RM-Replay: A High-Fidelity Tuning, Optimization
and Exploration Tool for Resource Management

Maxime Martinasso*, Miguel Gila*, Mauro Bianco*, Sadaf R. Alam*, Colin McMurtrie*, Thomas C. Schulthess**
*Swiss National Supercomputing Centre, ETH Zurich, 6900 Lugano, Switzerland
TInstitute for Theoretical Physics, ETH Zurich, 8093 Zurich, Switzerland
{maxime.martinasso, miguel.gila, mbianco, alam, cmurtrie, schulthess}@cscs.ch

Abstract—Leading hybrid and heterogeneous supercomputing
systems process hundreds of thousands of jobs using complex
scheduling algorithms and parameters. The centers operating
these systems aim to achieve higher levels of resource utilization
while being restricted by compliance with policy constraints.
There is a critical need for a high-fidelity, high-performance
tool with familiar interfaces that allows not only tuning and
optimization of the operational job scheduler but also enables
exploration of new resource management algorithms. We propose
a new methodology and a tool called RM-Replay which is not
a simulator but instead a fast replay engine for production
workloads. Slurm is used as a platform to demonstrate the
capabilities of our replay engine. The tool accuracy is discussed
and our investigation shows that, by providing better job runtime
estimation or using topology-aware allocation, scheduling metric
values vary. The presented methodology to create fast replay
engines can be extended to other complex systems.

Index Terms—resource manager, production workload, Slurm;

I. INTRODUCTION

The current crop of leading high-performance computing
(HPC) systems provide access to compute resources of several
thousand nodes simultaneously to hundreds or even thousands
of concurrent users. In this multi-tenant environment optimiz-
ing resource allocation is key to increase job throughput and
utilization of these expensive systems. Resource allocation
is normally achieved by the use of a resource manager.
The resource manager is designed to handle several hundred
thousand requests per hour and to manage node reservations
and the health-state of all the nodes in the system at all times.
Studying the complex behavior of resource managers is key
to configuring and optimizing them to decrease fragmentation
and loss of resources for such large and complex workloads.

Tuning and exploring resource manager parameter sets or
new algorithms on a production system is not possible as
such changes can affect the entire system and compromise its
efficiency. Simulators and simulation environments have been
developed to provide insight on resource manager efficiency,
but their outcomes are difficult to translate into decision
making as their accuracy to reproduce the exact combination
of resource manager and HPC system is limited. We propose
a new solution to explore resource management on production
HPC systems. We present a tool and a methodology to create
such a tool which allows one to “replay” a complex real-
world workload obtained from a production system using the

SC18, November 11-16, 2018, Dallas, Texas, USA
978-1-5386-8384-2/18/$31.00 (©2018 IEEE

identical resource manager software stack. For convenience,
we name this tool: RM-Replay for resource manager replay.
RM-Replay differs from classical scheduler simulation in that
it uses the original source code of a resource manager and
manages not only job submissions but also node states and
reservations, just like on the live system. The goal, therefore, is
not to present yet-another simulator or a significant modifica-
tion of an existing scheduler to enable its simulation. Instead,
we have developed a set of programs to mimic real usage of
the scheduler such as user job submissions, change of node
states and reservation creation. This set of programs allows
the user to replay any given workload using a faster-than-
real-time clock using the largely unmodified resource manager
source code. The tool RM-Replay and the resource manager
software stack are executed inside a container to provide better
portability and isolation of experiments. As a test case for such
a tool, we use the resource manager Slurm [1] and workloads
of one of the leading production HPC systems in the world.
Previous work on simulators and simulation environments
related to Slurm are presented in Section IX.

As concrete applications of the tool, we present two use
cases of analysis that the tool can offer to derive new configu-
ration parameters, guidelines or policies for the HPC system.

The key contributions of our work are:

e to present a new and innovative methodology and a
tool to investigate resource manager performance without
relying on simulation as an aim to increase efficiency of
production systems;

o to accurately replay production workloads on an almost-
unmodified version of the chosen resource manager and
executed in a faster than real time fashion thereby allow-
ing many such studies to be executed;

« to provide a portable and extensible tool using a resource
manager as a common interface which increases the us-
ability of the tool for engineers managing HPC systems;

« to present the influence of certain scheduler and workload
parameters on system resource allocation and utilization;

« to allow historical studies of past workloads presuming
that all the historical data are available.

As mentioned before, the methodology is not limited to
solely the Slurm resource manager. In fact, any resource
manager providing the necessary features can be used instead

https://www.acm.org/publications/policies/artifact-review-badging#available

of Slurm. Furthermore, any workload originating from any
resource manager instance can be used together with any
resource manager configuration which defines the nodes and
partitions of the HPC system to be studied. For convenience
and in order to provide a concrete example of the RM-Replay
scenario, the entire set of tools required to use Slurm as
a resource manager, including Slurm itself, is available at:
https:// github.com/ eth-cscs/slurm-replay.

II. MOTIVATIONS, REQUIREMENTS AND METHODOLOGY

The main objective of RM-Replay is to study the effect
of parameter variation that could positively influence the re-
source manager, thereby increasing the system utilization and
providing a higher job throughput on very large HPC systems.
A higher system utilization allows a better ratio of delivered
scientific results versus cost of the system and HPC centers
strive for the highest possible system utilization. To enable
this goal, RM-Replay allows the capability to re-execute the
scheduling of jobs that have previously been submitted to a
large HPC system.

Recreating the scheduling of jobs that has already happened
on a large system is a non-trivial task, and becomes even
more difficult when one needs to use less resources including
time. Many factors such as the load on the nodes, hardware
failure, previously scheduled jobs or human intervention can
modify the behavior of the scheduler. A significant part of
these data are not logged by the scheduler and it is challenging
to retrieve or recreate them from system logs. As a conse-
quence, replaying a workload exactly as it happened on the
system is unrealistic. Nevertheless, by providing the relevant
data and by using the identical scheduler software, one can
recreate a schedule that displays the same characteristics as
the original. Specifically, the relevant data are: job submission
parameters and constraints, node state, scheduler configuration
and node reservations. RM-Replay takes into consideration all
these elements and, as shown in Section V, provides accurate
schedules of workload.

During the lifetime of an HPC system, the resource manager
software undergoes several changes, such as software upgrades
and policy modifications. Consequently, a secondary objective,
which is as important as the capability to accurately replay a
scheduling scenario, is to provide a tool that is maintainable
over the lifetime of the system. To facilitate this, RM-Replay
minimizes the changes on the resource manager code base to
an absolute minimum thereby enabling it to be kept working
across different versions.

In summary, RM-Replay takes into consideration the fol-
lowing requirements:

¢ to submit jobs using the same set of parameters as the
original submission;

o to dynamically handle the reservation of nodes (a regular
occurrence on a production system);

o to dynamically change the state of nodes from idle to
down and vice-versa (again this is a regular occurrence
on a production system);

e to use the original resource manager software, with a
minimum set of changes that have no influence on the
scheduling algorithm;

¢ to provide a replay which runs at a user selectable factor
faster than the real workload;

« to enable portability to other systems by not being tied
to a specific HPC system.

A resource manager should provide the following features
to be able to be used with RM-Replay:
o to store the data of past events such as job submissions,
reservations or node states;
« to recreate the exact full HPC system but on a limited
amount of resources (such as one node);

It is reasonable to assume that the majority of resource man-
agers supports these features, for either accounting or testing
purposes. For instance, PBS Pro [2] provides virtual nodes to
abstract resources, and Moab [3] includes a monitor mode.
The innovative methodology to create an instance of the
RM-Replay tool can be summarized by the following steps:
e use a container to recreate the entire resource manager
software stack in an isolated environment;
« create an adjustable clock which will replace the system
clock and will be used by the software stack;
e develop a set of programs to recreate the interaction
originating from a workload to the resource manager;
o provide configuration data outside the container to enable
portability to other HPC systems.

III. IMPLEMENTATION INSTANCE OF RM-REPLAY:
SLURM-REPLAY

An instance of RM-Replay relies on a specific resource
manager. We choose Slurm [1] as the target resource manager
in order to explain in detail how to create an instance of a
replay engine. We name this instance Slurm-Replay.

