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Abstract—Memory systems are crucial to the performance,
power, and cost of high-performance computing systems. Re-
cently, multiple factors are driving the need for more complex,
deep memory hierarchies. However, architects and customers
are struggling to design memory systems that effectively balance
multiple, often competing, factors in this large, multidimensional,
and fast-moving design space. In this paper, we systematically
explore the organization of heterogeneous memory systems on
a framework called Siena. Siena facilitates quick exploration
of memory architectures with flexible configurations of memory
systems and realistic memory workloads. We perform a design
space exploration on 22 proposed memory systems using eight
relevant workloads. Our results show that horizontal organiza-
tions of memories can achieve higher performance than vertical
organizations when the distribution of memory traffic balances
the performance gap between memories. However, the coupling
effects through shared resources and application behaviors could
negate the advantage of high-performance memory in horizontal
organizations.

Index Terms—Heterogeneous Memory Systems, System Explo-
ration, Design Space Exploration

I. INTRODUCTION

Memory systems play a critical part in high-performance
computing (HPC) systems, directly impacting their perfor-
mance, power consumption, and cost. Recent requirements
from applications and constraints from technologies are shift-
ing HPC systems towards more complex, deep memory hi-
erarchies. First, requirements for memory capacity continue
to increase dramatically in response to simulation, machine
learning, and enterprise applications [17], [42]. Second, the
continued imbalance of computing performance to memory
performance constricts overall application performance. Third,
in HPC specifically, the plateauing performance of both I/O
subsystems and interconnection networks is forcing applica-
tions to consider alternative scenarios like in situ visualization
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and analytics that utilize large on-node memory to reduce
expensive inter-node data movement. Finally, the conven-
tional memory technology — dynamic random-access memory
(DRAM) — is approaching its limits in terms of density, power,
and cost; hence, researchers are investigating new technology
options [4], [26], [47]: non-volatile memory (NVM), such
as 3D-XPoint [14], phase-change memory (PCM [27]), 3D
NAND flash [33], and spin-transfer-torque magnetic RAM
(STT-MRAM [51]). Meanwhile, high-performance volatile
memory, like Hybrid Memory Cube (HMC [7]), Wide-I/O
2 (WIO2 [18]), high-bandwidth memory (HBM [19]), and
GDDR6 [20], continues to be actively developed and deployed.

To address these concerns, computer architects have turned
to heterogeneous memory systems as a solution to balance
their designs. Not surprisingly, this strategy provides consid-
erably more flexibility, but it also presents new risks and
challenges. First, this large, multidimensional design space
is expensive to evaluate with existing tools for functional or
cycle-accurate simulations. Additionally, applications, code-
generation toolchains, and other architectural components
must adapt to each memory technology under consideration.
For example, in a horizontal scratchpad organization, appli-
cations must be explicitly ported to use these new memory
features as they are not transparently managed by the hardware
or the operating system. Second, these new memory systems
must be designed for a specific set of applications (application-
specific) in terms of computational intensity, working-set size,
memory access patterns, parallelism, etc. If the specific ap-
plication requirements and scaling predictions are inaccurate,
then the ultimate design could miss the optimal balance. Third,
in this period of expanding options, many of these memory
systems will be unique in that they are immature and the
first implementation of this memory architecture. Designer
experience, existing toolchains, and performance estimates
will be less obtainable and require more efforts.

As a result, architects and customers are struggling to
design HPC memory systems that effectively balance multiple
factors of cost, performance, capacity, and power. Moreover,
many diverse technologies, such as NAND flash, HBM2,
GDDR6, are being rapidly improved [5], [6], [24] and must
be evaluated frequently as new parameters become available.
In this regard, efficient and flexible design tools for memory



systems for analyzing and optimizing these options are gaining
in importance.

A. Contributions

In this paper, we address the challenge of exploring the
state of the current design space of heterogeneous memory
systems using an innovative framework called Siena. Siena
is designed to facilitate quick exploration of diverse memory
architectures. We use Siena to identify promising design
options by comparing the relative performance of system
options using application-specific workloads. We summarize
our contributions as follows:

o We survey the design space of emerging memory tech-
nologies and potential memory architectures for HPC
nodes.

e We provide Siena framework to facilitate the memory
system exploration. Siena uses abstract, scalable appli-
cation models to drive memory simulations of flexible
organizations of heterogeneous memory systems.

o« We perform a comprehensive design space exploration
of 22 proposed memory systems, including vertical and
horizontal organizations of memories.

o We analyze the utilization of the high-performance mem-
ory in vertical organizations. We show that vertical orga-
nizations are preferred for workloads that can sustain the
utilization on different problem sizes.

o We reveal the coupling effects among memories in hori-
zontal organizations. We show that shared resources and
application characteristics could result in back pressure
from slow memory, which hides the advantage of high-
performance memory.

The rest of this paper is organized as follows. We explain the
two exploration directions in §II and introduce our exploration
approach in §III. We describe the experimental methodology
in §IV. We analyze the exploration results and draw insights
to system designs in §V. In §VI, we discuss other related
works. Finally, we conclude our work in §VIIL

II. DESIGN SPACE OF EMERGING MEMORY SYSTEMS

In recent years, memory systems have become much more
complex. As computer architects balance competing objec-
tives, the emerging memory system designs have many more
devices and architectural dimensions than the cache-based
memory hierarchies of SRAM and DRAM in the past two
decades. As shown in Table I, various new devices, such as
3D-XPoint and HMC, provide new capabilities for power ef-
ficiency, density, capacity, and performance. Organizing these
memory devices into one memory system is also exposed to
an extensive exploration space (Figure 2). Meanwhile, memory
system architectures must be designed for application-specific
workloads, costs, and reliability, and the current design options
are quite broad.

The objective of this work is to employ a systematic
approach for exploring designs of heterogeneous memory
systems. A feasible memory configuration has constraints on
cost, including both hardware cost and power consumption.

TABLE I: Comparison of four tiers of memory technolo-
gies [5], [7], [13], [14], [18]-[21], [24], [26], [32], [39], [40],
[48], [501, [51].

