
Performance Evaluation of a Vector Supercomputer
SX-Aurora TSUBASA

Kazuhiko Komatsu
Tohoku University

Sendai, Miyagi 980–8578, Japan
Email: komatsu@tohoku.ac.jp

Shintaro Momose, Yoko Isobe, Osamu Watanabe, Akihiro Musa
Tohoku University, NEC Corporation
Minato-ku, Tokyo 108–8001, Japan

Email: {s-momose@ak, y-isobe@pi, o-watanabe@az, a-musa@bq}.jp.nec.com

Mitsuo Yokokawa
Kobe University

Nada-ku, Kobe 657–8501, Japan
Email: yokokawa@port.kobe-u.ac.jp

Toshikazu Aoyama
NEC Corporation

Minato-ku, Tokyo 108–8001, Japan
Email: t-aoyama@ap.jp.nec.com

Masayuki Sato, Hiroaki Kobayashi
Tohoku University

Sendai, Miyagi 980–8579, Japan
Email: {masa, koba}@tohoku.ac.jp

Abstract—A new SX-Aurora TSUBASA vector supercomputer
has been released, and it features a new system architecture
and a new execution model to achieve high sustained per-
formance, especially for memory-intensive applications. In SX-
Aurora TSUBASA, the vector host (VH) of a standard x86
Linux node is attached to the vector engine (VE) of the newly
developed vector processor. An application is executed on the
VE, and only system calls are offloaded to the VH. This new
execution model can avoid redundant data transfers between
the VH and VE that can easily become a bottleneck in the
conventional execution model. This paper examines the potential
of SX-Aurora TSUBASA. First, the basic performance is clarified
by evaluating benchmark programs. Then, the effectiveness of the
new execution model is examined by using a microbenchmark.
Finally, the potential of SX-Aurora TSUBASA is clarified through
evaluations of practical applications.

I. INTRODUCTION

As supercomputing systems are now widely used in not only
cutting-edge scientific research but also various industries,
supercomputing systems have become important social infras-
tructures. To respond to the computational demands brought on
by the expanded utilization of supercomputing systems, many
advanced techniques are required to ensure high computational
performance.

For example, recent processors and accelerators utilize
many-core technology, which integrates to thousands of cores
on a chip. In addition, vector calculation techniques are
adopted even in scalar processors and accelerators as well as in
vector processors. Thanks to these techniques, the theoretical
computing performance of the world’s fastest supercomputing
system in the TOP 500 list has reached 122.3 Pflop/s in June
2018 [1].

However, as these techniques only enhance computational
capability, there is a gap between theoretical performance and
sustained performance, which is known as the memory wall
problem [2]. Since improving memory performance is more
difficult than improving computational performance, this gap
is growing wider and wider. In other words, only compute-
intensive applications that require high computational perfor-
mance rather than memory performance stand to benefit from

the high theoretical peak performance of recent supercomput-
ing systems. Moreover, memory-intensive applications limited
by the lower memory performance have lower sustained per-
formance. Vector supercomputing systems that are designed
for high memory performance can achieve high sustained
performance even in memory-intensive applications [3][4].

Although vector supercomputing systems have occupied
smaller portions of annual TOP500 lists, which mostly mea-
sures the theoretical peak performance, vector supercomputing
systems do achieve very high sustained performance with
respect to the percentage of peak performance, called effi-
ciency, in the ranking of the HPCG benchmark [5][6][7].
HPCG was developed as a more practical benchmark closer to
the characteristics of practical applications. In the benchmark,
not only computational performance, but also memory and
network performance are important. While the efficiencies
of Intel-based and accelerator-based systems are only a few
percent of the peak performance on the HPCG benchmark,
the SX-ACE vector system, for example, exceeds 10%. The
high memory bandwidth of vector supercomputing systems
brings its high efficiency and high sustained performance.

Against such background where memory performance has
started to gain more and more attention, a new vector super-
computer called SX-Aurora TSUBASA, which has the world’s
highest memory bandwidth, has been released [8][9]. SX-
Aurora TSUBASA is designed to meet two key requirements:
high usability and high sustained performance. To meet these
requirements, SX-Aurora TSUBASA incorporates a new sys-
tem architecture and new memory integration technology.

To achieve high usability, the minimum configuration, i.e., a
node, of SX-Aurora TSUBASA utilizes a system architecture
that consists of a vector engine (VE) equipped with a newly
developed vector processor and a vector host (VH) of a
standard x86 Linux node. Although the system architecture
is similar to those of conventional accelerators, its execution
model is completely different. The VE is responsible for
executing an entire application, while the VH is used for pro-
cessing system calls invoked by the application. Thanks to this

SC18, November 11-16, 2018, Dallas, Texas, USA
978-1-5386-8384-2/18/$31.00 c©2018 IEEE

TABLE I
SPECIFICATIONS OF THREE TYPES OF VE.

VE Frequency Number of SP performance SP performance DP performance DP performance Memory Memory
Type cores of a core of a processor of a core of a processor bandwidth capacity
10A 1.6 GHz 8 614.4 Gflop/s 4915.2 Gflop/s 307.2 Gflop/s 2457.6 Gflop/s 1228.8 GB/s 48 GB
10B 1.4 GHz 8 537.6 Gflop/s 4300.8 Gflop/s 268.8 Gflop/s 2150.4 Gflop/s 1228.8 GB/s 48 GB
10C 1.4 GHz 8 537.6 Gflop/s 4300.8 Gflop/s 268.8 Gflop/s 2150.4 Gflop/s 750.0 GB/s 24 GB

new execution model, the system architecture has two major
advantages over conventional accelerators. The first is that
frequent data transfers between the VE and its corresponding
VH, which tend to easily become a bottleneck in conventional
accelerators, can be avoided, since an application is mainly
executed on the VE. The second advantage is that no special
programming is required. As an application is executed on
the VE, explicit specification of the computational kernel to
be executed on the VE is not necessary at all. In addition,
programmers do not need to take care of the system calls
to be executed on the VH. Generally, system calls in an
application are transparently offloaded to the VH. In this way,
the new execution model of SX-Aurora TSUBASA solves the
problem of the conventional execution model of systems with
accelerators and is able to deliver high usability.

Moreover, to achieve high sustained performance, SX-
Aurora TSUBASA provides the world’s highest memory band-
width by introducing a new memory integration technology.
Taiwan Semiconductor Manufacturing Company Ltd. (TSMC),
Broadcom, and NEC collaborated to develop an advanced high
bandwidth memory (HBM) packaging technology that enables
six HBM2 memory modules to be integrated on the CPU
package of a VE. As a result, it delivers the world’s highest
memory bandwidth, and it enables the multiple vector cores
of the CPU to deliver high sustained performances in practical
applications.

This paper clarifies the potential of the SX-Aurora TSUB-
ASA vector supercomputer. Its performance is examined using
fundamental benchmark programs as well as on practical
application kernels. Then, its new execution model is eval-
uated. In particular, on a microbenchmark including vector-
friendly calculations, scalar-friendly calculations, and system
calls, the performance of the new execution model is compared
with that of the conventional execution model of accelerators.
Next, the performance of SX-Aurora TSUBASA is exam-
ined in practical applications of running tsunami simulation
code and turbulent flow direct numerical simulation (DNS)
code. This paper also analyzes performance bottlenecks by
using different ratios involving the memory bandwidth and
computation throughput. The analysis will be helpful for
identifying bottlenecks and performance tuning. The results
of these evaluations and analyses demonstrate that SX-Aurora
TSUBASA achieves both high sustained performance and high
usability through the new system architecture and its execution
model.

The rest of this paper is organized as follows. Section
II gives an overview of SX-Aurora TSUBASA. The system
architecture of SX-Aurora TSUBASA, the architecture of the
VE, and its new execution model are described. Section III

starts by evaluating the performance of SX-Aurora TSUBASA
by using benchmark programs and kernels. Then, the sustained
memory bandwidth and sustained performance are evaluated.
In Section IV, the new execution model is evaluated by
using a microbenchmark. Section V discusses the sustained
performance of practical applications. Section VI concludes
this paper with a brief summary.