Slurm [1] is a well known open-source workload manager
designed for HPC systems, it is written in C, developed and
maintained by the company SchedMD. It is used in many
large HPC systems and in particular on six of the top 10
systems in the Top500' ranking as of November 2017. Given
its prominence in the HPC sector we focus on Slurm in the
study presented in the rest of this paper.

A. Architecture and workflow

Slurm-Replay is a set of tools for creating or re-creating
workloads that are used as input to Slurm. This set of
tools is composed of a submitter program which submits
jobs and reservations, a node controller program which
updates node states from idle to down and vice-versa, a job
runner which represents the execution of a job and a custom
clock with an adaptable clock rate which is incremented
by a program named ticker. The interaction among those
different programs and Slurm daemons is presented in Fig. 1.
For convenience and portability Slurm-Replay and Slurm are
packaged together inside a Docker container [4].

Thttp://www.top500.0rg

https://github.com/eth-cscs/slurm-replay
http://www.top500.org

Slurm-Replay Slurm
processes processes

+®

Clock rate ‘ Ticker H[Slock } ’ Slurmd } Slurm
configuration
®@ files

Submitter
*| Node Controller

Docker Container

Database dump:
users, accounts, ..,

Workload
trace

Fig. 1. RM-Replay architecture description for the instance Slurm-Replay.
the ticker increments the clock with a clock rate given as input. and
the submitter and node controller programs read as input a workload trace

comprising jobs, reservations and node states. By using the clock counter they

submit their input to Slurm in a timely fashion. The same clock is used by the
slurmctld to update its internal state and to schedule the jobs. @ and ®
once a job is ready to start, slurmct1d interacts with slurmd which will
spawn a stepd program. ® stepd will fork itself to execute the program
specified by the job which is a job runner program. The job runner program
will sleep for the duration of the job initially specified by the submitter
program at the job submission time. Once the job runner exits, slurmd
will notify slurmctld. Y slurmctld informs slurmdbd which updates
the job description in the SQL database. All processes belong to a Docker
container and apart from the SQL database they all use the clock counter
as a system clock. Slurm configuration and HPC system specific data are
not included in the container to allow the replacement of the HPC system
and avoid the necessity to rebuild the container. In this workflow, Slurm is
used in the same way as it has been designed for scheduling jobs on HPC
systems. Slurm processes could be easily replaced by another scheduler and
Slurm-Replay processes be adapted to it.

Slurmdbd

B. Clock

One key element of Slurm-Replay is the capability to replay
existing workloads using a faster clock than the system clock.
A program named ticker and a library have been created
to enable the new clock. The clock used inside the replay is
called the Replay—-clock and it is represented by a simple
integer counter in a shared memory segment of the system.
The t icker program increments this counter by using a user-
specified rate of increment also called the clock rate. The clock
rate is the inverse of the frequency of the Replay-clock.

Slurm-Replay processes and Slurm processes all exclusively
use the Replay-clock. To minimize the change of Slurm code
base, Slurm-Replay provides a library that wraps time related
C functions such as sleep, gettimeofday and others
to use the Replay-clock. This library is pre-loaded by all
processes. When a process calls a time function from the pre-
loaded library for the first time, the time function will initialize
the shared memory segment. Similar techniques are used for
software testing [5] [6] [7].

C. Workload

A workload trace is a file containing a time series of job
submission information, reservation data and node states. It is
created based on a previous job schedule from a (production)
resource manager database. A workload trace is created by
specifying a start and stop time. All trace elements i.e. jobs,
reservations and node state updates that start during that

Workload

Workload ~ Workload

start time; stop time; iend time Ti
H HE ime
Original ///////é EQ
schedule
B2
' Legend
¢ submission time
preset job
Selected [iobin trace
jobs in trace PR ob not in trace
Fiob Hyob end time
Nodes

start time

Elements in a trace:

Job={id, submission time, start time, end time, number of nodes, time limit,
partition, dependency, priority, qos, reservation name, user, account, state,
exit code, eligible time, list of nodes}

Reservation={id, name, account, start time, end time, list of nodes}

Node state={start time, end time, node name, state, reason}

Fig. 2. Workload trace example. All elements that start during the workload
interval are inserted in the trace. A preset job is a job for which its submission
time and start time are before the workload start time and ends after the
workload start time. Such jobs are added to the trace with a submission time
and start time equal to the workload start time in order to represent the state of
jobs already running at the start time of the workload. Jobs submitted before
the workload start time and starting during the workload interval have also
their submission time set to the workload start time. A similar update of start
times for reservations and the change-of-state of nodes is applied.

interval of time are inserted in the trace. The end time of
a trace is the completion time of the last running job. If one
of the elements is submitted and starts before the trace start
time while ending after the trace start time, its submission and
eventually start time is set to the workload start time. Such an
element of the trace is called a preset. Preset elements are used
to represent an initial state of the system before the replay
starts. Fig. 2 summarizes the extraction of a trace from an
original schedule and presents the different attributes of the
workload elements.

D. Job submission and reservation

The program submitter role is to submit job and reserva-
tion information read from the workload trace to the resource
manager in a similar way as a user or system administrator.
The submitter uses the Replay-clock and submits jobs at
the time of their recorded submission time. The parameters of
the submission such as the number of nodes, account name or
time limit are identical to the one recorded in the trace. The
program specified during the job submission, to do the actual
job execution, is the job runner program having as input
the duration of the job in the workload trace and the clock
rate. Reservations are created at the beginning of the replay
and updated at their starting time.

In the case of Slurm-Replay, the submitter uses RPC calls
using the Slurm API to submit jobs and reservations.

E. Node state modification

During the lifetime of a production system, nodes might
become inaccessible due to hardware or software failures.

Such nodes are removed from the list of available nodes by
changing their state within the resource manager. A change
of state from available to down or vice-versa can be either
done automatically by the resource manager after a node health
check or it can be set by a system administrator. All changes
of state of every node is recorded by the resource manager.
Slurm-Replay provides the capability to re-execute these
changes of node states over time. It uses the program node
controller to initiate an RPC call using the Slurm API
which updates the node states read from the workload trace.

F. Resource manager modification

One important requirement of RM-Replay is to limit the
modification of the resource manager source code. Modifica-
tions are subjected to improve the performance of the resource
manager and, therefore, enable faster Replay-clock.

Thus, to enable Slurm-Replay, the Slurm source code has
been modified as follows:

o implemented a “none” plugin containing dummy
functions to disable the cryptography checks, such
plugin does not exist in the list of plugins provided in
Slurm base code;

o removed a function call to Slurm to disable step-
monitoring, to improve Slurm performance (one line of
code modified);

o added two lines of code to re-set job priority values to
their counterpart values in the workload after Slurm has
computed them. This change is only required to enable
accurate comparison (Section V-C).

In total, Slurm-Replay requires changing few lines of code
that are easily applied to any Slurm version.

G. Resource manager configuration

The resource manager is automatically configured using the
original configuration data taken from the resource manager
instance of the target HPC system. Nodes, partitions, scheduler
parameters, users, accounts and resources definition are not
modified. RM-Replay configures the resource manager to its
new environment in the Docker container and disables some
plugins and features that are meaningless for the replay such as
energy monitoring or logging. During the configuration of the
resource manager we enable its feature to recreate the HPC
system on one node, and we update the resource manager
database inside the container with the original data such as
users and accounts.

In a production setup of Slurm, a slurmd daemon is
running on each compute node. For testing purposes and for
specific HPC systems (e.g. Cray ALPS, and IBM BlueGene
systems), Slurm provides a special feature to instantiate only
a small number of slurmd daemons on a small number of
frontend nodes to handle any number of compute nodes. We
use that FrontEnd feature to recreate the full HPC system on
a single node using only one slurmd daemon. Our testing
shows that the Slurm performance loss of such a setup is
in an acceptable range for more than five thousand nodes

and thousands of jobs. This depends on the capability of the
underlying hardware on which the instances are running.

H. Multi-tenant system

The Slurm database inside the Docker container is updated
with selected content from the original Slurm database, such
as users and accounts. Recreating all users inside the container
is necessary for Slurm to start a job with a specific user id,
but it limits the portability of the Slurm-Replay container to
other HPC systems. To solve this problem, we recreate the
/etc/passwd and /etc/group files using the users and
groups information included in the trace. We bind mount these
files inside the container to replace the original ones allowing
Slurm to find the users on the system.