Volatile Density BW Est.  Speed Latency
(GB) (GB/s) Cost

HMC Gen2 v 4-8 320 3x 30 Gbps ~100s ns
HBM2 v 2-8 256 2x 2 Gbps ~100s ns
GDDR6 v 1-2 72 2x 18 Gbps ~100s ns
WIO2 v 1-4 68 2x 1,066 MT/s  ~100s ns
DDR4 v 0252 256 1x 3,200 MT/s  20-50 ns
STT-MRAM X 0.25 10.6 1x 1,333 MT/s  10-50 ns
PCM X 1 3.5 Ix 3M IOPS 50-100 ns
3D-XPoint X 750 2.4 0.5x S50K IOPS 10 us
Z-NAND X 800 32 0.5x 750K IOPS  12-20 us
NAND Flash X >1,000 <3 0.1x 50K IOPS  25-125 us
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Fig. 1: Impact of the high-performance memory price on the
total capacity of a memory system under a fixed budget.

It also needs to provide sufficient capacity and reasonable
performance. We model a heterogeneous memory system
as composed of N different memory technologies, denoted
by M; (¢ = 1..N). Under a fixed budget for a memory
system, we demonstrate in Figure 1 an example of using two
memories: a DDR3 SDRAM and a high-performance memory
(HPM). When the price or capacity of HPM increases, the
total memory capacity (solid lines) decreases. Our exploration
starts from the basic requirements from applications, i.e., the
minimum capacity for enabling typical workloads. We assume
that a HPM has a higher unit price than a conventional memory
(see the estimated cost in the fourth column of Table I).
Therefore, we try to minimize the ratio of HPM in a memory
system without causing significant performance degradation.
Our approach provides a framework to explore various mem-
ory configurations under application-specific workloads. In the
remainder of this section, we introduce the state-of-art memory
technologies and organizations.

A. Memory Technologies

Heterogeneous memory systems are emerging as the domi-
nant memory technology, DRAM, faces challenges in scaling.
Although various memory technologies are being actively de-
veloped, none of them can fully replace DRAM. Composing a
heterogeneous memory system can potentially take advantage
of multiple memory technologies.We summarize promising
technology options in Table I that consists of four tiers.

HPM is the top tier of memory technologies and is rep-
resented by HMC [7], HBM [19], Wide I/O2 [18], and
GDDR6 [20]. These technologies can provide over 10 times
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Fig. 2: Selected architectures for emerging memory systems. Solid arrows represent cache-managed memory (i.e., vertical
organization); dotted arrows represent software-managed memory (i.e., horizontal or flat organization).

the bandwidth of DDRx. Their performance mainly comes
from wide data buses and high data rates. In fact, their access
latencies are even slightly higher than that of the conventional
DDRx. Also, their high cost restricts their capacity to be orders
of magnitude smaller than the other technologies. The second
tier of memories includes the mainstream DDRx technology
as well as some byte-addressable NVMs with comparable
latency, e.g., PCM and STT-MRAM. These memories have
moderate performance and a competitive cost per bit. Thus,
they determine the capacity of a memory system, and we
categorize them as capacity memory. One scaling limitation
of the volatile capacity memories is their power consumption.
Volatile memories need to refresh data periodically, and the
required power increases when the capacity increases. Cur-
rently, the refresh period of DDR3 is about 7.8 us [25].
If the next-generation supercomputers only rely on volatile
memories for capacity, the total power consumption could be
substantial. Recent works have proposed using NVMs to par-
tially replace DDRx because they do not require refresh power
and have higher densities. Nevertheless, NVMs suffer from
longer access latency and limited endurance. For example,
PCM has about 4 and 12 times the read and write latency,
respectively, compared to DDR3 [27]. Thus, data management
in a heterogeneous memory system becomes critically impor-
tant for avoiding performance degradation. The last two tiers
of memories are persistent capacity memories, which have
the highest package density but also the lowest performance
and may not be byte addressable. The 3D-XPoint and Z-
NAND technologies have a much lower latency than that of
conventional NAND flash memories. They target to bridge the
performance gap between main memory and storage. As the
3D-XPoint can be configured as byte addressable, it could
also be an extension to the main memory. In this work, our
exploration includes multiple tiers of memory technologies in
a heterogeneous memory system.

B. Memory Organization

We mainly explore the vertical and horizontal organization
of multiple memories in a memory subsystem. A vertical
organization of memories places one memory on the top
of another, forming a hierarchy. This organization is similar

to the conventional SRAM-cache to DRAM memory. The
main purpose of a cache is to keep useful data closer to the
processing unit. Therefore, we assume a typical configuration
will always place the more performant memory (top tiers in
Table I) as a cache to the less performant one. This design di-
rection leads us to those architectural options depicted in solid
lines in Figure 2. Different from conventional SRAM caches,
these high-performance memories do not provide advantages
regarding latency (Table I). Some may even have higher
latency than volatile capacity memories. Will this limitation
affect the efficiency of a memory system? Also, the capacity
of a cache does not contribute to the total memory capacity
(Figure 1). What is the cost-effective cache size in a vertical
organization for specific workloads? We try to answer these
questions from our system exploration.

A horizontal organization of memories places one memory
next to another, forming a flat memory space. Such memory
systems require explicit data management from the software
to utilize all memories. For instance, applications may stati-
cally place data structures at the initialization phase. During
execution, OS kernels or runtimes can also migrate data be-
tween memories at various granularity. While the optimal data
placement on memories is an NP-complete problem [53], it is
possible to explore a smaller mapping space in experiments
to reveal design trends. Although a horizontal organization
requires additional support from the software, it may only
need a fraction of expensive memories compared to a vertical
organization. An even stronger motivation for the horizontal
organization is that it supports mapping application regions to
the appropriate memory kind, which is infeasible in a cache-
based organization. What is the sensitivity of a horizontal
memory organization to the data mapping? Can a horizontal
organization outperform a vertical organization? Our explo-
ration employs a systematic survey of these questions.

