its MTTI. For this case, we can write the
reliability of the system as

R(t) — e—Nc)\gte—(NB—Qb))\bt(26—)\bt _ e—QAbt)b (16)

where 2b is the number of Bad nodes that are replicated. To
obtain the MTTI of such a system, we can follow the same
approach as in section IV to approximate the integral of R(t).
This yields the following approximation for the MTTI, M, of
the system in case 2

1
M ~ 17
Ng)\g-i-(NB —2b—1))\b an

This expression again reasonably approximates the MTTI as
long as 2b is not close to Np.
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* Using Eq. 10 for the No Replication case in the left figure resulted in negative values when Bad node MTBF was low, because F(extra) became greater than
MTTI in those cases. We instead used Daly’s[14] expression to approximate the expected completion time for No replication, which usually provides a lower
value than Eq. 10. We do this only for the no replication case in the plot on the left. Expected times for the other schemes are still computed using Eq. 10.

Similar to section IV, we use eq. 17 to understand the
behavior of the expected completion time of the application
wrt b when @ = v = 0. We plug M into eq. 15 along with r for
this case, which is equal to (Ng+Np)/(Ng+ Np—b). Taking
the first and second derivatives of the resulting expression wrt
b, we again conclude that the function has no local minima
and thus the minimum occurs only at the extremes, i.e. b =
0 (no replication), or b = Np/2 (all Bad nodes replicated
among themselves). This indicates that, between cases 1, 2
and 3, the minimum expected time can only be achieved by
cases 1 and 3 for exponential node failures with o = v = 0.
We again mention that while this derivation holds only for
the approximations of M and expected completion time, our
numerical search also never yielded any scenarios in which
case 2 resulted in lower average time than both cases 1 and 3.

While we were unable to obtain an approximation of MTTI
for case 4, our numerical search indicates that the minimum
average completion time occurs again at the boundary cases,
i.e. 3 or 5. This means that, in general, we need only consider
the boundaries of partial replication in a Good-Bad node sys-
tem. As an example, Figure 6 shows the expected completion
time of full and no replication along with cases 3 and 5 from
Figure 5. From the plot on the left in Figure 6, we see that
replicating the Bad nodes among themselves (Case 3) yields
the lowest completion time. Case 5, which replicates each Bad
node with a Good node, offered almost the same performance
as full replication. While we do not show the results with
higher Bad node MTBF, we saw that no-replication started
outperforming Case 3 when Bad node MTBF went above 20
years, with the same parameters as in Figure 6.

In order to find out if there can be a scenario where Bad
node MTBF is so low that not using the Bad nodes, replicated
or not, at all is the best performing scheme, we reduced the Bad
node MTBEF to the order of days and also compare with a no
replicated configuration using the Good nodes only (a = Ng,
b = 0). The plot on the right in figure 6 depicts the results.
We see that only in the unrealistic case of individual Bad node
MTBF dropping to the order of a few day does using Good
nodes only outperform Case 3. We deduce from this that, as
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Fig. 7. Expected time vs % of Bad Nodes in the system. N = 2 x 106. Bad
Node MTBF = 5 years. Other parameters are the same as in Fig 6.

long as Bad node MTBF is larger than a few days, utilizing the
Bad nodes results in lower completion time on average instead
of not using them at all. Whenever Bad node MTBF is so low
that using them without replication hurts application runtime,
the lowest expected time can be achieved by replicating the
Bad nodes among themselves and still utilizing them along
with the non-replicated Good nodes.

Figure 7 shows the behavior of the schemes with varying
percentage of Bad nodes in the system, while the total number
of nodes, N, is kept constant. When all nodes are Good, no
replication is the best choice. However, as further nodes are
added, no replication has a much higher normalized time. The
normalized time for the no replication scheme which uses the
Good nodes only also increases as % of Np in the system
increases. This is because the time is normalized by W which
is the failure free time of running the job on all N system
nodes. In all cases, however, we see that Case 3 offers the
best expected completion time.