When starting a job, Slurm impersonates the user who
had submitted the job. Impersonating a user requires a high
level of privileges which prevents Slurm-Replay to be used
with an HPC container solution such as Shifter. To remediate
this problem, we wrap the C functions setuid, setgid
and chown to dummy functions returning a successful exit
code. These functions are added to the pre-loaded library
(Section III-B). By doing so, Slurm believes that the job is
configured and started as the intended user whereas, in reality,
they are started using the Replay-user.

1. Containerization and overall workflow

To enable portability of RM-Replay we used Docker [4]
to containerize all programs that are required to execute a
replay. However, to avoid binding the container to a single
HPC system, the specific configuration details and database
of the resource manager are excluded from the container. This
container takes only two parameters at build time: the Replay-
user name and the resource manager version. When executing
the container we bind-mount in the container external directo-
ries which contain the workload trace and configuration data.
Additionally, root is not enabled inside the container to allow
the use of an HPC container solution such as Shifter [8] or
Singularity [9]. When a Slurm-Replay starts, a completely new
instance of Slurm is created and configured.

Finally, Fig. 3 presents the different steps executed when a
Slurm-Replay experiment is executed.

IV. SCHEDULING METRICS

Comparing schedules is a difficult task with many pit-
falls [10]. One challenge is to define meaningful metrics
that give an understanding of the quality of the resulting
schedule [10] [11]. The selection of relevant metrics depends
on the perspective of the user assessing the schedule. For
instance, for system managers a high utilization of the resource
indicates an efficient schedule, whereas for an end user of the
system responsiveness is of higher importance. In this section,
we present two set of metrics used to evaluate the accuracy
of Slurm-Replay and to identify the impact of modifications
of the scheduler parameters in the use cases. We are using a
similar nomenclature and metrics as Burkimsher et al. [12].

(ticker)
*Set Replay-clock to Wstart time
(no increment)

(_submitter)
‘ «Start submitter

«Start node controller

7 + *Reservations are submitted to Slurm
e slurm *Wait for Replay-clock to start
«Copy Slurm configuration P § ¢
*Update configuration (_ticker) H
+ *Make Replay-clock progress until all jobs
create slurm database have terminated (Wend time) H
«Start a SQL database
«Create a new Slurm database collect output +

*Create a replay trace from the database
*Derive workload metrics
*Display Slurm statistics

*Display Slurm and Slurm-Replay errors

*Update content from original database

(Slurm)
«Start slurmdbd
+Start slurmd r
Start slurmctld
+Enable frontend and partitions

Wstart time: Workload start time
Wend time: Workload end time

() Slurm process Scripts () Slurm-Replay process

Docker container.

Fig. 3. Workflow executed by Slurm-Replay.

A. Nomenclature

We use N to refer to the set of natural numbers and R to
refer to the set of real numbers. A job, denoted by J*, is a
piece of work executed on one or several nodes for a certain
amount of time. A workload W is a set of jobs: W = {J*},
where k € N is the job ID. Jobs have the following parameters:

« Submission time: J¥, .. €R
o Start time: JY, ., €R
« Finish time: J]’fimsh c€R
: . 7k _ 7K k
o Response time:J% g ponse = Jotart — Jsubmit
« Execution time: J¥ .= J}Cinish —Jk
« Execution time over a time interval T = [Tstqrt; Tendl:
Jk

exrec

(T) = min(‘]}cinisha Tend) - max(‘]ftartv TStaTt)
o Nodes required: J* €N

nodes
« Resource usage over a time interval 7"
k _ 7k k
Jusage(T) - Jea:ec(T) X Jnodes

B. Makespan, utilization and throughput

Some metrics are used to evaluate the quality of a scheduler
algorithm when all job information are known a priori i.e. in a
static case. They are often used to report resource usage from
a system point of view and they do not represent directly the
end user perspective. We utilize three main metrics:

e Makespan is the time to complete a workload:

My = maX(J}fmiSh) —min(JE, JVJF e W

start

o Utilization is the proportion of resources used by the
workload over the total available resources for a time
interval T = [Tstqrt; Tendl:

Zk Jqusage (T)
(Tend - Tstart) X Nnodes

with N, 04es @ constant value representing the total num-
ber of nodes in the system

o Throughput is the number of jobs started and completed
during a time interval T

Py = |V| with V = {J*} and V ¢ W

U:

such that thart €T and J]]”cinish eT.

For a saturated system with a high utilization due to many job
arrivals, a higher throughput helps to identify better efficiency
between different scheduling setups.

C. Slowdown

Some metrics focuses on evaluating the end user experience
when using a scheduler. Most of these metrics are evaluated
on per-job basis and their distribution should be studied. We
utilize one main metric:

e Slowdown [11] is the response time normalized by the
execution time of a job:
JE +JE

response exrec

Jk

exec

Sk =

Whereas the responsiveness (Jyresponse) represents the time
a job waits, the slowdown is perceived as a better user
expectation. For instance, for a job with a large runtime the
user is probably willing to wait longer in the queue.

V. VALIDATION

In this section we present the accuracy of our replay strategy
and implementation to obtain comparable scheduling to that
obtained on the original production system. We present a short
description of our targeted HPC system, together with the main
characteristics of our selected workload. Both parameters are
used in all experiments presented in this section. Following
this, we discuss the accuracy.

Statistical results were obtained from a set of 50 samples for
each experiment. Every run deploys a Slurm-Replay container
using Shifter [8] on one node with two 18-core, 2.1GHz, Intel
Xeon E5-2695 v4 processors, for a total number of 72 threads.

A. HPC System

Piz Daint, the flagship system at the Swiss National
Supercomputing Centre, is an example of a large HPC
systems with hybrid nodes (GPU and multi-core), a complex
Slurm configuration with multiple partitions and a large
set of users. Piz Daint as at time of writing is among the
top ten most powerful systems. Piz Daint is composed of
5320 GPU-enabled nodes and 1819 multi-core nodes and is
currently running Slurm version 17.02. Both node types are
accessible within the same Slurm partition and users make the
node type selection by adding a mandatory constraint flag to
their submission command. Piz Daint also has several other
partitions that need to be taken into consideration to fulfill
job dependency requirements. On average between 5000 and
15000 jobs are submitted, 100 to 250 nodes have their state
changed and up to 10 reservations are made on a single day.

B. Workload

The workload we use is generated from a real schedule
created on Piz Daint. This workload gathers all jobs and
reservations that were submitted on the 6th of October 2017
and all the node state changes on that day. On that particular
day, Piz Daint reached a peak utilization of 97% of the

TABLE I
DISTRIBUTION OF JOBS FROM P1Z DAINT ON 6TH OCTOBER 2017 USED
AS THE REFERENCE WORKLOAD.

Job duration [hours]

Otol 1to2 2to4 4to8 8tol6 > 16 Total

1 1611 159 122 102 287 245 2526

2 413 6 6 8 8 9 450

_ 34 1110 52 12 25 86 55 1340
g 508 277 14 30 17 50 48 436
= 91016 525 33 12 25 58 62 715
% 171032 145 16 76 10 6 20 273
2 33064 70 21 4 9 72 18 207
6510128 50 3 2 0 5 767
>128 7 0 1 2 1 0 11
Total 4215 310 265 198 573 464 6025

GPU nodes and 54% of the multi-core nodes. The workload
is composed of 6025 job submissions of which 2664 jobs
required GPU-enabled nodes, 2409 jobs required only multi-
core nodes, 169 jobs required other partitions and 783 are
preset jobs. Ten events are related to reservation creation or
update and 51 events represent node state changes. Slurm
schedules and completes the GPU-constraint jobs within 47.65
hours and the multi-core-contraint jobs in 42.5 hours. The
distribution of job sizes in terms of number of nodes and
elapsed time is represented in Table I. As can be seen from
the table, the majority of jobs is running for less than an hour,
each job using a single node. The top three largest jobs in
terms of node hours are: 2 jobs running for 23.5 hours on
120 nodes and one job running for 20 hours on 128 nodes.
The top 10 resource-demanding jobs account for 10% of the
overall amount of used resources. We have tested Slurm-
Replay with different workloads taken at different dates from
the production data. This workload represents a typical day of
submission on Piz Daint outside of maintenance or external
events. However, we have specially selected this workload
because it has a very large number of preset jobs and it
generates a high system utilization. A large number of preset
jobs makes it interesting to test the capability of Slurm-Replay
to handle them correctly.