II. OVERVIEW OF SX-AURORA TSUBASA

NEC has been pursuing superior sustained performance,
especially for memory-intensive scientific applications, since
its rollout in 1983 of the SX series with dedicated vector pro-
cessors. As the successor to SX-ACE, SX-Aurora TSUBASA
inherits the design concepts from the SX vector architecture
and improve its performance aiming at higher sustained per-
formance and usability [8]. In particular, it has a new vector
processor and improved efficiency in terms of both power
usage and space. SX-Aurora TSUBASA has one fifth of the
power consumption and takes up just one tenth of the floor
space of the SX-ACE [9].

The system architecture of SX-Aurora TSUBASA is dif-
ferent from its predecessors in the SX series. The system
mainly consists of a VH and one or more VEs. The VH is
a standard x86 Linux server that provides standard operating
system (OS) functions. VE OS is an OS for VEs that runs
on a VH, and controls VEs. Each VE is implemented as a
PCI Express (PCIe) card equipped with the newly developed
vector processor, and it is connected to the VH. Three types
of VE (Type 10A, 10B, and 10C) are provided in accordance
with the clock frequency and memory configuration, as shown
in Table I. Type 10A focuses on high arithmetic performance.
Type 10B is a baseline model focusing on memory-intensive
applications. Type 10C is an entry model.

As the system architecture of SX-Aurora TSUBASA mainly
consists of a VE and a number of VHs, it has high level
of flexibility when it comes to configuration. The SX-Aurora
TSUBASA series includes not only a large-scale supercom-
puter, but also a small configuration similar to a personal
computer. There are three product series: A100 series, A300
series, and A500 series. The A100 series is a workstation
model with one VE per VH; it is the smallest in the SX-Aurora
TSUBASA line up. The A300 series is a standard rack-mount
model with the usual air cooling. Up to eight VEs can be
configured with one VH. The A500 series is designed as a
large-scale supercomputer. Up to eight VEs can be configured
with one VH, and up to eight VHs are implemented per rack
with direct liquid cooling.

HBM2

8 GB

HBM2

8 GB

HBM2

8 GB

HBM2

8 GB

HBM2

8 GB

HBM2

8 GB

L
L

C

L
L

C

Core

307.2 GF

Core

307.2 GF

Core

307.2 GF

Core

307.2 GF

Core

307.2 GF

Core

307.2 GF

Core

307.2 GF

Core

307.2 GF

Fig. 1. Block diagram of a vector processor.

A. Architecture of a Vector Engine

As the characteristics of scientific applications grow more
diverse, sustained performance depends strongly upon not
only the theoretical peak computing performance of a system
but also its memory bandwidth. The design target of the
VE processor is high sustained performance for applications
limited by memory performance through provision of a high
memory bandwidth at a reasonable power efficiency. Thus,
six HBM2 modules are connected to the processor. This is
the first implementation in the world, and NEC developed
the implementation in collaboration with TSMC, Ltd., and
Broadcom Inc. by using TSMC’s chip on wafer on substrate
(CoWoS) technology [10]. Thanks to the availability of such a
cutting-edge technology, the processor currently provides the
world’s highest memory bandwidth, 1.22 TB/s per processor.

Figure 1 shows a block diagram of the VE processor. It
consists of eight powerful vector cores, a 16 MB last-level
cache (LLC), and six HBM2 memory modules. Each core
provides 307.2 Gflop/s for double-precision (DP) and 614.4
Gflop/s for single-precision (SP) floating-point calculations.
Overall, each VE processor having eight cores provides up to
2.45 Tflop/s (DP) and 4.91 Tflop/s (SP) worth of floating-point
performance. The LLC is on both sides of the cores, and it
is connected to each core through a two-dimensional network
with a total cache bandwidth of 3 TB/s.

This processor is manufactured with 16-nm FINFET process
technology. Approximately 4.8 billion transistors are inte-
grated into the LSI, which has an area of 14.96 mm by 33.00
mm and runs at up to 1.6 GHz.

Figure 2 illustrates a single core and its registers, cache,
and memory hierarchy. The core consists of three major
units: a scalar processing unit (SPU), a vector processing
unit (VPU), and a memory addressing vector control and
processor network unit (AVP). The SPU works as a core
controller. It is tightly coupled with both the VPU and the
AVP. Although OS functions are provided by the VH in SX-
Aurora TSUBASA, each core of the VE processor has almost
the same functionality as a modern processor. Its functions
include instruction fetch, decode and execution, instruction
branch, detection of exception, memory protection, and so on.
Most of these functions are supported by the SPU.

One of the advantages of this architecture is the VPU
organization. The VPU has three vector fused multiply add

AVP SPU
Scalar Processing Unit

LLC
 (1

6M
B
)

M
em

or
y

(4
8G

B
)