III. Siena OVERVIEW

We designed Siena — a new approach — for fast exploration
of these memory system designs. Siena, as broached in §I,
was motivated by several factors to overcome the limitations
of prior approaches (discussed §VI). First, an approach for
design exploration must be fast. When considering hundreds



or thousands of experiments, we need an approach that
can evaluate a design option without significant slowdowns
(> 10,000x slowdown) as are typical in system simulations.
Second, an approach must be flexible in memory system
configurations. When considering a wide range of memory
system architectures and device parameters, an approach must
be more configurable than has been the case over the past two
decades when considering only typical cache-based memory
hierarchies. Third, an approach must be adaptable to workload
characteristics. Because memory system designs may vary
dramatically in capacity and performance, the application con-
figurations must similarly be scaled to fit the experiment while
maintaining the fidelity of the application workload. Moreover,
for software-managed memory options, an approach has to
allow exploration of data placement into specific memory
spaces. Fourth, an approach must be accurate in revealing
the trends of design options, while respecting these other
constraints. Clearly, we must balance accuracy with flexibility
and speed. However, because we are focusing on the memory
system performance, we prioritize the accuracy of the memory
system results while optimizing the other components of the
approach (e.g., processor model) for speed and flexibility (e.g.,
easily changing from a GPU model to a CPU model).

Siena uses abstractions in a formal domain specific language
(DSL) [43] to represent application behaviors in parameterized
models, including memory access, computation, threading, and
dependency. It takes abstract machine models to configure a
general memory system, uses memory simulators to model
different memory technologies, and orchestrates the interplay
among memories. Siena bridges the application and the mem-
ory subsystem with an integrated framework that can explore
memory-level parallelism and memory-computation overlap-
ping while honoring the intrinsic dependencies in application
memory accesses.

A. Application Abstraction

An application abstraction is similar to a “minimal” descrip-
tion of the original application, consisting of parameters, data
structures, kernels, and control flows. Each kernel contains
quantitative information of memory accesses, computation,
and communication. These kernels are connected through
a control flow that depends on the input problem during
“execution”. Abstractions also use optional traits to capture
additional characteristics of workload behaviors, including
memory accesses patterns, data layout, and data dependencies.
Application abstractions are created from automatic compiler
analysis while the optional traits are manually added based on
runtime profiling results. We report the details of model cre-
ation, workload generation, and validation in [36]. We utilize
the application abstraction in Siena to generate configurable
memory workloads for the system exploration.

The application abstraction models memory workload be-
haviors by providing a data-centric view of each kernel. A
kernel has multiple data objects that describe the behavior of
a particular phase through their properties and interactions.
The model uses specific constructs and memory traits in

Fig. 3: The life cycle of memory traffic in Siena frame-
work: originated from application models (@), dispatched

out-of-order (), and serviced by memory subsystem
OO

the DSL to capture the properties of a data object, such as
data layout, access patterns, and access types, as well as
interactions between data objects, such as computation and
data dependency. A kernel can access different data structures
in different patterns by traversing from one data object to
another. As these data objects are used to separate memory
access behaviors, they can access the same allocation in the
memory. The model uses separate constructs in the DSL to
describe these memory allocations and keeps them orthogonal
from the workload behavior in the kernels. These memory
allocations can be explicitly managed by Siena to be placed
on a particular memory in the memory subsystem. The model
also captures thread interleaving in data accesses. Multi-
threaded accesses to the memory are critical for exploiting
high-memory bandwidth. However, it may increase row-buffer
conflicts or cause contention on the memory resource. Thus,
Siena also models the back pressure from the memory system
in multi-threaded workloads. Siena reconstructs application
behaviors from this abstraction into streams of pseudo op-
erations to drive simulations of memory subsystems.

B. Memory Subsystem

Siena facilitates flexible configurations of a general het-
erogeneous memory system. The architecture of a memory
system is specified in an abstract machine model in the same
DSL as the application abstraction. The memory configuration
describes the organization of different memories, i.e., ver-
tical or horizontal, as well as their parameterized capacity,
associativity, access latency, bandwidth, etc. Siena takes a
machine model and constructs the specified memory system.
In particular, Siena supports using proper memory simulators
( [23], [41], [45]), for the particular memory technologies in
use, to model the behavior of each component in the memory
subsystem. Siena also manages the data mapping onto different
memories and the data migration among these memories.



For a vertical organization of memory M; and M;, we
model M; as an associative cache to M;. When the requested
data is not available in M;, Siena evicts a cache line (of config-
urable size in the machine model) and sends memory requests
to M. Siena maintains a buffer of pending requests so that
multiple concurrent requests can be consolidated into fewer
memory transactions. Siena also automatically handles the
difference in access granularity when migrating data between
two memories. For a horizontal organization, Siena manages
flexible data mapping schemes by reading in a mapping
model in the same DSL as the application abstraction. At
the initialization phase of the “execution”, Siena places data
structures according to the specified mapping scheme while
ensuring the data placement is feasible under the capacity
constraint of each memory. During the “execution”, Siena
maintains the most current data mapping in a mapping table.
Siena performs a lookup in the table to identify the target
memory for sending a memory request.

C. Memory Interplay

Siena models the interplay between memories through the
shared hardware resources and workload behaviors. Typical
hardware resources include those buffers that hold outstanding
cache misses and instructions [28]. For instance, if a buffer
is occupied with outstanding requests to a slower memory,
even independent requests to a faster memory can be delayed.
Workload behaviors impact the memory interaction through
data dependencies such that accesses to data structures in
memory M; may need to wait for data fetched from Mj.
If M; has lower performance than M;, it could also delay
memory accesses to M;, lowering the overall performance.
From this perspective, Siena models a simple core pipeline
similar to [23] and also models the contention on shared
resources and the constraints of data dependencies. We note
that although these effects impact the application performance
on heterogeneous memory systems, conventional trace-based
simulations cannot reflect these dynamic interactions, which
may neglect the coupling effect among memories and result
in higher errors as the number of cores increases on-chip [44].