Fig. 4 displays the distribution of submitted jobs during the
24-hour time interval of the workload. One can see that from
midnight to 1:00AM many jobs are submitted. However, most
of the submitted jobs in this timeframe are in fact the 783
preset jobs that are artificially submitted to represent the initial
state of the system. During working hours we see a higher
rate of job submission and the remaining job submission
distribution is real user activity that is to be expected on a
production system of this type which accepts its workload
from users that are largely in the same timezone.

C. Accuracy

Many dynamic and singular events could have an influence
on the computation of job priority that ultimately decides

1500 +

1250 +

1000 +

750 +

Number of jobs

500 +

250 +

I I I I

E E E E
(=% (=% (=¥ (=%
N <t O [ee]

12 am. S
2 am.
4 a.m. -
6 am. -
8 a.m.
10 a.m.
12 p.m.
10 p.m.
12 am. -

Fig. 4. Job submission as a function of the time of day. As expected a higher
frequency of jobs are submitted during working hours. The first bar soon after
midnight represents the submission of preset jobs which set the initial state
of the system and is not representative of real user behavior.

the order in which jobs are executed. It becomes unrealistic
to suppose that Slurm-Replay will be capable to recompute
exactly the same priority values as the one obtained during
the real execution. As a consequence, and solely for testing
Slurm-Replay accuracy, we force Slurm to use the priority
values stored inside the workload instead of computing them.
This change is a temporary one solely for testing the accuracy
as one of the benefits of Slurm-Replay is to investigate con-
figuration parameters to, for instance, enable a more suitable
priority computation that better meets the site’s requirements.

As the main metric for evaluating the accuracy, we select
the makespan. In this section we are not evaluating the quality
of a scheduling but rather the differences between a reference
schedule and a set of replays. Therefore, together with the
makespan, we present the difference of submit time, start time
and duration for all jobs against their reference values. These
metrics are useful for presenting the accuracy of Slurm-Replay
but not necessarily to assess the quality of a schedule.

Fig. 5 displays the distribution of the obtained makespan for
50 experiments for each Replay-clock rate considered. The
clock rate is defined as the inverse of the frequency of the
Replay-clock. On both constraints, data is centered around
the median and displays little perturbation. Slurm-Replay
over estimates by less than 1% the makespan metric, which
demonstrate its accuracy. As expected, with lower Replay-
clock rates the data-set distribution is more widely spread as
Slurm is more susceptible to perturbations. Both overestimated
and perturbated makespan values are due to the fact that the
physical (i.e. hardware) processor frequency is used to execute
job-scheduling instructions, which leads to delay for Slurm to
process jobs at the speed of the Replay-clock. Some features
of Slurm like back-filling are time demanding.

To further extend the accuracy analysis of Slurm-Replay
we present differences of submission time, start time and
duration of all jobs in Fig. 6. We use the difference of the
median scheduling for the 0.06 clock rate against the reference
scheduling and the entire set of jobs is considered including

Accuracy of Slurm-Replay for the GPU constraint.

T e Reference
= 2900 - X Median
E
g
2
Q
~ 2880
=

2860 .. %KX %)R R K K Ao
T T T T T T T T
0.05 0.06 007 008 0.09 01 015 02
Replay-clock rate
Accuracy of Slurm-Replay for the MC constraint.
2580 4 o=
-------- Reference
= X Median
g 2570
g
j=¥
5]
3 2560
= X @ é @
2550 LT r LT ., T Ty
T T T T T T T T
0.05 0.06 0.07 008 0.09 01 015 02

Replay-clock rate

Fig. 5. For both constraints the makespan median of all Replay-clock rates
is very close to the reference value. For instance, for the multi-core constraint
the median makespan value is less than 10 minutes longer than the reference
makespan of more than 40 hours. The shape of the distribution is centered
around the median value. Larger variation is observed for lower clock rates
which is expected as the lower clock rate brings more variability on the
capability of Slurm to provide similar scheduling.

both constraints. We have selected this clock rate as it allows
a fast clock with a low failure ratio (see next section). One
can see that the initial burst of submission of preset jobs
influences the schedule only at the beginning. Once preset jobs
are scheduled, Slurm-Replay is capable to reach a steady state
where it can schedule the remaining jobs with little overhead.

VI. PERFORMANCE
A. Hardware dependency

Slurm-Replay’s performance is sensitive to the underlying
hardware on which it is executed. The processor frequency
can limit the attainable Replay-clock rate due to the fact that
the Replay-clock increases the time value of a cycle for every
Slurm instruction. The number of cores of the processor
can affect the responsiveness of Slurm due to the high
number of processes running simultaneously (two processes
per scheduled job). We have found that Slurm-Replay is
more sensitive to processor frequency than to the number of
processor cores. Specifically, we tested on different processors
including KNL with a low frequency of 1.3GHz and 64 cores
(256 threads) and Intel Xeon CPU E5-1650 v3 at 3.5GHz
with 6 cores (12 threads). We obtained better results when

Elapsed time of submission time of the original schedule

0 22min 7.5hours 11.5hours 14hours 17.3hours 24hours
° 1] 1 1 1 1 1
?H 30 7 4 median for preset jobs ® median for jobs]
2.5 20
£5 109 L
a0 -“_,_,_M
R R e
22 07 L : Y
ié _]2 :: e ¢ ®
—24 T d T d T T T T T
e ;8 7 LY
2E 7] $ % .
SE 107 m .
SR R (i, P, 0 S TSN
0 1000 2000 3000 4000 5000 6000
Job id

Fig. 6. Difference between the reference value and the median scheduling (A
is median minus reference) using a Replay-clock rate of 0.06 and considering
submission time, start time and duration for every job regardless of constraint
type. The burst submission of preset jobs at the beginning of the schedule
significantly delays the insertion of jobs in the scheduling. In fact, 22 minutes
of the schedule time (i.e. about 1.5 minutes of real time) are spent in
processing more than 1000 jobs. The emulated system being empty, many
of these preset jobs start immediately while on the reference system they
would have to be pre-empted to acquire the necessary resources (resulting in
a negative difference of start time). Duration of such preset jobs lasts longer
mainly because many of them ends during the burst of submissions thereby
delaying Slurm in the update of their respective end times. Once the preset
jobs have been scheduled, however, the rest of the jobs present little variation
in submission time, start time and duration, validating that the initial burst of
preset jobs creates little impact on the overall schedule and that Slurm-Replay
is accurate beyond this initial transient.

setting lower Replay-clock rates with the latter processor.
One conclusion is that processing the RPC queue within
Slurm is more important than limiting the context switching
among processes as most of them are in a sleep state. We
chose not to present these results in detail due to the page
limitation but we may consider it for future work.

B. Performance and reliability

The Replay-clock rate is a decisive parameter to influence
the correctness of the scheduling. In most cases, a low
Replay-clock rate (i.e. the clock is running as a higher
frequency than real time) may prevent the Slurm-Replay
to complete correctly. Fig. 7 displays the relation between
elapsed time of a replay, its quality in terms of failure ratio
and the Replay-clock rate used. We consider two scenarios
for a failure: either an error in Slurm prevents the replay
to continue (very seldom scenario) or Slurm was unable to
complete the schedule in a reasonable time (common scenario
for fast clock rates). As expected, the elapsed time of a replay
follows a linear correlation with the clock rate. Slurm-Replay
starts to fail significantly for a clock rate lower than 0.06. A
clock rate of 0.06 or frequency of 16.7 hertz means that one
second is equivalent to 16.7 seconds in the replay.