1.22TB/s / processor

(Ave. 150GB/s / core)
400GB/s / core

Single core

VFMA0
VFMA0
VFMA0VVVFFFMMMAAA000

VFMA0

VFMA0
V
VV
FM
VVFMFM

A
MMA
0
AA

VVVVFMFFFMMMAAAA0000

VFMA0

VFMA0
V
VV
FM
VVFMFM

A
MMAAA

VVVVFMFFFMMMAAAA0000

VFMA0

VFMA0
V
VV
FM
VVFMFM

A
MMAAA

VVVVFMFFFMMMAAAA0000

VFMA0

VFMA0
V
VV
FM
VVFMFM

A
MMAAA

VVVVVFFMMFFFMMMAAAAA00000
VVVV
VVVV
FF
VVVVFFMMFFMM

AA
MMMMAAAAAA

VFMA0

AAA000AAAMMMVVV
VVVV
VVVV
FFMM
VVVVFFFMMMFM

AA
MMMMAAA
00
AAAA

VVVVVVVVFMFFFMMMAAAA0000
VVVV
VVVV
F
VVFMFM

A
MMAAA

VFMA0

V MA0
VVVVV
VVVV
FM
VVFMFM

A
MMA
0
AA

VVVVVVVVVVVVVVVVVVVVFMFFFMMMAAAA0000

VFMA0

VVVVVFMA0
VVVVV
VVVV
FFFMF
VVVVVVVVFMFM

A
MMA
0
AA

VVVVVVVVVVVVVVVVVVVVFFFMFFFFFFFFFFMMMFFF AAAA0000

VFMA0

VVVVVFFFMF A0
VVVV
VV
FFFMMMMF
VVVVVVVVFFFFFMFMFF

A
MMA
0
AA

VVVVVVVVVVVVVVVVFFFMMMMFFFFFFFFFFMMMMMMMMMMMMFFF AAAA0000

VFMA0

VVVVFFFMMMMF A0
VVVVV
VVVV
FFFMMMMMMF
VVVVVVFFFFFMMMMMFF

AA
MMMA
0
AA

VVVVVVVVVVVVVVVVVVVVFFFMMMMMMFFFFFFFFFFMMMMMMMMMMMMMMMMMMFFF AAAAAAAA0000

VFMA0

VVVVVFFFMMMMMMF AA0
VVVV
VV
FFFMMMMMMF
VVVVVVVVFFFFFMMMMMFF

AAAAA
MMMMMAA
0
AA

VVVVVVVVVVVVVVVVFFFMMMMMMFFFFFFFFFFMMMMMMMMMMMMMMMMMMFFF AAAAAAAAAAAAAAAAAAAA0000

VFMA0

VVVVFFFMMMMMMF AAAAA0
VVVV
VV
FFFMMMMMMFF
VVVVVVVVFFFFFMFMMMMMFF

AAAAA
MMMMMMAA
000
AAAAAA

VVVVVVVVVVVVVVVVFFFMMMMMMFFFFFFFFFFFMMMMMMMMMMMMMMMMMMFFFFFF AAAAAAAAAAAAAAAAAAAA000000000000

VFMA0

VVVVFFFMMMMMMFF AAAAA000
VVVV
VV
FFFMMMMMMFF
VVVVVVVVFFFFFMFMMMMMFFFF

AAAA
MMMMMMA
000
AAAAA

VVVVVVVVVVVVVVVVFFFMMMMMMFMFFFFFFFFFFMMMMMMMMMMMMMMMMMMFFFMMMFFF AAAAAAAAAAAAAAAA000000000000

VFMA0

VVVVFFFMMMMMMFMF AAAA000
VVVV
VV
FFFMMMMMMF
VVVVVVFFFFFMMMMMFMFF

AAAAA
MMMMMAA
000
AAAAAA

VVVVVVVVVVVVVVVVFFFMMMMMMFFFFFFFFFFMMMMMMMMMMMMMMMMMMFFF AAAAAAAAAAAAAAAAAAAA000000000000

VFMA0

VVVVFFFMMMMMMF AAAAA000
VVVV
VV
FMF
VVVVVVVVFFFFFMFMMMMMFF

A
MMMMMAAAAAAAA

VVVVVVVVVVVVVVVVFFFMMMMMMFFFFFFFFFFFMMMMMMMMMMMMMMMMMMFFFFFF AAAAAAAAAAAAAAAAAAAA000000000000

VFMA0

VVVVFFFMMMMMMFF AAAAA000
VVVV
VV
F
VVVVVVVVFFFFFMFMMMMMFFFF

A
MMMMMMAAAAAA

VVVVVVVVVVVVVVVVFFFMMMMMMFMFFFFFFFFFFMMMMMMMMMMMMMMMMMMFFFMMMFFF AAAAAAAAAAAAAAAA000000000000

VFMA0

VVVVFFFMMMMMMFMF AAAA000
VVVV
VV
F
VVVVVVFFFFFMFMMMMMFMFF

A
MMMMMAAAAAAAA

VVVVVVVVVVVVVVVVVVFFFMMMMMMMFMFFFFFFFFFMMMMMMMMMMMMMMMMMMFFFMMMAAAAAAAAAAAAAAAAAAAAAAA000000000000000
VVVVVVVV
VVVVVVVV
FFFF
VVVVVVVVVVVVFFFFFFFFMMMMMMMMMMMFFMM

AA
MMMMMMMMMAAAAAAAAAAAA

VFMA0

AAAAAA000000000AAAMMMVVV
VVVVVVVVVV
VVVVVVVVV
FFFFFFMMMMMMMMMMMMFF
VVVVVVVVVVVVFFFFFFFFFFFMMMMMMMMMMMMFFFMMF

AAAAAAAAAA
MMMMMMMMMMMMMAAAAAA
000000
AAAAAAAAAAAA

VVVVVVVVVVVVVVVVVVVVFFFMMMMMMFFFFFFFFFFMMMMMMMMMMMMMMMMMMFFF AAAAAAAAAAAAAAAAAAAA000000000000
VVVV
VVVV
F
VVVVVVVVFFFFFMMMMMMFF

A
MMMMMAAAAAA

VFMA0

V MAAAA000
VVVVV
VVVV
FFFMMMMMMF
VVVVVVVVFFFFFMFMMMMMFF

AAAA
MMMMMMA
000
AAAAAA

VVVVVVVVVVVVVVVVVVVVFFFMMMMMMFFFFFFFFFFMMMMMMMMMMMMMMMMMMFFF AAAAAAAAAAAAAAAA000000000000

VFMA0

VVVVVFFFMMMMMMF AAAA000
VVVVV
VVVV
FFFMMMMMMF
VVVVVVVVFFFFFMFMMMMMFF

AAAA
MMMMMA
000
AAAAAA

VVVVVVVVVVVVVVVVVVVVFFFMMMMMMFFFFFFFFFFMMMMMMMMMMMMMMMMMMFFF AAAAAAAAAAAAAAAA000000000000

VFMA0

VVVVVFFFMMMMMMF AAAA000
VVVV
VV
FFFMMMMMMF
VVVVVVVVFFFFFMMMMMFF

AAAAA
MMMMMAA
000
AAAAAA

VVVVVVVVVVVVVVVVFFFMMMMMMFFFFFFFFFFMMMMMMMMMMMMMMMMMMFFF AAAAAAAAAAAAAAAAAAAA000000000000

VFMA0

VVVVFFFMMMMMMF AAAAA000
VVVVV
VVVV
FFFFMMMMMF
VVVVVVFFFFFMMMMMFF

AAAAA
MMMMMMAA
000
AAAAAA

VVVVVVVVVVVVVVVVVVVVFFFMFMMMMMFFFFFFFFFFMMMFFFMMMMMMMMMMMMMMMFFF AAAAAAAAAAAAAAAAAAAA000000000000

VFMA0

VVVVVFFFMFMMMMMF AAAAA000
VVVVV
VVVV
FFFMMMMMMF
VVVVVVVVFFFFFMFMFMMMFF

AAAAA
MMMMMMAA
000
AAAAA

VVVVVVVVVVVVVVVVVVVVFFFMMMMMMFFFFFFFFFFMMMMMMMMMMMMMMMMMMFFF AAAAAAAAAAAAAAAAAAAA000000000000

VFMA0

VVVVVFFFMMMMMMF AAAAA000
VVVV
VV
FFFMMMMMMF
VVVVVVVVFFFFFMMMMMFF

AAAAA
MMMMMMAA
0000
AAAAAA

VVVVVVVVVVVVVVVVFFFMMMMMMFFFFFFFFFFMMMMMMMMMMMMMMMMMMFFF AAAAAAAAAAAAAAAAAAAA0000000000000000

VFMA0

VVVVFFFMMMMMMF AAAAA0000
VVVVV
VVVV
FFFMMMMMMF
VVVVVVFFFFFMMMMMFF

AAAAA
MMMMMAA
000
AAAAA

VVVVVVVVVVVVVVVVVVVVFFFMMMMMMFFFFFFFFFFMMMMMMMMMMMMMMMMMMFFF AAAAAAAAAAAAAAAAAAAA000000000000

VFMA0

VVVVVFFFMMMMMMF AAAAA000
VVVV
VVVV
FM
VVVVVVVVFFFFFMMMMMFF

A
MMMMMMAAAAAAA

VVVVVVVVVVVVVVVVVVVVFFFMMMMMMFFFFFFFFFFMMMMMMMMMMMMMMMMMMFFF AAAAAAAAAAAAAAAAAAAA000000000000

VFMA0

VVVVVFFFMMMMMMF AAAAA000
VVVVV
VV
FM
VVVVVVVVFFFFFMFMMMMMFF

A
MMMMMMAAAAAAAA

VVVVVVVVVVVVVVVVVVVVFFFMMMMMMFFFFFFFFFFMMMMMMMMMMMMMMMMMMFFF AAAAAAAAAAAAAAAAAAAA0000000000000000

VFMA0

VVVVVFFFMMMMMMF AAAAA0000
VVVV
VVVV
FMF
VVVVVVVVFFFFFMMMMMFF

A
MMMMMMAAAAAAAA

VVVVVVVVVVVVVVVVVVVVFFFFMMMMMMFFFFFFFFFFFFFMMMMMMMMMMMMMMMMMMFFF AAAAAAAAAAAAAAAAAAAA0000000000000000

VFMA0

VVVVVFFFFMMMMMMF AAAAA0000
VVVV
VVVV
FM
VVVVVVVVFFFFFFFMMMMMFF

A
MMMMMMAAAAAAA

VVVVVVVVVVVVVVVVVVVVFFFMMMMMMMFFFFFFFFFFMMMMMMMMMMMMMMMMMMMMMFFF AAAAAAAAAAAAAAAAAAAA000000000000

VFMA0

VFMA1

VFMA2

ALU0

ALU1

DIV

VVVVVFFFMMMMMMMF AAAAA000
VVVVVVVVVVVV
VV
FFFFFFFFFMMMMMMMMMMMMMMMMMMMMMFFF
VVVVVVVVFFFFFMFMMMMMMMFF

AAAAAAAAAAAAAAA
MMMMMMAA
000000000000
AAAAAA

VVVVVVVVVVVVVVVFFFFFFFFFFFFMMMMMMMMMMMMMMMMMMMMMMMMMMMMFFFF AAAAAAAAAAAAAAAAAAAA0000000000000000VVVVVVVVVVVVVVVVVVVVVVVVVVFFFMMMMMMMMMFFFFFFFFFFFFFFFFMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMFFFFF AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA00000000000000000000000000000000
VVVVVVVVVVVV
VVVVV
FFFMMMMMMFMFFFFFMMMMMMMFFF
VVVVVVVVVVVVVVVVVVVVFFFFFFFFFFFFFMMMMMMMMMMMMMMMFFFFF