Figure 8 shows the behavior of the different partial repli-
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Fig. 9. Execution time of different replication schemes with Weibull node
failures. Ng = 10*, Np = 8 x 103 and Good node MTBF = 50 years. The
other parameters are the same as in Fig. 6.

cation schemes for different values of «. The time for all
the partial replication schemes increases with increasing a.
However, since Case 3 has smaller replication factor than
Cases 5 and 6, the impact of « is much smaller. Only when
o > 0.8 does partial replication of Case 3 start losing to no
replication using Good nodes only. Hence, we can say that
for most practical values of «, using the Bad nodes with full
replication amongst themselves is still better than not using
them at all. We do not present similar plots for the parameter
~ due to lack of space. The impact of increasing +y is to favor
more the cases with higher replication factor, r. Hence, as
v increases, the lowest completion time shifts from case 3
towards full replication (r = 2).

B. Weibull Distribution

For node failures given by the Weibull distribution, we
assume that all nodes’ distribution have the same shape param-
eter. Only the rate parameter, ), is different for the Good and
Bad nodes. With this assumption, and again taking A\; < Ay,
the Good node will always be more reliable than the Bad node
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Fig. 10. Expected completion time versus r for different values of a. The
values of other parameters are: v = 0, C' = 30 seconds and each category
contains 100k nodes, for a total of 500k system nodes.

throughout its lifetime. Hence, this assumption allows us to
apply the theorem of section II when deciding the pairing of
nodes and so the possible partial replication schemes will still
be given by Fig. 5.

Figure 9 shows the normalized runtimes of different partial
replication cases similar to the exponential distribution subsec-
tion, but over a larger range of Bad node MTBFs. We again
see that with lower Bad node MTBEF, replicating Bad nodes
among themselves yields the lowest expected completion time.
Moreover, this happens at system scales much smaller than the
ones for exponential distribution. We omit the plots for the
cases when « > 0. The trends, however, were the same as the
ones observed for exponential distribution.

Based on the results from both exponential and Weibull
distributions, we conclude this section with the following
insight: If an HPC system has some nodes that are more
likely to fail than others, those nodes can still be utilized to
achieve performance gains. When the likelihood of failures in
such Bad nodes is not too high, those nodes can simply be
used alongside the rest of the system nodes to execute a job
in parallel, without replication. If, however, the likelihood of
failures in those nodes increases, they can be replicated among
themselves and still be used along with the other system nodes
to provide better performance compared to the case of not
using such nodes at all.

VI. SYSTEMS BEYOND TWO CATEGORIES OF NODES

The optimization problem formulated in section III is
capable of finding the optimal r for a system with any set
of non-uniform node reliability values g;(t), as long as they
maintain the ordering g1(t) > ga2(t) > -+ > gn(t). This
is useful when all the individual node reliability functions
are known. However, we do not present any results for such
a generic system because they don’t provide any interesting
insights about r or the behavior of the expected completion
time. We, therefore, only present one example of a system
with 5 categories of nodes. The MTBFs of the five categories
range from 1 to 5 years in increments of 1 year, with each
category having the same number of nodes. Figure 10 shows



the normalized expected completion time, using Eq 10, versus
the partial replication factor, r, for different values of o. We
kept a + 2b = N instead of the inequality a + 2b < N. This
is because, similar to the conclusions for the Good-Bad node
system, we usually found that using all the nodes in the system
is beneficial, as long as the lowest MTBF nodes do not have
unrealistically low values of the MTBF.

We can make several observations from Fig. 10. For all
values of a, the optimal r is less than 2. For a = 0, optimal
value of r = 1.42, but for other values of «, the optimal value
of r = 1.25. These results highlight the importance of having
and utilizing a deeper understanding of the failure character-
istics of the underlying system. If, for example, instead of
considering the 5 categories of nodes, one took the average
value of the node MTBF across 5 categories as 2.5 years, and
used that to decide the replication degree, the answer would be
to fully replicate the execution. However, as we can see in the
figure, partially replicating the right nodes can result in lower
expected completion time than full replication. In fact, if the
decision to fully replicate is made without the knowledge of
the different categories of nodes, the replica pairing may not
be the same as that described in section II, and may lead to
even higher expected completion time.