To model overlapping between data transfer and computa-
tion, Siena configures a reorder buffer of depth D), to control
the parallelism among operations. During a simulation, Siena
checks each operation in the buffer to determine whether
its required hardware resources and dependent data are both
available. The hardware resources include functional units,
e.g., arithmetic or load/store ports, as well as the buffers
that hold outstanding cache misses. For simplicity, Siena only
models three types of operations, i.e., computation, load,
and store, and the throughput of each kind of operation is
configured through the machine model. Siena honors the data
dependency as specified in the application abstraction. A data
object in a kernel could have dependencies on a list of other
data objects. Siena delays dispatching an operation and keeps
it in the buffer until all its dependencies have been satisfied.
Upon the response of a memory request, Siena updates the
resolved dependency for pending operations. Siena also or-

chestrates the memory traffic to the memory subsystem. For
each memory request, e.g., a load miss or a dirty write back,
Siena performs a lookup in the mapping table to determine
in which memory the data currently resides. Then, it directs
memory requests to the mapped memory and also updates the
buffers of outstanding cache misses. Finally, Siena handles
contention on the memory system from multiple threads. When
too many requests are in-flight, the memory system could
reject some requests, causing a thread to progress slower than
others at runtime.

We illustrate the workflow of Siena through the life cycle of
a memory request in Figure 3. From an application abstraction
(D), Siena generates a stream of pseudo operations (MemOp
or CompOp) for each thread (T1,T2,T3). These operations
(01,02,03) wait in the buffer until Siena dispatches them out-
of-order (2),3),®). Operations are removed from the buffer
when their transactions are completed in-order. If an operation
is of type MemOp, it needs to go through the cache hierarchy
(®), which is configurable through the machine model and
might be implemented by a HPM. When an operation results
in memory transactions, Siena orchestrates memory requests
to the memory subsystem, handling data mapping, request
consolidation, and data migration accordingly.

IV. EVALUATION METHODOLOGY

For the experiments, we configure a test system that consists
of 32 cores. Each core has a clock speed of 2 GHz and
can issue eight pseudo operations per cycle. At each cycle,
each core can dispatch at most four computation, two load
and store operations. All experiments in this work use a 128-
wide reorder buffer and follow an in-order issue, out-of-order
dispatch, and in-order retirement pipeline. Each core has a
private 1KB cache. We model hits in the first-level cache as
four CPU cycles. All cores share the last-level cache (LLC)
that is backed by a high-performance memory. The L1 cache
uses LRU replacement policy, write-back, write-allocate and
8-way associativity. LLC uses the same policies but with 16-
way associativity. We varied the capacity of LLC for the
experiments of vertical organizations. We also modeled a fill
buffer for L1 caches and configured its capacity to hold at
most 10 concurrent misses. This configuration is mostly based
on the Intel Haswell microarchitecture [8] with simplified the
cache and core modelling to speed up the exploration. All
the experiments use the same core-side configuration, and we
focus on comparing relative changes among different memory
subsystems.

We create application models in two steps. First, a skele-
ton model is created from the source code by a research
compiler that performs static analysis to extract quantitative
information of computation, memory access, and communi-
cation [29]. Then, we manually extend the model with more
specific memory traits that include access patterns and data
dependency based on runtime profiling results and application
knowledge [34], [36].

To model HPMs and volatile capacity memories, we use
the Ramulator [23] memory simulator. We assume persistent



memories in DIMM form factor and use NVDIMMSim [45]
simulator. We configure the granularity of data migration be-
tween volatile memories to be 64 bytes and to/from persistent
memories to be 4096 bytes. For volatile memories, we use
row-interleaved, FR-FCFS scheduling, and open page policy.
We model DDR4 as one-channel single-rank memory chips in
an 8gbx16 organization with a 64-bit data bus, 2,400 MT/s
data rate, and 16-16-16 timing and HBM as eight-channel
single-rank memory chips in 1gb, 2gb, and 4gb organizations
with a 128-bit data bus, 1,000 MT/s data rate, and 7-7-7
timing [23]. For persistent memory, we use multiple packages
of 4 GB density. We advance the memory simulators and the
core pipeline respectively to their clock rate.

We summarize the list of applications ( [1], [16], [31])
in experiments in Table II. The last column reports the
parameterized problem size in application abstraction. Each
experiment includes one additional iteration to warm up the
system for measurement. We only report the measurement
obtained from actual execution. If not specified otherwise,
we run experiments with 32 threads. Our results use the total
simulated CPU cycles for comparing performance.

TABLE II: List of applications.

Application ~ Description Parameters of Application Size
spmul Sparse linear algebra 12nnz

stream Memory bandwidth 24n

miniFE Finite-element solver 3_(d; +1)(8nnzprow + 56)
jacobi3d Iterative solver 16n°

npb.mg Multi-grid smoother 8 Zi‘;glN (2" 4 2)®

conv Convolution filter 8(n? + n3)

laplace five-point stencil 16n°

V. EXPERIMENTS

We present the results of system exploration in this section.
Initially, a memory system must meet the minimum require-
ment on capacity as indicated by all applications (Table II).
For a fixed memory capacity, a system design could optimize
for multiple objectives such as performance and cost. Sys-
tematically, we evaluate the trade-off between the HPM ratio
and the performance changes under vertical and horizontal
organizations of memories. Our results show that a vertical
organization can improve performance up to that of the HPM
in the system. In contrast, a horizontal organization can use
less HPM and can reach even higher performance than that
of the HPM when the distribution of memory traffic balances
the performance gap between memories. Also, attention must
be paid to avoid the coupling effects among memories, which
can negate the advantage of HPMs.

A. Vertical Organization

Our first set of experiments explore the impact of HPM ratio
in vertical organizations of heterogeneous memory systems.
We construct seven memory subsystems. Each system consists
of a volatile capacity memory that simulates a single-channel
DDR4 memory. Six out of the seven systems also have a HPM
that simulates a HBM. The ratio of HPM in these six systems

ranges from 3.2% to 100% at a doubling rate. We use the
system that has no HPM as the baseline. We refer to these
systems as C'Ri, where ¢ = 0,3.2...100. On these systems,
we run a set of seven applications. Each application uses a
large input problem. We normalize the performance of these
systems to that on the baseline system (C'R0) and report the
results in Figure 4.

Our experimental results show that application performance
in vertical organizations reaches up to that on a full HPM
system. It is clear from Figure 4a that all applications achieve
the highest performance on the system with the largest HPM
ratio. Note that there exist minor dips from C'R50 to C'R100,
which could be a result of using different chip organization
for implementation. As a full HPM system is unlikely an
affordable option, system designers first need to identify
feasible options, e.g., from Figure 1 and Table II, and then
choose options that balance the increased cost of HPM and
the improvement in applications.