AAAAAAAAAAA
MMMMMMMMMMMMMMMMMMAAA
000000
AAAAAAAAAAAAA

VVVVFFFMMMMMMFMF AAAAA111

VVVVFFFMMMMMMMMMFMF AAAAAAA222

AAAAAAAAAALLLLUUUU00000

AAAALLLLUUUU111111

DIDIDIVVV

VFMA0

VFMA1

VFMA2

ALU0

ALU1

DIV

Vec
to

r r
eg

is
te

r,
25

6e
 x

 6
4

(1
28

kB
)

Vec
to

r P
ip

el
in

e
x

32

V
PU

 (V
ec

to
r P

ro
ce

ss
in

g
U

ni
t)

Fig. 2. Detail of a core in the VE processor.

(VFMA) units, which can be independently operated by dif-
ferent vector instructions. Each VFMA unit has 32 vector
pipelines (VPP). The vector length (VL) of this architecture
is 256 elements, each of which is 8 B. Therefore, one vector
instruction executes 256 arithmetic operations with eight clock
cycles. Unlike a wider SIMD implementation in major scalar
processors, executing operations in not only spatially parallel,
but also temporally parallel can hide memory access latency.

As shown in Figure 2, the number of vector registers is
64. The size of each vector register is 2 KB, because 256×
8B elements that is the same as the VL are held in a vector
register. Therefore, the total size of the vector registers is
128 KB per core. This capacity is larger than a L1 cache
implemented in modern scalar processors. The LLC is directly
connected to the vector register, and the connection has a
400 GB/s bandwidth. Because of the high bandwidth design
between memory and each core, three or four cores can use
the entire memory bandwidth of this processor. This is a one
of the features to accelerate memory-intensive applications.

The VE processor package is implemented on a PCIe card
with a Gen3 ×16 connection. The card is designed so that the
power consumption does not exceed 300 W.

B. Execution Model of SX-Aurora TSUBASA

The VE is entirely responsible for executing applications,
while the VH provides OS functions such as process schedul-
ing and handling of system calls invoked by the application
running on a VE. Unlike a conventional accelerator, the one
used by SX-Aurora TSUBASA does not require frequent
data transfers between the VE and its VH. Furthermore,
programmers do not need to care about interactions between
the VH and VE, because they are handled transparently by
system calls forwarded to a VH.

Figure 3 shows the software stack. The design and imple-
mentation of the VE OS were inspired by prior HPC operating
systems for heterogeneous systems [11][12]. In these systems,
system calls made by an application process are offloaded to
their corresponding pseudo processes on another Linux host
or core. In contrast, in the SX-Aurora TSUBASA, there is
no OS kernel on a VE. Instead, VE OS modules on the VH
provide the OS functionality for the VE. The VE OS modules
consist of the ve exec command and the VE OS service. The
ve exec loads a VE program, requests permission to create

VH

Linux

VE driver module

ve_exec
command

VE OS
service

VE

OS less

VE libc

VE applications

Hardware

Kernel

Userland

VE OS modules

Fig. 3. Software stack of SX-Aurora TSUBASA.

a VE process, and serves the system calls and exceptions of
the VE process. The VE driver installed in the VH Linux
kernel space is a PCI device driver that provides VE resource
accessibility and handles interrupts from the VEs.

A C library (libc) compliant with standards (e.g., ISO
C99, C11, and POSIX including pthread) is ported to a
VE. Application programs for the VE can use the standard
libc. Therefore, programmers can write application programs
in standard programming languages such as C, C++, and
Fortran without having to use special programming models.
SX-Aurora TSUBASA does not require codes of existing
application programs to be ported as the only thing that needs
to be performed is recompile.

To execute a VE program, users invoke ve exec with a
program path and its arguments. ve exec traverses the header
of an executable and linkable format (ELF) and the program
header; then it reads each segment of the program into the
buffer on ve exec. Next, ve exec requests the VE OS service
to create a VE process and to send the segments to the VE
process memory. At the same time, ve exec creates an alter-
native process on the VH, called a pseudo process. Basically,
a virtual address space of a VE process is homologized to that
of a pseudo process. Whenever any memory manipulation is
requested, the pseudo process first allocates a page on the
virtual address space and then requests the VE OS service
to allocate a page on the physical address space on the VE.
Each VE core has an address translation buffer to handle
virtual address translation and protection. The VE OS service
appropriately sets the page table entry to the buffer.

Handling exceptions on the VE process involves some
overhead compared with a traditional system call, since a
system call, which is a kind of exception, is executed in the
VH through the PCI bus. Since a PCI read is much slower
than a PCI write from a latency point of view, PCI reads
should be avoided during system calls in order to minimize
overhead. Thus, a special hardware instruction called the
store host memory (SHM) instruction is implemented. The
VE process writes the ID of a system call and its arguments
on the corresponding pseudo process memory by using the
SHM instruction. Then, it invokes a monitor call (MONC)
instruction, which stops the VE core and sends an interrupt
to the VH. Then, the interrupt handler of the VE driver
wakes up the pseudo process corresponding to the VE process.
The pseudo process determines the cause of the exception.
If it is caused by an illegal operation, the pseudo process
sends an appropriate signal to itself and aborts both the VE

process and the pseudo process. If the cause is the MONC
instruction, the pseudo process determines which system call
has been requested by reading the memory written by the VE
process. Then, the pseudo process handles the system call and
returns the result to the VE process. In the case that a socket
connecting the VE card is different from the one executing
the VE OS service, system calls require additional overhead
due to inter-socket communication. However, this overhead
is negligible, because the latency between sockets is much
smaller than that of the PCI bus.

III. PERFORMANCE EVALUATION OF SX-AURORA
TSUBASA USING BENCHMARK PROGRAMS

This section describes the performance of a node of the
new vector supercomputer through evaluations of fundamental
benchmark programs and application kernels. The analysis
uses four different ratios involving the number of floating point
operations to the amount of data, known as the bytes per flop
(B/F) ratio: memory B/F, LLC B/F, code B/F, and actual B/F.
The memory B/F ratio is defined as the memory bandwidth of
the system divided by the theoretical computing performance.
The LLC B/F ratio is defined as the LLC bandwidth of the
system divided by the theoretical computing performance. The
code B/F ratio is defined as the necessary data in bytes divided
by the floating operations in a code. The code B/F ratios are
computed by counting the number of memory operations and
floating-point operations in an object code. The actual B/F
ratio is calculated from the number of block memory accesses
and actual floating-point operations that can be obtained only
from the profile data [4]. The actual B/F ratio reflects the
actual behavior of the system.