‘We make one final remark about the behavior versus r. We
see in Fig. 10 that the curve is piecewise smooth in segments.
The values of r at the boundary points of these segments
correspond to the boundary cases of different partial replication
configurations. So, for example, if only the nodes in the lowest
MTBF category are all replicated among themselves, we get
r = 1.1. We see in Fig. 10 that for 1 < r < 1.1, the
curve is smooth. Similarly, the next smooth segment finishes
at » = 1.25, which is the boundary case achieved when the
lowest MTBF category is fully replicated with the next lowest
category. Although we do not have any analytical results about
this, our investigations of multiple scenarios always yielded
the optimal r on one of these boundary cases. This indicates
that, in cases where node MTBFs take a small set of discrete
values, rather than doing a full search for the best r, it may
be a reasonable heuristic to only consider boundary cases and
pick r with the lowest completion time.

VII. RELATED WORK

Full[2] and partial[4] replication were both proposed for
large scale systems when failures become frequent. A deeper
analysis of pure replication and its comparison with simple
checkpoint/restart was carried out in [3]. For partial replication,
[15] provides a limited analysis and comparison with full and
no replication. Even though our focus in this work is on
systems with non-uniform failure distributions of individual
nodes, section IV provides a more detailed analysis of partial
replication with iid node failures. We provide theoretical
results for the MTTI and evidence that partial replication is
never optimal on such systems.

All of the above have assumed systems with identical
nodes in their analyses. We are only aware of two works
that distinguish between different failure likelihoods in the
underlying hardware. [20] considers two instances of an ap-
plication running on two different platforms, that execute at
different speeds and are subject to different failure rates. Our

work differs from it in several aspects. Firstly, the paper
considers group replication, where a complete instance of
the parallel application is executed redundantly, rather than
replicating individual processes. This avoids communication
between instances but a single failure causes the whole in-
stance to fail. Secondly, the framework does not allow for par-
tial replication. Thirdly, their work assumes a single platform
failure distribution, without considering the underlying nodes
in the system. [21] is closer to our work since it considers
individual node failure rates. However, it only performs a post
hoc analysis based on failure logs to determine which nodes
have the most failures and how many of those failures could
be eliminated by duplicating those nodes with spare nodes.
Moreover, this work only considers the improvement in MTTI
without looking at the impact on completion time. Our work
provides a comprehensive theoretical framework which not
only determines how the nodes should be duplicated, but also
when it pays off to duplicate some nodes in the system.

While our work looks at partial redundancy in the pres-
ence of non-identical node failures, there are papers that
consider the problem of selectively replicating tasks based
on criticality[22][23][24]. These works replicate tasks from an
application task dependence graph by measuring the criticality
of an individual task. The idea of criticality is orthogonal to our
task of selectively replicating nodes based on their individual
reliability. Our work, additionally, is application agnostic since
it only considers the failure distributions of individual nodes.

VIII. CONCLUSION

We explored partial replication for HPC systems where
individual nodes have non-identical failure distributions. We
provided theoretical results on the optimal way to divide the
nodes into replicated and non replicated sets and to pair the
nodes in the replicated sets. By computing the MTTI and
expected completion time of a job executed in a partially repli-
cated configuration, we also investigated the optimal fraction
of replication. We found that, while rarely optimal for IID
node failure platforms, partial replication can yield the best
performance for systems comprising of nodes with different
failure rates.

One direction of future work is to explore the en-
ergy/performance trade-off of partial replication. While our
work has demonstrated that partial replication for systems
with non-identical node failures can often provide the best
performance, it should be explored if that performance gain
is worth spending the extra energy on the replicated nodes.
Another direction of future work is to consider a mix of
jobs instead of a single job. Solving for multiple jobs will
require changing the metric from completion time to average
job turnaround time and will also expand the search space to
include options such as starting jobs in parallel over divided
resources or running them one after the other.
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