Applications in the experiments demonstrate three levels
of sensitivity to the change of HPM ratios. First, not all
applications can immediately benefit from using HPM. Some
applications, such as stream and laplace, only start showing
performance improvement when the HPM ratio reaches a
threshold value. In fact, they exhibit lower performance when
the ratio is small. This performance degradation is due to the
low data reuse in HPM caches. Consequently, there is little
performance benefit to trade-off the overhead of managing a
cache. Second, some applications can benefit from a small
HPM cache and are insensitive to the increase of HPM ratios.
For instance, convolution, miniFE, and MG show approxi-
mately 1.5, 3, and 2.8 times improvement in performance,
respectively, at the smallest HPM ratio. Beyond that, their
performance remains mostly stable on systems with larger
ratios. This insensitivity is favorable for vertical organizations
because only a small portion of HPM is needed for applica-
tions to benefit from the HPM. We note that convolution has
a relatively lower performance improvement than the others
because of its higher compute intensity, while miniFE is more
sensitive to memory performance. The third group of appli-
cations is most sensitive to HPM ratios, showing increasing
performance when the ratio increases. System options for such
applications can be narrowed down to those options that meet
both a target performance and a target capacity.

Our second set of experiments focuses on memory-level
parallelism (MLP) that applications can benefit from HPMs.
HPM-based caches are different from the conventional SRAM-
based caches because, typically, SRAM are advantageous in
regards to both latency and bandwidth compared to DRAM. In
contrast, HPMs (Table I) are only advantageous in bandwidth,
compared to those volatile capacity memories. Therefore,
selecting appropriate memory designs requires understanding
the sensitivity of applications to latency and MLP.

We calculate the aggregated latency as (Nps1 * Latpa +
Nuro * Lataro)/(Nan + Nago), where M1 is a HPM cache
to MO, Ny is the number of reads, and Lat,s, is the
measured average latency to memory ¢. This latency estimates
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Fig. 4: Comparison of performance and latency under different cache ratios in vertical organizations.
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Fig. 5: Comparison of performance and latency under different workloads and cache size in vertical organizations.

the average time that a load will take to complete if it misses in
the previous cache level. We report the aggregated latency in
Figure 4b. We deduce the impact of MLP in each application
by comparing changes in the performance and the aggregated
latency. MLP indicates the number of memory requests that
can be concurrently served. In general, the more memory
requests in-flight to saturate the memory bandwidth, the better
an application can exploit a high-bandwidth memory. Also,
when the number of in-flight requests increases, the latency
of completing a single request can also increase. Thus, if both
latency and performance increase (by comparing Figure 4a
and 4b), we are confident in attributing the improvement to
better MLP. For instance, jacobi shows both increased perfor-
mance and latency on system C'R3.2, CR6.4, and C'R12.5,
indicating that its benefit from improved MLP exceeds the
increased latency. On the contrary, spmul and miniFE both

exhibit performance improvement that is mostly proportional
to the reduced latency on the test systems. Therefore, they
may not exploit as much MLP as jacobi in these experiments.

To further evaluate the impact of HPM ratios on MLP in
applications, we configure six memory systems in the second
set of experiments. Three systems use the same memory
options as in the first set of experiments. We refer to them as
DDR-HPMO (CR;). The additional three systems use an even
higher performance memory that has a double bandwidth of
HBM, and we refer to them as DDR-HPM1 (C'R;). On each
system, we scale up the problem size for each application. We
normalize their performance to that on their respective baseline
system DDR-HPM, (C'R0). We report the performance and the
average access latency to each memory in Figure 5.

We use the change of MLP to categorize whether an
application can efficiently utilize HPMs in vertical system op-



tions. When a decreased performance accompanies a reduced
latency to HPMs, we infer a decreased MLP in HPMs. From
the experimental results, stream and miniFE represent two
types of applications whose MLP changes differently when
their problem sizes increase relative to HPM ratios. Stream
only benefits from HPM when the problem size is smaller
than the HPM capacity. The average latencies to HPMO and
HPM1 (translucent blue and red bars in the middle and right
panels of Figure 5a) significantly decrease at the problem
size when the overall performance starts decreasing (the left
panel of Figure 5a). We conclude that vertical organizations of
memories are likely to have one type of memory underutilized,
i.e., either HPMs or volatile capacity memories, depending on
the relative problem size and cache size for such applications.

On the other hand, the utilization of HPMs remains stable
regardless of the change of problem size and HPM ratio in
applications like miniFE. We do not observe any abrupt perfor-
mance degradation from the left panel of Figure 5b, even when
its memory footprint is larger than the HPM capacity. The
changes in the latency to HPMs are also distinctively differ
from stream. We observe that latencies to HPMs (translucent
blue and red bars in the middle and right panels of Figure 5b)
remain nearly constant when the workload changes, implying
a relatively stable utilization of HPMs. We note that an ideal
use case should have improved utilization of HPMs when the
workloads scale up. However, we do not observe such results
from our exploration.

B. Horizontal Organization

A horizontal organization places different memories side
by side to form a flat memory space. Such systems rely
on the software support to manage data mapping across
multiple memories. In this section, we explore (1) the system
sensitivity to data mapping and (2) the optimal distribution
of traffic under different memory options.

1) Data Mapping: To explore data mapping in horizontal
organizations, we first construct six memory systems. The first
two systems represent the proposed architecture depicted in
Figure 2b, which consist of a HPM and a volatile capacity
memory, denoted as DDR-HPMO and DDR-HPMI, respec-
tively. The third and fourth systems are similar to the first two
but replace the volatile capacity memory with a non-volatile
capacity memory that has approximately 1,000 times higher
latency. They represent the architecture depicted in Figure 2d.
We refer to these two systems as NVM-HPMO and NVM-
HPM1. We also construct two baseline systems, where the first
one only consists of the volatile capacity memory, while the
second one only consists of the non-volatile capacity memory.
We list the specification of each system in the second column
of Table III.