A. Experimental Environments

An A300-2 was used for the evaluation of one VE, while
an A300-8 was used for the evaluation of multiple VEs. The
specifications of the VEs (Type 10B) are listed in Table II.
As the frequency of the VE is 1.40 GHz, the theoretical
computing performance of its eight vector cores is 2.15 Tflop/s
in terms of DP floating-point operations. The six HBM2
memories in each VE provide a 1.22 TB/s memory bandwidth.
Each VE is equipped with a 16 MB LLC with a 2.66 TB/s
cache bandwidth. The memory B/F and LLC B/F ratios are
1.22TB/s

2.15Tflop/s = 0.57 and 2.66TB/s
2.15Tflop/s = 1.24, respectively.

The VH of SX-Aurora TSUBASA is an Intel Xeon proces-
sor of the Skylake generation. As listed in Table II, the Intel
Xeon Gold 6126 has a theoretical computing performance of
998.4 Gflop/s in DP floating-point operations. The VH is also
equipped with six DDR4 DRAMs with a 128 GB/s memory
bandwidth. The memory B/F of the VH is 0.13.

Table III lists the software environment of SX-Aurora
TSUBASA. NEC compilers are used for generating object
code for the VEs. The compilers basically apply vectorization
to parallelisms of the innermost loop. If a vector is not long
enough, the compilers try to enlarge the vector by collapsing
the outer loops.

TABLE II
SPECIFICATIONS OF PROCESSORS USED IN THE EVALUATIONS.

Processor Vector Engine Type 10B Intel Xeon Gold 6126 SX-ACE
Frequency 1.40 GHz 2.60 GHz 1.0 GHz

Performance / core 537.6 Gflop/s (SP) 166.4 Gflop/s (SP) 64.0 Gflop/s (SP/DP)268.8 Gflop/s (DP) 83.2 Gflop/s (DP)
Number of cores 8 12 4

Performance / socket 4.30 Tflop/s (SP) 1996.8 Gflop/s (SP) 256 Gflop/s (SP/DP)2.15 Tflop/s (DP) 998.4 Gflop/s (DP)
Memory subsystem HBM2 × 6 modules DDR4-2666 DIMM × 6 channels DDR3-2000 DIMM × 16 channels
Memory bandwidth 1.22 TB/s 128 GB/s 256 GB/s
Memory capacity 48 GB 96 GB 64 GB
LLC bandwidth 2.66 TB/s N/A 1.0 TB/s
LLC capacity 16 MB shared 19.25 MB shared 1 MB private

Processor NVIDIA Tesla V100 Intel Xeon Phi 7290 Intel Xeon Phi 7210
Frequency 1.245 GHz 1.50 GHz 1.30 GHz

Performance / core 27.343 Gflop/s (SP) 96 Gflop/s (SP) 83.2 Gflop/s (SP)
13.671 Gflop/s (DP) 48 Gflop/s (DP) 41.6 Gflop/s (DP)

Number of cores 5120 72 64

Performance / socket 14 Tflop/s (SP) 6.912 Tflop/s (SP) 5.324 Tflop/s (SP)
7 Tflop/s (DP) 3.456 Tflop/s (DP) 2.662 Tflop/s (DP)

Memory subsystem HBM2 MCDRAM + DDR4-2400 × 6 channels MCDRAM + DDR4-2133 × 6 channels
Memory bandwidth 900 GB/s N/A (MCDRAM), 115.2 GB/s(DDR) N/A(MCDRAM), 102 GB/s(DDR)
Memory capacity 16 GB 16 GB(MCDRAM), 96GB(DDR) 16 GB(MCDRAM), 96GB(DDR)
LLC bandwidth N/A N/A N/A
LLC capacity L2 6 MB shared, L1 128 KB private 1 MB shared by two cores 1 MB shared by two cores

TABLE III
SOFTWARE ENVIRONMENTS OF SX-AURORA TSUBASA.

Operating System CentOS Linux release 7.3.1611
NEC Fortran compiler for Vector Engine nec-nfort 1.3.0
NEC C/C++ compiler for Vector Engine nec-nc++ 1.3.0

NEC VE OS veos 1.2.1
NEC MPI NEC MPI Version 1.1.1

Intel compiler 18.0.2 20180210

Table II also lists the specifications of the previous SX-
ACE for performance comparison. SX-ACE has a theoretical
computing performance of 256 Gflop/s with a 256 GB/s
memory bandwidth. Each of the four vector cores in one
SX-ACE node has a 1 MB assignable data buffer (ADB)
with a 1 TB/s bandwidth between the core and the ADB.
The memory B/F ratio is 1.00. Furthermore, the table also
lists the specifications of the NVIDIA Tesla V100 and Intel
Xeon Phi (KNL) 7290 and 7210. In particular, the theoretical
computing performances of V100, KNL 7290, and KNL 7210
in DP operations are 7 Tflop/s, 3.456 Tflop/s, and 2.662
Tflop/s, respectively. The V100 provides a 900 GB/s memory
bandwidth by HBM2, and its memory B/F is 0.13. The KNL
7290 and KNL 7210 have MCDRAM that provides a memory
bandwidth of more than 450 GB/s.

Matrix-matrix multiplication, the Stream benchmark [19],
and the Himeno benchmark [20] were used to evaluate the
performance of the SX-Aurora TSUBASA node. Furthermore,
as a more practical evaluation of performance, kernels of actual
applications that were run on the supercomputing systems at
Tohoku University [3] were used. Table IV gives an overview
of the six kernels including their methods, memory access
patterns, mesh sizes, and code B/F ratios. As the kernels
include a wide variety of code B/F ratios, they are suitable
for the evaluating supercomputing systems.

B. Performance of Benchmark Programs

Figure 4 shows the sustained performance of SP and DP
matrix-matrix multiplications (SGEMM and DGEMM, respec-
tively). SGEMM and DGEMM can be used as measures of the
efficiency of the theoretical computing performance. The x-
axis indicates the number of threads. The left y-axis indicates
the sustained performance, and the right axis shows efficiency
as a percentage of peak theoretical performance.

As shown in the figure, the sustained performances for
SGEMM and DGEMM are almost the same as the theoretical
peak performances in all threads. As the number of threads
increases, almost ideal core scalability is realized. This is
because the computational performance of the SX-Aurora
TSUBASA can be fully exploited, and this results in very
high efficiencies of 97.8% to 99.2%.

Figure 5 shows the sustained bandwidths of SX-Aurora
TSUBASA, SX-ACE, and Skylake on Triad in the Stream
benchmark. The x-axis indicates the number of threads. The
y-axis indicates the stream memory bandwidth. The maximum
number of threads is limited by the number of cores integrated
in each processor. The array size in the Stream benchmark was
selected to be sufficiently larger than the cache size.

As shown in the figure, SX-Aurora TSUBASA achieves a
995 GB/s stream memory bandwidth at maximum, while SX-
ACE and Skylake achieve 211 GB/s and 85 GB/s, respectively.
In addition, the stream bandwidths of V100 and KNL 7290
were measured. V100 and KNL 7290 achieves 727 GB/s and
446 GB/s, respectively. The stream bandwidth of the SX-
Aurora TSUBASA is thus 4.72, 11.7, 1.37, and 2.23 times
higher than those of SX-ACE, Skylake, V100, and KNL 7290,
respectively. The high memory I/F to six HBM2 modules
and its new implementation technology contribute to high
sustained memory bandwidth.

Moreover, the efficiency as a percentage of the theoretical
memory bandwidth of the SX-Aurora TSUBASA, SX-ACE,

TABLE IV
OVERVIEW OF TOHOKU UNIVERSITY KERNELS.