C. Scalability

The combination of number of jobs to process and the clock
rate has an effect on the failure rate of the replay. To quantify
this effect we extracted a 5-day trace that we tested with

1.0
>.(+ Elapsed time [s]

. « 3= Failure ratio [%] L 0.8 .‘_‘:
% . 0.6 5
E3q ¢ 2
= ‘ 3
3 : - 042
& : =
RPN I o
&) x‘ 02 5
. 3
2 % SRR =
14 X')(' 'X‘ -x X L 0.0
1 1 1 1 1 1 1 1 1
X O L P OD) v
IR o N Q-

Replay-clock rate

Fig. 7. Elapsed time and failure ratio as a function of the Replay-clock rate.
The value 0.06 seems to be the lowest reachable clock rate minimizing the
Slurm-Replay failure ratio for the reference workload. As expected, Slurm-
Replay elapsed time follows a linear correlation with the clock rate.

different clock rates by gradually running experiments with
more days i.e. each clock rate is tested against an increasing
number of days, from one to five. The range of the number
of jobs goes from 6239 jobs for the first day to 35162 jobs
when the entire trace is used. Fig. 8 shows that for a given
Replay-clock rate there is a maximal bound on the amount
of jobs Slurm-Replay can process when using a multi-core
node of Piz Daint which has two 2.1GHz Intel Xeon E5-2695
v4 processors. By projecting these scalability data points, it
can be derived that at a clock rate of 1.0 (real time) Slurm-
Replay is capable of processing about 145000 jobs. Such an
amount of jobs represents several weeks of real workload. It
is not entirely clear why there is a limit to the number of jobs
Slurm-Replay can process. As far as we know there is no such
limit when Slurm is used in real time, even so, a high burst
of jobs can strongly slowdown its capability to process them.
By accelerating time, this effect is more likely to occur several
times. We experience that in many cases Slurm used by Slurm-
Replay does not fail due to an error but that it will require a
large amount of “accelerated” time to process its backlog of
jobs, making the experiment output irrelevant. Investigating
this aspect will certainly be the subject of future work because
maybe this will give insight into how to make Slurm even
better than it currently is.

Nonetheless, these performance results are comparable to
the best Slurm simulator [13] at the time of this work. The
authors do not present extensive data, such as the number of
jobs, to accurately compare the performance of their solution.
They do, however, mention that their simulator is capable of
processing around one day of a production workload from
the TACC Stampede system (6400 nodes) in between one
and two hours. Such data matches our setup with a Replay-
clock rate of 0.06. Moreover, their simulator does not take into
consideration reservations and changes of node states.

1.0 4 Clock rate I]]
08 4 M- 0.05
’ 0.1
° —4-0.15
2067 o2
[B
- .
= N
5 0.4 4 /"
s %) R /.
R 7
0.2 *,/
0.0 4 @ # e —
T T T T T
6239 14454 20935 28046 35162
1 day 2 days 3 days 4 days 5 days
Number of jobs and days

Fig. 8. Evolution of the failure ratio for 4 different clock rates as a function of
the increase in the number of processed jobs. Such performance data depends
on the host processor frequency such that, with higher processor frequency,
lower clock rates are capable to process more jobs.

VII. SLURM-REPLAY LIMITATIONS

Slurm-Replay is limited in its ability to reproduce compa-
rable schedules by the following factors:

1) One limitation of Slurm-Replay comes from Slurm
itself. Slurm does not log all the necessary constraints
to perfectly reconstruct a schedule. For instance, sub-
mission constraints such as job dependencies, topology
or reservation submission time are not recorded. On Piz
Daint, every submission is fully recorded and accessible
via an ElasticSearch service. At the workload trace
creation, we add this source of data to accurately recon-
struct the job constraints. However, not all systems may
provide such logs (even if, in most cases, it is regarded as
best practice). Consequently, we have submitted requests
to SchedMD for changes to Slurm. Such minor changes
include only adding new fields in the Slurm database;

2) It is possible to influence the schedule by executing
special commands while Slurm is running on the system.
For instance, a system administrator can update or
reload a Slurm configuration or boost a job’s priority.
Such actions, in most cases, require a high level of
privilege. We expect the number of such dynamically-
executed commands to be very low because it is not
common practice for system administrators to perform
such actions on a live production system.

3) Extreme conditions may prevent Slurm-Replay to be
successful within a reasonably low clock rate. For in-
stance, a very high number of submission in a very short
period may overwhelm Slurm and with a fast clock rate
prevent the scheduler to have the necessary amount of
time to process the queue of events.

VIII. USE CASES

Slurm-Replay allows us to investigate what-if scenarios by
changing scheduler configuration or workload characteristics.
In this section we present two such use cases. The first use
case tests the impact on the schedule of a Slurm option to pack

allocated nodes closer to each other. The second use case is
answering whether the user experience will improve if they
provide a more accurate runtime estimation for their jobs.

A. Topology-aware resource allocation

Slurm provides a topology-aware resource description?
where nodes are logically grouped together using the switch
option. At submission time, the user can select the number of
switches the job requires by using ——switch=count where
count is the number of switches to use. By using this option,
nodes are allocated from the list of nodes defined by one or
more logical switches in the Slurm configuration. This option
has been developed to optimize job performance by matching
node allocation to their physical location within the topology
of the interconnect network.

Dragonfly [14] is the topology of the current generation
of Cray XC systems like Piz Daint. Job placement scenarios
have been studied on the Dragonfly topology to analyze
potential strategies for increasing job performance by reducing
network congestion [15]. A random placement [16] is usually
better suited to minimize network congestion. However,
using a random placement with a communication-intensive
application has shown to reduce the performance of less
communication-intensive applications that may be running on
the system at the same time [17]. A contiguous placement
of the communication-intensive application is therefore
preferred [18]. Hence, optimal placement of the nodes partici-
pating in a communication-intensive application is an example
where the switch option could be used to minimize the
overall congestion of the network. However, the switch op-
tion is a new constraint for the scheduler which could increase
fragmentation of the system and thereby have a significant
negative impact on system utilization. Therefore, in this use
case we investigate the impact on the scheduling performance
of the fragmentation created by using the switch option.

To analyze the impact on the scheduler of using the
switch option we use a 2-day submission trace for which
only the GPU constraint is considered. Piz Daint experienced
a very high utilization, about 96%, for these two days during
which the system was saturated with jobs. We apply the
switch constraint on jobs depending on the number of nodes
they require and for jobs that run more than ten minutes.
System utilization and job throughput are then computed and
analyzed for the first two days of the schedule.

Table II displays the utilization and system job throughput
depending on the number of jobs using the switch option.
It shows that the switch option reduces the overall job
throughput of the system from 4951 jobs to about 4500
jobs, which amounts to approximately a 10% reduction in
throughput, whereas the system utilization is unaffected. In
other words, for the same amount of resources used the
schedule is completing 10% less jobs. Thus, we conclude
that the switch option increases system fragmentation and
therefore reduces the performance of the scheduler. The results

Zhttps://slurm.schedmd.com/topology.html

TABLE II
EFFECT OF THE SWITCH CONSTRAINT ON THE SCHEDULING.
% of Number of Average Average
constrained nodes used per utilization throughput
jobs constrained job
5 > 64 96% + 0.4 4507 £13.0
15 > 32 96% + 0.2 4492 £ 16.6
30 > 16 96% + 0.3 4498 £ 12.7

Original utilization: 96% and original throughput: 4951

also show that the job throughput does not decrease when the
number of jobs using the switch option increases, which
indicates that constrained jobs using a large number of nodes
have a higher influence on the fragmentation.

B. Accurate runtime estimation

The question of the effect of accurate runtime estima-
tions [19] on the scheduling has been already studied, with
some studies indicating that it helps the schedule [20] whereas
others indicate that it has no beneficial effect [21] at all. In
this use case we focus on the user perspective, namely by
attempting to answer the question “Will my job be scheduled
earlier if I provide a better runtime estimation?”’

We use the same workload as the previous use case. We
consider only the jobs that have completed. For that workload,
Fig. 9 displays the estimation of runtime against the duration
of the jobs. Many jobs are poorly estimated and recurrent
values such as 6, 8, 9, 10, 12 or 24 hours are commonly used.
The upper time limit of any job on Piz Daint is 24 hours.

In the analysis we consider the slowdown metrics (see Sec-
tion IV-C). A large slowdown indicates potentially unsatisfied
users since, in this case, a user is waiting for a long time
in the queue for a job with a relatively short job duration
in comparison to its wait time. Therefore, only jobs with a
slowdown greater than 5.0 are considered.