Experiments on data mapping can result in a large search
space that grows exponentially when the number of data struc-
tures and memories increases. In the first set of experiments,
we use a linear algebra benchmark that performs matrix-
vector multiplication on a sparse matrix consisting of 2M rows

TABLE III: Sweep data mapping on horizontal system options

Data Structure
architecture  mem. spec. mapping | colind | value | rowptr | x Y
DDR m DDR DDR DDR DDR DDR
m2 DDR DDR HPMO DDR HPMO
Fig.2b DDR-HPMO m3 DDR DDR DDR HPMO | DDR
m4 DDR DDR HPMO HPMO | HPMO
mS DDR DDR HPM1 DDR HPM1
Fig.2b DDR-HPM1 mé6 DDR DDR DDR HPM1 | DDR
m7 DDR DDR HPM1 HPMI1 | HPMI
m8 NVM NVM HPMO NVM HPMO
Fig.2d NVM-HPMO  m9 NVM NVM | NVM HPMO [ NVM
ml0 NVM NVM [ HPMO HPMO | HPMO
mll NVM NVM HPM1 NVM HPM1
Fig.2d NVM-HPM1  ml2 NVM NVM NVM HPMI | NVM
ml3 NVM NVM HPM1 HPM1 | HPMI1
NVM ml4 NVM NVM NVM NVM NVM
6 — T T T
.
4 DDR - HPMO NVM - HPMO NVM - HPM1  NVMH
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Fig. 6: Sweep data mapping in horizontal organizations. The
top panel presents the performance normalized to the baseline
ml. The bottom panel presents the average measured latency
to memory MO and M1, respectively.

and 182M non-zeros. Sparse matrix-vector multiplication is a
common operation in numerical solvers like conjugate gradient
solvers in scientific applications. It is often a performance bot-
tleneck due to its high-memory intensity and irregular access
pattern. The benchmark consists of five main data structures
(Table III) that exhibit a mixture of different data sizes, access
patterns, and data dependency. On the four horizontal systems,
there are a total of 128 possible mappings. We decided that
the largest data structures (values and colind) should always
be mapped to the most cost-effective memory to reduce HPM
cost. Due to limited space, we only show a subset of mappings
on each system option in Table III. We denote each mapping
with mi in the third column and compare their performance
in Figure 6.

The constructed systems exhibit different sensitivity to data
mapping. We identify three categories of mapping based on
their relative performance to the baseline m1. The first type
of mapping includes m3, m4, m6, m7, m9, m10, m12, and
m13. They all achieve a higher performance than the baseline
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(indicated by the red line in Figure 6). Among them, m3 and
m4 show a similar performance, but m3 achieves this by only
placing x in HPMO, while m4 places all x, y,and rowptr in
HPMO. Using m3 only requires one-third the HPM capacity
that is required by m4. By comparing m3 and m6, we observe
a twofold improvement in performance. m3 and m6 place the
same data structure on HPMO and HPM1, respectively, which
indicates that it is only sufficient to speed up accesses to x
in a horizontal organization. Interesting, we do not observe
such significant improvement in performance when HPMs are
placed next to NVMs in systems NVM-HPMO and NVM-
HPMI1. The performances of m9 and m12 in Figure 6 are
very similar, unlike m3 and m6. The different sensitivities
of NVM and DDR, when both are placed horizontally next
to HPM, indicate that significantly slower memories could
have back-pressure to fast memories in the system, hiding
their advantages. In fact, the performance difference between
m9 and m10 proves that NVM is throttling the performance.
Recall that m4 does not show improvement compared to
mJ3, but now on the NVM-based system, this mapping shows
improvement in performance by comparing m9 and m10.
When memories constitute a memory subsystem, they interfere
with each other through shared buffers such that requests
waiting for responses from NVM will occupy the buffer longer
than requests to DDR or HPM. As the gap between DDR and
HPM is not as dramatic as the gap between HPM and NVM, as
shown in the bottom panel of Figure 6, the back-pressure from
NVM has a more obvious throttling effect on the performance
of HPM. Besides, z in fast memory has a data dependency on
colind in slow memory. This application characteristic further
tightens the coupling of these memories.

The performance of the second category of mappings is
similar to that of the baseline system, namely, m2 and m5.
They place rowptr and y in the high-performance memory and
the remaining data structures onto the capacity memory. These
mappings do not result in significant changes in either the
number of memory transactions or the average access latency.
Thus, we observe a performance similar to the baseline,
indicating that such mappings are not effective in exploiting
HPM. Finally, the third category of mappings includes m8,
ml11, and m14. They all show a lower performance than that
of the baseline. The bottom panel of Figure 6 shows that m8,
ml11, and m14 all have a latency similar to NVM (blue bars),
which is approximately 1,000 time that of other memories.

The performance of ml4 is within what is expected as it
places all data structures onto the lower-performance memory.
However, m8 and m11 are surprisingly slower than m14. The
statistics from simulators show that m8 and mll result in
a higher number of transactions. Note that NVM has block
access granularity in the setup, and concurrent reads to the
same page are consolidated. This increase in transactions is
likely a result of the changes in data mapping, which reduces
the probability of transaction consolidation.

2) Memory Traffic: Our second exploration of horizontal
organization investigates the impact of memory traffic distribu-
tion on system performance. We construct three heterogeneous
memory subsystems, each consisting of a capacity volatile
memory (MO) and an HPM (M1). MO simulates DDR4 with
one, two, and four channels in the three systems. M1 simulates
a high-bandwidth memory. In these systems, the bandwidth of
Ml is 7, 3, and 1.5 times that of MO, respectively. We use
a synthetic benchmark to control the distribution of memory
traffic to each memory. We sweep the distribution from 0%
to 100% traffic to M1 at the step of 10%. We report the
performance normalized to that of 0% distribution on each
system in Figure 7.