Applications Fields Methods Memory access characteristics Mesh size Code B/F Actual B/F
Land mine [13] Electromagnetic FDTD Sequential memory access 100 × 750 × 750 6.22 5.79
Earthquake [14] Seismology Friction Law Sequential memory access 2047 × 2047 × 256 6.00 2.00

Turbulent flow [15] CFD Navier-Stokes equation Sequential memory access 512 × 16384 × 512 1.91 0.35
Antenna [16] Electromagnetic FDTD Sequential memory access 252755 × 9 × 97336 1.73 0.98
Plasma [17] Physics Lax-Wendroff Indirect memory access 20,048,000 3.02 0.075
Turbine [18] CFD LU-SGS method Indirect memory access 480 × 80 × 80 × 10 0.77 0.0086

0

20

40

60

80

100

0

1000

2000

3000

4000

5000

1 2 3 4 5 6 7 8
E

ff
ic

ie
n
cy

 (
%

)

G
E

M
M

 p
er

fo
rm

an
ce

 (
G

fl
o

p
/s

)

Number of threads

DGEMM Gflop/s SGEMM Gflop/s
DGEMM efficiency SGEMM efficiency

Fig. 4. Performance of GEMM.

0

200

400

600

800

1000

1200

1400

0 2 4 6 8 10 12

S
tr

ea
m

 b
an

d
w

id
th

 (
G

B
/s

)
Number of threads

SX-Aurora TSUBASA SX-ACE Skylake

Fig. 5. Performance of the Stream benchmark.

0

2000

4000

6000

8000

10000

1 2 3 4 5 6 7 8

S
tr

e
a
m

 b
a
n
d
w

id
th

 (
G

B
/s

)

Number of VEs

Aurora Ideal

Fig. 6. VE-level scalability of the Stream bench-
mark.

0

40

80

120

160

200

240

280

320

0 2 4 6 8 10 12

H
im

en
o

 p
er

fo
rm

an
ce

 (
G

fl
o

p
/s

)

Number of threads

SX-Aurora TSUBASA SX-ACE Skylake

Fig. 7. Socket performance of Himeno.

0

400

800

1200

1600

2000

2400

1 2 3 4 5 6 7 8

H
im

en
o

 p
er

fo
rm

an
ce

 (
G

fl
o

p
/s

)

Number of VEs

Aurora Ideal

Fig. 8. Scalability of Himeno using multiple VEs.

0

10

20

30

40

50

60

70

80

Land mine Earthquake Turbulent
flow

Antenna Plasma Turbine

E
x

ec
u

ti
o

n
 t

im
e

(s
ec

) SX-Aurora TSUBASA SX-ACE Skylake

Fig. 9. Execution time of Tohoku University kernels.

Skylake, and V100 are 79%, 83%, 66%, and 81%, respectively.
The vector supercomputers are more efficient than Skylake.
Having a design that strongly focuses on memory performance
is one of the factors contributing to the high sustained memory
performance of the vector supercomputers.

Figure 6 shows the VE-level scalability of SX-Aurora
TSUBASA. The x-axis indicates the number of VEs. The
y-axis indicates the stream memory bandwidth. The stream
bandwidth was measured by using the MPI version in the
Stream benchmark. This figure shows good VE-level scala-
bility according to the number of VEs. As the number of VEs
increases, the aggregated memory bandwidth increases.

Figure 7 shows the performance on the Himeno benchmark
with the XL data size of 1024 × 512 × 512. The x-axis
indicates the number of threads. The y-axis indicates the per-
formance. The Himeno benchmark measures the performance
of solving the Poisson equation by using the Jacobi iteration
method. In this benchmark, 19-point stencil-like accesses to
the array p and accesses to the coefficient and work arrays
a, b, c, bnd, wrk1, and wrk2, are necessary for each loop
iteration.

As shown in the figure, SX-Aurora TSUBASA outperforms
SX-ACE and Skylake. In the case of the maximum number
of threads, SX-Aurora TSUBASA achieves 3.4 and 7.96
times higher Himeno performance than SX-ACE and Skylake,
respectively. Moreover, the Himeno performances of V100
and KNL 7290 were measured. V100 and KNL 7290 achieve
305 Gflop/s and 137 Gflop/s, respectively. As the perfor-
mance of SX-Aurora TSUBASA is 286 Gflop/s, SX-Aurora

TSUBASA achieves 0.93 and 2.1 faster than V100 and KNL
7290, respectively. Although the peak performance of V100
is 3.26 times higher than that of SX-Aurora TSUBASA, SX-
Aurora TSUBASA achieves almost the same performance of
V100. The high memory bandwidth of SX-Aurora TSUBASA
contributes the high sustained performance since the code B/F
ratio of the Himeno benchmark is 3.73. However, as the stream
bandwidth of SX-Aurora TSUBASA is higher than that of
V100, there might be still room for further improvement of
the performance in the Himeno benchmark.

Figure 8 shows the VE-level scalability of SX-Aurora
TSUBASA on the Himeno benchmark. The x-axis indicates
the number of VEs. The y-axis indicates performance as
measured using the MPI version in the Himeno benchmark.
Here, performance is almost proportional to the number of
VEs for up to four VEs. For four or more VEs, the overhead
of the reduction calculation and the insufficient vector length
adversely affect the VE-level scalability.

Figure 9 shows results for the six kernels of the practical
applications listed in Table IV. The x-axis indicates the six
kernels in descending order of the code B/F ratio. The y-
axis indicates the execution time. As shown in the figure, SX-
Aurora TSUBASA achieves the shortest execution time on all
six kernels.

To investigate the performance of these kernels in more
detail, actual B/F ratios calculated from the profile data are
utilized in addition to the code B/F ratios obtained from the
object codes of the kernels. For example, when data stored
in LLC are transferred to a processor, the number of memory

1

4

16

64

256

1024

4096

0.125 0.25 0.5 1 2 4 8 16 32 64 128A
tt

ai
n
ab

le
 p

er
fo

rm
an

ce
 (

G
fl

o
p
/s

)

Arithmetic intensity (Flops/Byte)

SX-Aurora TSUBASA SX-ACE

Land
mine

Turbulent flow

Turbulent flow

Plasma

Turbine

Land
mine

Antenna Plasma
Turbine

Earthquake
Antenna

Earthquake

Fig. 10. Analysis of Tohoku University kernels by using the roofline model.

accesses decreases. In this way, the actual B/F ratio calculated
from the number of actual memory accesses can take into
account the actual behavior of LLC.

As listed in Table IV, the actual B/F ratios of SX-Aurora
TSUBASA for Land mine, Earthquake, Plasma, Turbulent
flow, Antenna, and Turbine are 5.79, 2.00, 0.075, 0.35, 0.98,
and 0.0086, respectively. All actual B/F ratios are lower than
the corresponding code B/F ratios. This relative reduction
implies that the LLC of SX-Aurora TSUBASA helps to reduce
the number of memory accesses.

Figure 10 shows the roofline model. The x-axis indicates
the arithmetic intensity. The y-axis indicates the attainable
performance. The red and blue plots indicate the sustained
performance and arithmetic intensities determined from the
actual B/F ratios of the kernels on SX-Aurora TSUBASA
and SX-ACE, respectively. The sustained performances of
SX-Aurora TSUBASA are higher than those of SX-ACE
for all kernels because of its improved computational and
memory performance. The arithmetic intensity of SX-Aurora
TSUBASA for the Antenna kernel is to left of that of SX-
ACE. This result is due to the efficient use of the shared LLC.
The arithmetic intensity of SX-Aurora TSUBASA for Plasma
kernel is to right, since divisions in SX-Aurora TSUBASA
are calculated by reciprocal approximation, the arithmetic
intensity increases.

By comparing the four B/F ratios, the bottlenecks of the
kernels can further be analyzed. Table V classifies the bottle-
necks in terms of the B/F ratios. Note that other factors such
as memory latency are not considered in the analysis, although
they may be needed if the kernel to be analyzed is one that
dominates indirect memory accesses.

When the code B/F ratio is lower than the LLC B/F ratio
and the actual B/F ratio is lower than the memory B/F ratio,
the numbers of data requests to the LLC and memory are low.
In other words, when computing demand for arithmetic units
is high, the kernel is considered computation-bound.

Similarly, when the code B/F ratio is lower than the LLC
B/F ratio and the actual B/F ratio is higher than the memory
B/F ratio, the number of data requests to memory is high while
that to LLC it is low. In that case, the kernel can be considered
memory-bound.