Fig. 10 presents the slowdown and distribution of the
number of affected jobs for 50 samples with various different
runtime estimation accuracies. One can see that less jobs
are suffering from a high slowdown when user provides a
more accurate runtime estimation. For instance, on average
approximately 725 jobs (14.6% of all jobs) have a high
slowdown when using a better runtime estimation (within
10% of the actual runtime) compared to 1082 jobs (21.8%)
having the original (largely inaccurate) runtime estimation.
This represents a reduction of one third of jobs with a high
slowdown. From the user point of view it is therefore beneficial
to accurately estimate their jobs’ runtime as it reduces the
chances that these jobs experience a large slowdown. It is
interesting to note that for jobs suffering from a high slowdown
a better runtime estimation does not change the slowdown
distribution. This indicates that there is not an overall reduction
in the values of slowdown and that even with a better runtime
accuracy some jobs will still suffer a high slowdown. However,
utilization and job throughput remain the same, showing that

N
wn
1

e
X Failed or timed out job §< !
Completed job y

393
[=]
1

B x X LB
=} N]
215 ¥ % & ?:4 |
=
¥ - g
= PO
E 10 wk X |
< R X x" 1
8 gxX B ¥
= 5 xt B B o« + X 48
4 & | :
ch‘__’g. pe. .| T a
oD RSk ¥ % e N
0 I“J.I-ltl!“*;x ININ x-"(MM o] 75 FNdWuN
T T T T T T
0 5 10 15 20 25

Runtime estimation [hours]

Fig. 9. A large number of jobs are poorly estimated with many users setting
their estimation to the maximum value of 24 hours.

1250 /
1000 T
X
é J_ >

58
23 B
E 8 750 1 ;_)
= 500 o
10° 4 = —
§ o)] X Mean
S8 10° E + Median
1
ZENN X / X
10 E + + I
T T T
Runtime within 10% of within 50% of unmodified
estimation: actual runtime actual runtime runtime estimation

Fig. 10. Slowdown and distribution of affected jobs for 50 samples using
different runtime estimation accuracies.

from the HPC centre point of view, advocating a better runtime
estimation does not improve the scheduling performance when
the system is saturated with jobs.

IX. SIMULATION AND SLURM SIMULATORS

Resource management has been studied extensively over
several decades and numerous taxonomies have been pre-
sented [22] [23] to classify and to survey various approaches.
A common way to study new algorithms for resource man-
agement is to use a simulation environment. A simulation
environment provides the necessary tools to recreate an HPC
system together with a simulator to execute workloads and
recreate the work of a resource manager. Examples of sim-
ulation environments include SimGrid [24], Alea2 [25], and
Simbatch [26]. The difficulty of using such environments is
to be able to recreate the HPC system under study which can
be a complex process. Furthermore, in some cases it can be
virtually impossible to replicate all the system characteristics,
such as the network topology and/or interconnect fabric, and
such an environment cannot therefore precisely reproduce the
execution environment of a specific resource manager.

A simulator based on Slurm has been proposed [27] and
enhanced [28] [13]. This simulator uses a discrete event
approach. To implement a discrete clock, the authors needed
to modify Slurm with complex changes of several hundreds
of lines of code which reduce the portability of their work
to newer versions of Slurm. In another attempt to recreate a
functional Slurm simulator, Simunix [29] tries to combine an
unmodified source code of Slurm together with SimGrid [24].
This simulator creates an interceptor to transfer calls from
Slurm to SimGrid. The authors indicate, however, that they
are not able to simulate more than 50 nodes which severely
limits the capability to simulate any non-trivial HPC system.
For this reason we do not regard this approach as viable.

X. BROADER APPLICABILITY AND FUTURE WORK

Resource management configuration exploration is a very
difficult problem for production systems. RM-Replay is a
new tool that enables the execution of production workloads
using identical software stacks and configurations to that of
production systems. Slurm-Replay is an instance of RM-
Replay using Slurm, and we have shown that Slurm-Replay
results in very good accuracy for a large HPC system. To
our knowledge this is the first time that such a tool meets
the necessary requirements to help decision makers improve
their production systems. Furthermore, we believe that the
results produced by the RM-Replay approach can be applied
to production systems with a higher degree of confidence.

During the process of building the tool, we have found that
Slurm is not recording all the necessary information to replay
a schedule and that other sources of information are required.
Moreover, we have found that if too many jobs are submitted
at the same time or if a very fast Replay-clock is used, Slurm
is not able to process the workload in a reasonable time. We
have used Slurm-Replay to study two particular use cases
using the Slurm configuration of Piz Daint. Using the switch
options increases the fragmentation of the schedule reducing
by 10% the job throughput. When users provide a better
runtime accuracy of their jobs, that decreases the likelihood
that their jobs will have a long waiting time in the queue.

As for future work, we will explore more complex sets of
use cases like the introduction of new resource types or new
requirements to access existing resources. We will improve
Slurm-Replay scalability in terms of allowing it to process a
high number of jobs with lower clock rate thereby enabling the
processing of many weeks of workload in a single run. Finally,
by using an auto-tuning framework [30] we could explore
Slurm-Replay configuration for those use cases to improve
HPC system performance.

In terms of a broader vision of the methodology of a
replay engine, other real-time systems, aside from resource
management, could be considered. One can imagine any kind
of user-accessible services that could be replayed with a faster
clock in order to investigate their behavior. For instance, it
becomes possible to investigate, in a timely fashion, database
performance for a given large set of user queries.

[1]

[2]

[10]

[11]

[12]

[13]

[14]

[15]

REFERENCES

A. B. Yoo, M. A. Jette, and M. Grondona, “SLURM: Simple linux
utility for resource management,” in In Lecture Notes in Computer Sci-
ence: Proceedings of Job Scheduling Strategies for Parallel Processing
(JSSPP) 2003. Springer Berlin Heidelberg, 2002, pp. 44-60.

B. Nitzberg, J. M. Schopf, and J. P. Jones, “Grid resource
management,” J. Nabrzyski, J. M. Schopf, and J. Weglarz, Eds.
Norwell, MA, USA: Kluwer Academic Publishers, 2004, ch. PBS Pro:
Grid Computing and Scheduling Attributes, pp. 183-190. [Online].
Available: http://dl.acm.org/citation.cfm?id=976113.976127

Adaptive Computing. (2018, Feb.) Moab workload manager version
9.1.2.

D. Merkel, “Docker: Lightweight linux containers for consistent
development and deployment,” Linux J., vol. 2014, no. 239, Mar. 2014.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2600239.2600241
Y. Kobayashi, “Linux kernel acceleration for long-term testing,” in CELF
Embedded Linux Conference Europe, Cambridge, UK, 2010.

T. A. Gray-Donald and M. W. Price, “Date and time simulation for
time-sensitive applications,” Patent 8 352922, Jan. 8, 2013.

C.-H. Lin, H.-K. Pao, and J.-W. Liao, “Efficient dynamic malware
analysis using virtual time control mechanics,” Computers &
Security, vol. 73, pp. 359 — 373, 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S016740481730247X
L. Gerhardt, W. Bhimji, S. Canon, M. Fasel, D. Jacobsen, M. Mustafa,
J. Porter, and V. Tsulaia, “Shifter: Containers for HPC,” vol. 898, p.
082021, 10 2017.

G. M. Kurtzer, V. Sochat, and M. W. Bauer, “Singularity: Scientific
containers for mobility of compute,” PLOS ONE, vol. 12, no. 5,
pp. 1-20, 05 2017. [Online]. Available: https://doi.org/10.1371/journal.
pone.0177459

E. Frachtenberg and D. G. Feitelson, “Pitfalls in parallel job scheduling
evaluation,” in Proceedings of the 11th International Conference on Job
Scheduling Strategies for Parallel Processing, ser. JSSPP’05. Berlin,
Heidelberg: Springer-Verlag, 2005, pp. 257-282. [Online]. Available:
http://dx.doi.org/10.1007/11605300_13

D. G. Feitelson, “Metrics for parallel job scheduling and their
convergence,” in Revised Papers from the 7th International Workshop
on Job Scheduling Strategies for Parallel Processing, ser. JSSPP
’01. London, UK, UK: Springer-Verlag, 2001, pp. 188-206. [Online].
Available: http://dl.acm.org/citation.cfm?id=646382.689681

A. Burkimsher, 1. Bate, and L. S. Indrusiak, “A survey of scheduling
metrics and an improved ordering policy for list schedulers operating on
workloads with dependencies and a wide variation in execution times,”
Future Gener. Comput. Syst., vol. 29, no. 8, pp. 2009-2025, Oct. 2013.
[Online]. Available: http://dx.doi.org/10.1016/j.future.2012.12.005

N. A. Simakov, M. D. Innus, M. D. Jones, R. L. DeLeon, J. P. White,
S. M. Gallo, A. K. Patra, and T. R. Furlani, “A slurm simulator:
Implementation and parametric analysis,” in High Performance Com-
puting Systems. Performance Modeling, Benchmarking, and Simulation.
Springer International Publishing, 2018, pp. 197-217.