Our experimental results show that each test system can
achieve higher performance than the peak performance of
HPM at certain traffic distributions. For instance, the middle
panel of Figure 7 shows that when 70% traffic goes to HPM,
the system can achieve nearly 3.8 times speedup compared to
the baseline (0%). The peak performance of HPM, however,
is only three times that of the baseline. The optimal distri-
bution of traffic among the two memories depends on their
relative bandwidth. When there is a considerable gap in their
bandwidth, it is more difficult to reach high performance. For
instance, the left panel of Figure 7 shows that there is only
one distribution of traffic in the experiment, i.e., 90%, that has
reached higher performance than the full HPM traffic (100%).
In contrast, the middle panel has three distributions, i.e., 70%,
80%, and 90%, that have reached a higher performance than
the full HPM traffic. Moreover, the right panel of Figure 7
has seven qualified distributions. The different numbers of
qualified traffic distribution on these systems demonstrate that
when the gap between two memories gets smaller, there is
a higher probability of reaching a higher performance than
that of HPM. Our exploration results show that horizontal
organizations not only have advantages in aggregated capacity



but, more importantly, can also achieve higher performance
than vertical organizations whose performance is limited by
that of HPMs.

C. Discussion and Insights

We note that our exploration is based on the assumption
that the core-side architecture, e.g., network-on-chip (NoC)
bandwidth, should have been sufficiently optimized to avoid
throttling HPMs [49]. Under this assumption, we argue that
vertical organizations would be a preferred memory option
when workloads can sustain their utilization of HPMs on
typical problem sizes. In this work, we use MLP as a metric
for the HPM utilization. Horizontal organizations can poten-
tially achieve higher performance than vertical organizations.
However, we have also demonstrated the high complexity of
data management that is necessary from software support.

We recommend using the sensitivity to HPM ratios and
the HPM utilization to select memory organizations. We
summarize the configuration for each application based on the
exploration results in Table IV. We choose vertical organiza-
tions when the workloads are insensitive to HPM ratios; i.e.,
they only require a fixed small HPM to improve performance.
We select horizontal organizations and only use the capacity
memory but not HPM when the workloads need a large HPM
ratio in vertical organizations and show low HPM utilization
on smaller ratios. Finally, applications whose performance
increases when the HPM ratio increases in vertical organi-
zations may also benefit from horizontal organizations. We
recommend choosing memories whose performance gap is no
larger than the traffic distribution to different memories to
improve overall performance and to avoid back pressure from
slow memory in horizontal organizations.

TABLE IV: Qualitative summary of results for applications.

Application ~ HPM utilization =~ HPM Ratio =~ Memory Organization
npb.mg high insensitive vertical

jacobi3d high scaling vertical

conv medium insensitive vertical

miniFE medium insensitive vertical

spmul medium scaling horizontal, vertical
stream low sensitive horizontal

laplace2d low sensitive horizontal

Furthermore, a complex memory subsystem could be a
hybrid of vertical and horizontal organizations (Figure 2g).
Such systems would require software support not only for data
mapping but also for kernel mapping. Kernels in one appli-
cation may prefer different memory organizations. Changing
from a vertical organization requires data to be synchronized
in all memories, which should be supported by software. Thus,
runtime support is indispensable for the successful adoption of
complex memory systems.

VI. RELATED WORK

We categorize related works on system design exploration
into analytical modelling, emulation, and simulation.

Analytical models for design space exploration are generally
fast in pruning promising design trends [9], [25]. Knyaginin et

al. [25] used the cache reuse profiles of workloads to predict
memory traffic to each memory level and then studied the
design dimensions in resource partition, allocation, and data
placement. Their work assumed static row buffer hit rates
and only focused on single-threaded workload. Different from
their work, our approach uses memory simulations to model
row buffer hit rates dynamically and considers contention and
back-pressure on the memory system in those multi-threaded
workloads.

Emulations run on native hardware and thus are still fast
for exploring new technologies [4], [11], [35], [46]. Hard-
ware emulators use accelerators, such as FPGA, to execute
applications at high speed. Nevertheless, their exploration
space is limited to the resource of the accelerators in use.
Software emulators do not rely on hardware resource but
may introduce overhead that is comparable or even higher
than certain high-performance memories. Thus, they are often
used to model slow memories. Doudali et al. [11] used CPU
throttling to reduce the bandwidth and increase latency to one
NUMA domain. Such emulation may be infeasible for those
memories with asymmetric latency or for different memory
organizations.

Simulation is the most important approach for designing
new hardware [2], [3], [22], [30], [38], [52]. Cycle-accurate
simulators can achieve higher accuracy than analytical models
and emulations. Nevertheless, detailed simulations often have
a speed of hundreds of kilo-instructions per second (KIPS).
Thus, using full-system simulations to sweep a broad design
space is prohibitively expensive. Recent works have proposed
simulators with different areas of interest such as volatile
memories [23], [41], non-volatile memories [37], circuit-
level [10], memory controllers [15], memory organization [12],
and even the entire memory hierarchy [45]. Our approach takes
advantage of this extensive range of simulators. We provide
a framework that systematically configures a heterogeneous
memory system, selects appropriate simulators for the memory
options of interest, and orchestrates the interplay among them.

VII. CONCLUSIONS

The design space for heterogeneous memory systems is a
complex, multidimensional problem. In this work, we system-
atically explored the organization of heterogeneous memory
systems on Siena framework. Based on the results, we rec-
ommend selecting vertical organizations for applications that
are insensitive to HPM ratios and can sustain HPM utilization
at different workloads. We also show that horizontal organiza-
tions couple memories through shared hardware resources and
application characteristics and thus should balance memories
to eliminate the back pressure from the slower memories,
which can negate the advantage of faster memories.
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APPENDIX A
ARTIFACT DESCRIPTION APPENDIX: SIENA: EXPLORING
THE DESIGN SPACE OF HETEROGENEOUS MEMORY
SYSTEMS

A. Abstract

This artifact provides information to generate the computa-
tional results that are presented in the paper titled Siena: Ex-
ploring the Design Space of Heterogeneous Memory Systems.
It includes instructions for installing the software, configuring
the workflow of experiments and also scripts for visualizing
the results. We also provide job scripts for launching batch
sweep tests on Stampede supercomputer at TACC.