Furthermore, when the code B/F ratio is higher than the
LLC B/F ratio and the actual B/F ratio is lower than the

TABLE V
BOTTLENECK CANDIDATES ANALYZED USING FOUR DIFFERENT B/F

RATIOS.
B/F ratio Actual < Memory Actual > Memory

Code < LLC Computation-bound Memory-bound
Code > LLC LLC-bound LLC-bound or memory-bound

memory B/F ratio, the number of data requests to LLC is
high, while the number of memory requests is low. In this
case, the LLC bandwidth becomes a bottleneck.

Finally, when the code B/F ratio is higher than the LLC
B/F ratio and the actual B/F ratio is higher than the memory
B/F ratio, the data requests to LLC or memory are high. As
a bottleneck cannot be identified in this case, further analysis
involving comparing the code B/F ratio with the actual B/F
ratio is required.

In the case that

CodeB/F ratio >
LLCBW

MemoryBW
×Actual B/F ratio, (1)

the number of data requests to LLC is higher than that to
memory. Thus, the kernel can be considered LLC-bound.

In the case that

CodeB/F ratio <
LLCBW

MemoryBW
×Actual B/F ratio, (2)

the number of data requests to memory is higher than that to
LLC. Thus, the kernel can be considered memory-bound.

The above analysis enables us to classify the bottlenecks
of kernels whose memory access patterns in SX-Aurora
TSUBASA are sequential. The Earthquake and Turbulent flow
kernels are bound to the LLC bandwidth. The Land mine and
Antenna kernels are bound to the memory bandwidth.

The sustained performances on SX-Aurora TSUBASA for
the Earthquake and Turbulent flow kernels are 4.54 and 3.18
times higher than those on SX-ACE, respectively. As the
ADB bandwidth of SX-ACE is 1 TB/s, the maximum speedup
should be 2.66 if these kernels are memory-bound. Although
these kernels are bound to the LLC bandwidth in SX-Aurora
TSUBASA, they are bound to memory in SX-ACE. This
suggests that the speedup ratios of the SX-Aurora TSUBASA
could be increased by three times or more. The performance
of the Land mine kernel is bound to the memory bandwidth
in both SX-Aurora TSUBASA and SX-ACE.

SX-Aurora TSUBASA dramatically outperforms the SX-
ACE on the Antenna kernel. The profile data indicates that
the number of memory accesses decreases by about 43%
as the number of threads increases. The main reason for
this decrease is that sharing the LLC by all cores in the
VE reduces the number of memory accesses. Moreover, the
Antenna kernel is bound to computations in the case of SX-
ACE, whereas the memory bandwidth is the bottleneck in SX-
Aurora TSUBASA. As a result, SX-Aurora TSUBASA shows
a significant performance improvement over SX-ACE.

The speedup ratios for the Plasma and Turbine kernels that
include indirect memory accesses are 2.68 and 2.85, respec-
tively. In the case of the Turbine kernel, memory latency is the
main performance limitation. In the case of the Plasma kernel,

0

5

10

15

20

25

30

35

40

VE execution VH offload VE offload

E
x
e
c
u
ti

o
n

 t
im

e
 (

se
c
) Data transfer Jacobi 1 I/O Jacobi 2

Fig. 11. Performance comparison of VE offload and VH offload.

the division calculations and memory latency are performance
bottlenecks.

These performance evaluations using the fundamental
benchmark programs demonstrate that SX-Aurora TSUBASA
achieves high performance even with kernels of practical
applications. Although the memory B/F ratio of SX-Aurora
TSUBASA is lower than that of SX-ACE, the average perfor-
mance improvement is a factor of 4.6. These results clearly
indicate the capability of SX-Aurora TSUBASA at accelerat-
ing memory-intensive applications.

IV. EVALUATION OF THE EXECUTION MODEL OF
SX-AURORA TSUBASA

This section evaluates the execution model. In SX-Aurora
TSUBASA, a program is basically executed on the VE. Only
system calls invoked from a program running on the VE are
transparently offloaded to the VH. By utilizing this execution
model, frequent data transfers between the VH and the VE,
which is a bottleneck of the conventional accelerator execution
model, can be avoided. In addition, as data transfers and
kernels to be executed on the VE do not have to be explicitly
specified in a program, existing programs can be ported to
SX-Aurora TSUBASA simply by recompiling them for the
VE.

In order to evaluate this execution model, a microbenchmark
consisting of vector-friendly computations, scalar-friendly
computations for I/O, and system calls was developed. In this
microbenchmark, the Jacobi kernel in the Himeno benchmark
is executed, and the results of the Jacobi kernel are written as
formatted output. The computations for the formatted output,
such as casts, are not suitable for vector processing, but work
fine for scalar processing. The output to a file is a system call.
Finally, the Jacobi kernel is executed again.

The microbenchmark is executed in three ways. In the
first way, it is executed on a VE, and only a system call is
transparently offloaded to the VH; this is called VE execution.
This is the standard way of executing a program on SX-
Aurora TSUBASA. In the second way, called VH offload,
the benchmark is executed on the VE, and scalar-friendly
computations and a system call are explicitly offloaded to the
VH. If programmers know that some parts of a computation
is suitable for scalar processing, they can explicitly offload it
to the VH. In the third way, called VE offload, the benchmark
is executed on the VH, and only the Jacobi kernel is offloaded

to the VE. This execution model is close to the conventional
accelerator execution model.

Figure 11 compares the execution times of the three ways.
The x-axis indicates the execution ways, and the y-axis indi-
cates the execution time, showing breakdowns of the different
parts of the computation. The scalar computations in the VE
execution take longer than the other ways. This is because all
the computations including the scalar-friendly computations
are executed on the VE. In the case of VH offload, as such
scalar computations are explicitly offloaded to the VH, the
formatted output can be executed on the VH. As a result, the
execution time of the microbenchmark is the shortest. SX-
Aurora TSUBASA achieves the highest performance by exe-
cuting vector-friendly computations on the VE and offloading
the scalar-friendly computations appropriately to the VH. VE
offload needs extra overhead for transferring data from the VH
to the VE. As a result, the total execution time becomes longer
than that of VE offload.

This comparison clarifies that the execution model of SX-
Aurora TSUBASA minimizes data transfers between the VH
and VE by executing vector-friendly computations on the
VE and appropriately offloading scalar-friendly computations
and the system call to the VH. Therefore, the execution
model fulfills potential of the SX-Aurora TSUBASA while
maintaining high usability.

V. PERFORMANCE EVALUATION OF SX-AURORA
TSUBASA ON PRACTICAL APPLICATIONS

A. Tsunami Simulation Code

This section evaluates the performance of a tsunami nu-
merical simulation code called TUNAMI (Tohoku Univer-
sity’s Numerical Analysis Model for Investigation of near-field
tsunamis) [21] as a practical application. The TUNAMI code
solves non-linear shallow water equations, and its numerical
scheme uses the staggered leap-frog 2-D finite difference
method. It is a standard method for predicting tsunami inunda-
tions approved by the United Nations Educational, Scientific
and Cultural Organization (UNESCO) [22]. The TUNAMI
code is utilized in a real-time tsunami inundation forecast
system [23][24]. The code plays a key role, and the simulation
needs to be done within five minutes. This system is designed
to help local governments in Japan assess where the possibility
of damage from a tsunami is high. Therefore, besides having
high performance, the system should be small and energy-
efficient.