J. Kim, W. J. Dally, S. Scott, and D. Abts, “Technology-
driven, highly-scalable dragonfly topology,” SIGARCH Comput. Archit.
News, vol. 36, no. 3, pp. 77-88, Jun. 2008. [Online]. Available:
http://doi.acm.org/10.1145/1394608.1382129

N. Jain, A. Bhatele, X. Ni, N. J. Wright, and L. V. Kale, “Maximizing
throughput on a dragonfly network,” in SC14: International Conference
for High Performance Computing, Networking, Storage and Analysis,
Nov 2014, pp. 336-347.

[16]

(17]

(18]

[19]

[20]

(21]

[22]

[23]

[24]

[25]

[26]

[27]
[28]

[29]

(30]

A. Bhatele, W. D. Gropp, N. Jain, and L. V. Kale, “Avoiding hot-spots on
two-level direct networks,” in 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis (SC), Nov
2011, pp. 1-11.

X. Yang, J. Jenkins, M. Mubarak, R. B. Ross, and Z. Lan, “Watch out
for the bully! job interference study on dragonfly network,” in SC16:
International Conference for High Performance Computing, Networking,
Storage and Analysis, Nov 2016, pp. 750-760.

H. Gahvari, W. Gropp, K. E. Jordan, M. Schulz, and U. M. Yang,
“Algebraic multigrid on a dragonfly network: First experiences on a
Cray XC30,” in High Performance Computing Systems. Performance
Modeling, Benchmarking, and Simulation, S. A. Jarvis, S. A. Wright,
and S. D. Hammond, Eds. Cham: Springer International Publishing,
2015, plp. 3-23.
C. Bailey Lee, Y. Schwartzman, J. Hardy, and A. Snavely, “Are
user runtime estimates inherently inaccurate?” in Job Scheduling
Strategies for Parallel Processing, D. G. Feitelson, L. Rudolph, and
U. Schwiegelshohn, Eds. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2005, pp. 253-263.

S.-H. Chiang, A. C. Arpaci-Dusseau, and M. K. Vernon, “The impact
of more accurate requested runtimes on production job scheduling
performance,” in Revised Papers from the 8th International Workshop
on Job Scheduling Strategies for Parallel Processing, ser. JSSPP
’02. London, UK, UK: Springer-Verlag, 2002, pp. 103—127. [Online].
Available: http://dl.acm.org/citation.cfm?id=646383.689701

A. W. Mu’alem and D. G. Feitelson, “Utilization, predictability,
workloads, and user runtime estimates in scheduling the IBM SP2 with
backfilling,” IEEE Trans. Parallel Distrib. Syst., vol. 12, no. 6, pp. 529—
543, Jun. 2001. [Online]. Available: http://dx.doi.org/10.1109/71.932708
K. Krauter, R. Buyya, and M. Maheswaran, “A taxonomy and survey
of grid resource management systems for distributed computing,”
Software: Practice and Experience, vol. 32, no. 2, pp. 135-164, 2002.
[Online]. Available: http://dx.doi.org/10.1002/spe.432

T. L. Casavant and J. G. Kuhl, “A taxonomy of scheduling in general-
purpose distributed computing systems,” IEEE Transactions on Software
Engineering, vol. 14, no. 2, pp. 141-154, 1988.

A. Legrand, L. Marchal, and H. Casanova, “Scheduling distributed
applications: the simgrid simulation framework,” in Cluster Comput-
ing and the Grid, 2003. Proceedings. CCGrid 2003. 3rd IEEE/ACM
International Symposium on. 1EEE, 2003, pp. 138-145.

D. Klusidcek and H. Rudovd, “Alea 2: job scheduling simulator,” in
Proceedings of the 3rd International ICST Conference on Simulation
Tools and Techniques. 1CST (Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering), 2010, p. 61.

Y. Caniou and J. S. Gay, “Simbatch: An API for simulating and
predicting the performance of parallel resources managed by batch
systems,” in Euro-Par 2008 Workshops - Parallel Processing. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009, pp. 223-234.

A. Lucero, “Slurm simulator,” in Slurm User Group Meeting, 2011.

S. Trofinoff and M. Benini, “Using and modifying the BSC slurm
workload simulator,” in Slurm User Group Meeting, 2015.

D. Glesser and A. Faure, “Simunix, a large scale platform simulator,”
in Slurm User Group Meeting, 2016.

V. Dalibard, M. Schaarschmidt, and E. Yoneki, “BOAT: Building auto-
tuners with structured bayesian optimization,” in Proc. of the 26th
International Conference on World Wide Web. International World
Wide Web Conferences Steering Committee, 2017, pp. 479-488.

http://dl.acm.org/citation.cfm?id=976113.976127
http://dl.acm.org/citation.cfm?id=2600239.2600241
http://www.sciencedirect.com/science/article/pii/S016740481730247X
https://doi.org/10.1371/journal.pone.0177459
https://doi.org/10.1371/journal.pone.0177459
http://dx.doi.org/10.1007/11605300_13
http://dl.acm.org/citation.cfm?id=646382.689681
http://dx.doi.org/10.1016/j.future.2012.12.005
http://doi.acm.org/10.1145/1394608.1382129
http://dl.acm.org/citation.cfm?id=646383.689701
http://dx.doi.org/10.1109/71.932708
http://dx.doi.org/10.1002/spe.432

APPENDIX A
ARTIFACT DESCRIPTION APPENDIX: [RM-REPLAY: A
HIGH-FIDELITY TUNING, OPTIMIZATION AND
EXPLORATION TOOL FOR RESOURCE MANAGEMENT]

A. Abstract

The results presented in this paper are generated using a
Docker container which contains Slurm and MariaDB pack-
ages together with our in-house developed Slurm-Replay tool.
Using a Docker container allows a high-level of reproducibil-
ity. Moreover, to enhance the portability of our solution, the
container is executed in batch mode on compute nodes of Piz
Daint. All user specific data resided outside of the container.
The container together with its description and the source code
of Slurm-Replay are available to the public. One of our goals is
to promote the use of such tools and to generate a community
around them in order to ensure their further development.

B. Description
1) Check-list (artifact meta information):

o Program: Slurm (any version), MariaDB, Slurm-Replay tool

« Compilation: Slurm is compile with “-g -O3 -D NDEBUG=1"
which is not a standard setup. Other packages and programing
environment are taken by the package provider of the distribu-
tion ArchLinux used inside the container.

« Transformations: a few lines of code are changed in Slurm as
explained in the paper

« Binary: Either source code is available or binary are taken from
standard providers.

« Data set: Data set are coming from The Swiss National Com-
puting Centre which are archived in their facility. Availability
is based on request. The source of the dataset includes the
Slurm database itself and an Elastic Search service to extract log
information. From the logs, the utilization of flags ——switch
and -—dependency are retrieved for all jobs.

« Run-time environment: Docker container, Shifter container
solution for HPC and ArchLinux inside the container

« Hardware: Experiments were run on a multi-core of Piz Daint,
two Intel Xeon E5-2695 v4 at 2.10GHz with 18 cores each, for
a total number of 72 threads.

o Run-time state: Experiment are run on a single node with
exclusive access on Piz Daint. Experiments are launched in a
batch manner and not interactively.

« Execution: All the necessary steps are provided by scripts
inside the container. No manual intervention is required apart
from providing data outside the container and launching the
script.

o Output: Output is a dump of a Slurm database after the
experiment together with all necessary logs from Slurm and
Slurm-Replay.

« Experiment workflow: Workflow is described in the paper.
User needs to provide their Slurm configuration and a partial
database dump together with a workload trace.

« Experiment customization: Script can be launched with dif-
ferent parameters to enable the test of specific use cases.

o Publicly available?: Yes.