B. Description

1) Check-list (artifact meta information):

« Algorithm: data-centric abstraction of workloads

o Program: C/C++

o Compilation: GCC version above 5.4.0 (with support for

c++11)

« Binary: DRAMSim2, Ramulator, and NVDIMMSim li-
braries

« Run-time environment: tested on GNU/Linux 3.10.0 and
CentOS 7.3

« Hardware: Stampede (SKX nodes) at TACC, ExCL (Intel
Xeon E5-2683) at ORNL
« Run-time state: display periodic progress and states to the
console
« Execution: execution time scales with the number of enabled
memory simulators
« Output: the statistics of caches, the statistics of each memory
simulators, and the statistics of each executed kernel
« Experiment workflow: Install DRAMSim2, Ramulator, and
NVDIMMSim libraries, download the software source code,
compile the software, customize experiments, execute exper-
iments, and visualize results
« Experiment customization: Yes
« Publicly available?: Yes
2) How software can be obtained (if available): Please
download the source code from the git repository at
https://github.com/ipftg/siena
3) Hardware dependencies: It compiles and runs on general
x86 processor. Use multi-core processors with large main
memory for exploration experiments.
4) Software dependencies:
o Autoconf
« GNU Bison
« ASPEN DSL (version 2.0 included in this package)
o C++ compiler with support for C++11 standard
« DRAMSIM?2 library binary
« Ramulator library binary
« NVDIMMSim library binary

5) Datasets: The package includes application models and
machine configurations for experiments.

C. Installation

The instructions for compiling the dependency libraries and
the software are presented as follows.
1) Compile DRAMSiIm2 simulator into binary libdram-
sim.a and then update the variable DRAMSIM_ROOT
in Makefile.

clone https :// github.com/umd—memsys/
DRAMSIm2. git
make libdramsim.a

git

2) Compile Ramulator simulator into binary libramulator.a
and then update the variable RAMULATOR_ROOT in
Makefile.

clone https :// github.com/CMU-SAFARI/
ramulator. git
make libramulator.a

git

3) Compile NVDIMMSim simulator into binary libn-
vdsim.a and then update the variable NVDIMM-
SIM_ROOT in Makefile.

clone https :// github.com/
jimstevens2001 /NVDIMMSim. git
make libnvdsim.a

git

4) Compile the Aspen library (GNU Bison and Autoconf
are required, Python 2.7 is optional) and then update the
variable ASPEN_ROOT in Makefile.

cd aspen

autoconf

./ configure —prefix=YOUR _TARGET PATH
make aspen

5) In the root directory, configure the level of verbose by
changing compilation flags in Makefile. After compiled
successfully, run *make test’ to launch a test suite.

make
make test

D. Experiment workflow

1) Prepare application abstractions. We provide a list of ap-
plication abstractions in /models/applications. For each
application, scale up the problem sizes by changing the
scaling parameters as described in Table II. A script that
automatically generates application abstractions for Fig-
ure 5a and 5b can be found in /scripts/generate_app.sh.
Execute:

cd ./scripts
./ generate_app.sh app_name min_size
max_size [target_folder]

2) Prepare machine models. Figure 4a and 4b sweep a list
of vertical architecture options that are defined in /mod-
els/machines/V_HBM_x_DDR_y.aspen. Figure 6a and
6b sweep a list of horizontal architecture options that are
defined in /models/machines/H_HBM_x_DDR_y.aspen
and H_HBM_x_NVM_y.aspen. A script that automati-
cally sweep architecture options can be found in /script-
s/generate_arch.sh. Execute:



3)

4)

cd ./scripts

./ generate_arch.sh arch_type=V|H device0
size0 [deviceN sizeN] [
target_folder]

Prepare mapping models used in Figure 6a and 6b. We
provide a script to automatically generate all possible
combinations of mapping. The experiments only select
those mappings in Table III to execute. Execute:

cd ./scripts
./ generate_mapping.sh input_app.aspen
input_arch.aspen [target_folder]

Prepare job scripts and then launch sweep tests in batch.
For memory simulations, place memory specification
files in /models/machines/configs and then export to
environment variables DRAMSIM_ROOT, RAMULA-
TOR_ROOT and NVDIMMSIN_ROOT. To expedite ex-
periments, we provide scripts to launch multiple experi-
ments in parallel on Stampede supercomputer at TACC.
To reuse the job script, simply update the lists defined
in applist, machlist, and maplist.

#SBATCH —J sweep
#SBATCH —p skx—normal
#SBATCH —N 1

#SBATCH —n 1

#SBATCH —t 01:00:00

#!/bin/bash
DIR:=${CURDIR}
EXE_DIR=$DIR/ bin
MACH_DIR=$DIR / models /mach
APP_DIR=$DIR/ models/app

declare —a applist=(
»app0”

»appl”

»app2”

)

appnum=${#applist [@]}

declare —a machlist=(
”mach0”
”machl”
”mach2”

)
machnum=$ {#machlist [@]}

declare —a
”mapping0”
”mappingl”
”mapping3”
)

maplist=(

mapnum=${#maplist [@]}

export RAMULATOR ROOT=${MACH DIR }/config
export DRAMSIM_ROOT=${MACH_DIR}/config
export NVDIMNISINI_ROOT=${MACH_D[R}/Config

for (( i=0; i<${appnum}; i++ ))
do
APP=${applist[$i]}

for (( j=0; j<${machnum}; j++ ))
do
MACH=${ machlist[$j]}
for (( k=0; k<${mapnum}; k++ ))
do
MAP=${maplist[$k]}
echo ”"Exec "${APP}” on "${MACH}”
by mapping “$MAP
${EXE_DIR }/main ${APP}.aspen ${
MACH}.aspen ${MAP}.aspen >
output_$ {APP}_${MACH} _${MAP}.
out 2>&l1 &
done
done
wait
done
exit

5) Extract results from the output files and then visualize
the results with MATLAB. The scripts used to generate
the plots can be found in /plots/sweep*.m. A script that
automatically extract the elapsed cycles from execution
can be found in /scripts/generate_result.sh. Execute:

cd ./scripts
./ generate_result.sh

E. Evaluation and expected result

The expected experiment results should include the size of
total allocations, number of operations, the elapsed cycles,
the statistics of each cache levels, and the statistics of each
simulated memory in the system. In addition, the performance
results include the profiled execution time.

FE Experiment customization

The framework can be easily extended to integrate with new
memory simulators by adding two files ar_simulatorNew.h
and ar_simulatorNew.cpp. The new file should implement the
interface that is defined in ar_memsim.h.

G. Notes

More details about installation and configuration can be
found in README.
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