2) How software can be obtained (if available): The
software itself is open source together with the Docker-
file used to create the container. Software is accessible at:
https://github.com/eth-cscs/slurm-replay

3) Hardware dependencies: None.
4) Software dependencies: Standard Slurm package and

any SQL database package compatible with Slurm such as

MariaDB. Slurm is installed in the container via a set of
scripts.

5) Datasets: Datasets are only available from The Swiss
National Computing Centre (CSCS) upon request. The lifetime
of such data follows CSCS’ policy of long term storage.

C. Installation

Installation is transparent being provided by the description
of the Dockerfile:

FROM base/archlinux
MAINTAINER XXX <XXX@XXX.XX>
ARG URM_VERSION=17.02.9
ARG REPLAY_USER=slurm

ENV SLURM_VERSION $SLURM_VERSION
ENV REPLAY_USER $REPLAY_USER

RUN pacman -Sy --noconfirm autoconf automake git gawk gcc mpfr make mariadb wget
patch \

python gtk2 pkgconf fakeroot vim bc groff gdb valgrind strace && \

rm -rf /var/cache/pacman/pkg

RUN 1n -sf /usr/share/zoneinfo/CET /etc/localtime

RUN useradd -ms /bin/bash -d /$REPLAY_USER $REPLAY_USER && \
mkdir -p /run/mysqld && \
1n -s /$REPLAY_USER/run/mysqld/mysqld.lock /run/mysqld/mysqld.sock && \

sed -i -e socket=.x/socket=\/$REPLAY_USER\/run\/mysqgld\/mysqgld.lock/g" /etc/
mysql/my.cnf && \
sed -i -e "s/#innodb_buffer_pool_size=.x/innodb_buffer_pool_size=1024M/g" /etc/

mysgl/my.cnf && \
sed -i -e "s/#innodb_log_file_size=.#/innodb_log_file_size=64M/g" /etc/mysql/my.cnf
sed -i —e "s/#innodb_lock_wait_timeout=./innodb_lock_wait_timeout=900/g" /etc/
mysql/my.cnf

USER $REPLAY_USER
COPY . /$REPLAY_USER/slurm-replay
COPY slurm-$SLURM_VERSION.tar.bz2 /$REPLAY_USER

USER root
RUN chown -R S$REPLAY_USER:$REPLAY_USER /$REPLAY_USER/slurm-replay
RUN chown -R $REPLAY_USER:$REPLAY_USER /S$REPLAY_USER/slurm-$SLURM_VERSION.tar.bz2

USER $REPLAY_USER
) X |)
RUN cd /$REPLAY_USER/slurm-replay/distime && make

RUN cd /$REPLAY_USER && \

tar jxf slurm-$SLURM_VERSION.tar.bz2 && \

cd slurm-$SLURM_VERSION && \

patch -pl < ../slurm-replay/patch/slurm_cryptonone.patch && \

patch -pl < ../slurm-replay/patch/slurm_avoidstepmonitor.patch && \

patch -pl < ../slurm-replay/patch/slurm_explicitpriority.patch && \

./autogen.sh && \

./configure —-prefix=/$REPLAY_USER/slurmR --enable-pam --enable-front-end --disable
~debug \

—-without-munge --with-clock=/$REPLAY_USER/slurm-replay/distime \

CFLAGS="-g -03 -D NDEBUG=1" && \

make -j4 && make -j4 install && \

mkdir /$REPLAY_USER/slurmR/etc && mkdir /$REPLAY_USER/slurmR/log && \

rm -Rf /$REPLAY_USER/slurm-$SLURM_VERSION.tar.bz2 && \

cd /$REPLAY_USER/slurm-replay && \

In -s /$REPLAY_USER/slurmR/log log && ln -s /SREPLAY_USER/slurmR/etc etc

libsl

RUN cd /$REPLAY_USER/slurm-replay/submitter && make

RUN mkdir /$REPLAY_USER/data && mkdir -p /$REPLAY_USER/var/lib && \
mkdir -p /$REPLAY_USER/run/mysqld && mkdir /$REPLAY_USER/tmp

CMD ["/bin/bash"]

D. Experiment workflow

o Generate a trace using trace_builder_mysqgl by
providing access to a Slurm database production and
system logs (for jobs dependency)

o gather or create input data: Slurm database dump of user
and accounts, Slurm configuration from a git repository,
create /etc/passwd and /etc/group from the trace

 Build the container using the image file

« Start the container (either interactively or in batch mode)
by selecting a mountable volume where the previous input
data resides and bind mount /etc/passwd and /etc/group

o Start the main script providing the location of the trace ,
. replay.daint.20171006T000000.20171007T235959.trace
and the Slurm configuration, clock rate and other use siurmctid.log
cases specific option are required slurmd.log
. . slurmdbd. log
e When the main script completed a trace of the Slurm gupmitter.log

database inside the container is provided (exactly in the

same way as the first item in the list) F. Experiment customization
Internally the main script follows this steps: Customization is made through a command line option. To
o Obtain start date from the trace add an extra steps of Slurm configuration a script residing
« Set timer to start date outside the container is used. This script is executed when

o Configure Slurm by commenting not necessary configu-
ration and changing file path of the production configu-
ration. This is done by a script using text replacement

o Start the MariaDB as a user (no root is required)

o Dump into the database the original dump of users and
accounts information

o Start slurmdbd

o Start one slurmd

e Start slurmctld

e Start the submitter (note the clock is frozen to the
start trace time)

o Start the node controller

« Start the t i cker with the clock rate, this program is not
a daemon and will hold the shell until it finishes when
all jobs are completed. When the ticker executes all the
above processes will progress in time

e Collect the resulting trace from the replayed Slurm
database using trace_builder_mysqgl

o Copy outside the container experiment outputs: resulting
trace, logs

¢ On termination and in batch mode all processes and data
inside the container are lost

E. Evaluation and expected result

We provide tools to inspect input and output traces and
display their content. Logs and output are available to check
for errors which are automatically gathered. List of output
files:

error.log
metrics.log
node_controller.log

Slurm is configured.

G. Notes

Description of a trace, trace.h:

#define TINYTEXT_SIZE 128
#define TEXT_SIZE 1512

typedef struct job_trace {
char account [TINYTEXT_SIZE];
int exit_code;
char job_name [TINYTEXT_SIZE];
int id_job;
char gos_name [TINYTEXT_SIZE];
int id_user;
int id_group;
char resv_name[TINYTEXT_SIZE];
char nodelist [TEXT_SIZE];
int nodes_alloc;
char partition[TINYTEXT_SIZE];
ar dependencies[TEXT_SIZE];
switches;
state;
int timelimit;
long time_submit;
long time_eligible;
long time_start;
long time_end;
long time_suspended;
char gres_alloc[TEXT_SIZE];
int preset;
int priority;
} job_trace_t;

in

typedef struct node_trace {
long time_start;
long time_end;
char node_name [TINYTEXT_SIZE];
char reason[TINYTEXT_SIZE];
int state;
int preset;

} node_trace_t;

typedef struct resv_trace {
id_resv;
time_start;
time_end;
char nodelist [TEXT_SIZE];
char resv_name[TEXT_SIZE];
char accts[TEXT_SIZE];
char tres[TEXT_SIZE];
int flags;
int preset;
} resv_trace_t;

	Introduction
	Motivations, requirements and methodology
	Implementation instance of RM-Replay: Slurm-Replay
	Architecture and workflow
	Clock
	Workload
	Job submission and reservation
	Node state modification
	Resource manager modification
	Resource manager configuration
	Multi-tenant system
	Containerization and overall workflow

	Scheduling metrics
	Nomenclature
	Makespan, utilization and throughput
	Slowdown

	Validation
	HPC System
	Workload
	Accuracy

	Performance
	Hardware dependency
	Performance and reliability
	Scalability

	Slurm-Replay limitations
	Use cases
	Topology-aware resource allocation
	Accurate runtime estimation

	Simulation and Slurm simulators
	Broader applicability and future work
	References
	Appendix A: Artifact Description Appendix: [RM-Replay: A high-fidelity tuning, optimization and exploration tool for resource management]
	Abstract
	Description
	Check-list (artifact meta information)
	How software can be obtained (if available)
	Hardware dependencies
	Software dependencies
	Datasets

	Installation
	Experiment workflow
	Evaluation and expected result
	Experiment customization
	Notes