The TUNAMI code is a vectorizable and parallelizable
program. It has several double-nested loops in the latitude
and longitude directions, and all inner loops are vectorized.
The Fortran compilers of SX-Aurora TSUBASA and SX-ACE
vectorize the inner loops automatically. In contrast, the Intel
compiler does not vectorize any loops, because it incorrectly
estimates that their vectorization would not improve perfor-
mance. Important loops that are closely related to performance
are not vectorized. Thus, the compiler directive vector always
is inserted in these loops so that they will be vectorized
by the Intel compiler. The TUNAMI code is parallelized

0.04 0.21

0.33 0.59

1.0

2.4

1.4
1.8

1.0

3.5

0

5

10

15

20

25

0

1

2

3

4

5

K
N

L
(n

o
n
-v

ec
to

r)

K
N

L
(v

ec
to

r)

S
k
y
la

k
e

(n
o
n
-v

ec
to

r)

S
k
y
la

k
e

(v
ec

to
r)

S
X

-A
C

E

S
X

-A
u
ro

ra
T

S
U

B
A

S
A

K
N

L
(v

ec
to

r)

S
k
y
la

k
e

(v
ec

to
r)

S
X

-A
C

E

S
X

-A
u
ro

ra
T

S
U

B
A

S
A

E
ff

ic
ie

n
cy

 (
%

)

S
p
ee

d
u
p
 r

at
io

 t
o
 S

X
-A

C
E

Efficiency

Fig. 12. Core and socket performance of the TU-
NAMI code.

0

0.5

1

1.5

2

2.5

3

3.5

0 16 32 48 64 80 96 112 128

E
x

ec
u

ti
o

n

ti
m

e
(m

in
)

Number of cores

SX-Aurora TSUBASA SX-ACE Skylake

Target time

Fig. 13. Parallel performance of the TUNAMI code.

0
1
2
3
4
5
6
7
8
9

10

SX-Aurora
TSUBASA

SX-ACE SX-Aurora
TSUBASA

SX-ACE SX-Aurora
TSUBASA

SX-ACE

128 256 512

R
el

at
iv

e
S

p
ee

d
u
p

 1 core 2 cores 4 cores

 8 cores 16 cores 32 cores

Fig. 14. Relative speedup of the DNS code to the
computation time on a core of SX-Aurora TSUB-
ASA for each problem size

using a domain decomposition method with MPI. A 1-D (y-
direction) domain decomposition is used instead of a 2-D (x-
and y-directions) one, because the loops of the x-direction are
vectorized, where long loop lengths need to be kept in order
to determine the performance of vector architectures.

The performances of a single core and a single socket of SX-
Aurora TSUBASA, SX-ACE, Skylake, and KNL 7210 were
compared. The simulation area was of a coastal region of
Japan (1,244 × 826 km) with an 810 m resolution. The code
should be executed within 30 seconds, because the problem
size is one tenth the size of the actual simulation. Figure 12
shows the speedup ratios of the core and socket performance
on KNL 7210, Skylake, and SX-Aurora TSUBASA relative to
that on SX-ACE along with the efficiencies of each system.
The purple and gray bars indicating core performance illustrate
the effectiveness of vector processing for this code. The core
performances of KNL 7210 and Skylake with vectorization
are respectively 5.3 and 1.8 times higher than those without
vectorization. This means that vector processing is an impor-
tant way of obtaining higher performance for the TUNAMI
code.

Regarding the core performances depicted in Figure 12,
the computational efficiency of the SX-Aurora TSUBASA
is higher than those of KNL 7210 and Skylake and about
a quarter that of SX-ACE. Thus, it outperforms KNL 7210,
Skylake, and SX-ACE by 11.4, 4.1 and 2.4 times in terms of
computational efficiency, respectively. Its socket performance
is 2.5, 1.9 and 3.5 times higher than those of KNL, Skylake
and SX-ACE. The computational efficiency of SX-Aurora
TSUBASA is slightly lower than that of Skylake. This is
because the performance of the TUNAMI code is bound to
the LLC bandwidth in SX-Aurora TSUBASA.

Parallel performance was evaluated in a simulation of phe-
nomena occurring three hours after an earthquake. Figure 13
shows the execution times on 11 sockets of Skylake, 32 sockets
of SX-ACE, and eight sockets of SX-Aurora TSUBASA. The
execution time of 16 cores on SX-Aurora TSUBASA is 63
seconds. As SX-Aurora TSUBASA achieves the highest core
performance in the four systems, it has the short execution time
on the smallest number of cores. Meanwhile, the overhead of
the MPI communication gradually decreases the scalability of
SX-Aurora TSUBASA for 32 or more cores. As shown in
the figure, it needs fewer cores compared with SX-ACE and
Skylake to complete the simulation within the target time.

These results demonstrate that SX-Aurora TSUBASA can

exploit the potential of its powerful vector operation capability
in comparison with other vector functions such as SIMD and
AVX of KNL 7210 and Skylake. As the SX-Aurora TSUBASA
occupies one tenth the floor space and has one fifth the power
consumption of the SX-ACE, it is a compact platform for
executing the TUNAMI simulation code.

B. Direct Numerical Simulation Code of Turbulent Flows

Solving turbulent flows is essential in science and engi-
neering research fields because practical applications always
include turbulent phenomena. DNSs of turbulence with high
Reynolds number Re, however, are difficult to carry out
because the number of grid points approximately proportional
to Re9/4 is necessary. The larger Re is, the more the number
of grid points in discretization increases. Therefore, computing
systems with higher calculation speeds are required. The
recent developments of supercomputing systems make them
a powerful means to elucidate such phenomena.

In 2002, high resolution DNSs of incompressible homo-
geneous turbulent flows with up to 40963 grid points were
performed on the Earth Simulator by implementing an efficient
DNS code based on the Fourier spectral method [25]. A lot
of illuminating results were obtained from those simulations.
More recently, DNSs with up to 122883 grid points were
carried out on the K computer [26]. Higher performance
supercomputers, however, still need to be developed.

Evaluating the performance of DNS codes on SX-Aurora
TSUBASA is quite important to determine whether higher
resolution DNSs with more than 122883 grid points are
possible or not. This section compares the results of running
DNS code on SX-ACE and SX-Aurora TSUBASA.

The incompressible Navier-Stokes equations and a con-
tinuum equation were discretized using a Fourier spectral
method. The nonlinear terms are convolution sums, and
therefore, three-dimensional fast Fourier transforms (3D-FFT)
can be applied to the convolution to reduce the number of
arithmetic operations. However, aliasing errors arise in the
FFT calculation. These errors can be removed by applying the
phase shift method and by taking the maximum wavenumber
kmax as (

√
2/3)N in the implementations, where N is the

number of grid points in each of the Cartesian coordinates in
physical space.

In computations by MPI parallelization of the 3D-FFT,
data transfers using all-to-all communications among all MPI
processes easily becomes a bottleneck. Thus, the number

of all-to-all communications should be avoided as many as
possible. Some parallel DNS codes in Fortran for high-
resolution turbulence simulations was developed for the Earth
Simulator in 2002 and on the K computer in 2014. The code
on the Earth Simulator is parallelized in one direction by slab
decomposition. Then, two-directional parallelization, or pencil
decomposition, is used so that the memory capacity in an MPI
process can be reduced as much as possible.

Computation times for one time step of the RK integration
for the slab decomposition DNS code with grid points of 1283,
2563, and 5123 were measured by changing the number of
MPI processes from 1 to 32 on SX-Aurora TSUBASA, and
from 1 to 32 on SX-ACE. Each MPI process was allotted to
one core in all the measurements.

The relative speedups of calculation time are shown in
Figure 14. The calculation time of one core on SX-Aurora
TSUBASA is taken as a reference value in order to compare
speedup ratios for three different grid points. For the grid
points with 1283, 2563, and 5123, the speedups of 32-core
calculations on SX-Aurora TSUBASA are approximately 8.14,
6.73, and 5.48 times compared with the one-core calculation
on it, respectively. The speedups of any number of cores on
SX-ACE are relatively low and does not change so much as
the number of cores of SX-ACE increases.

The reason is that the LLC hit rates in the cases of 2563

and 5123 grid points become lower than that of 1283 grid
points in SX-Aurora TSUBASA. While the LLC hit rate is
about 30% in the case of 1283 grid points, the LLC hit rates
decrease by about 1 to 6% in the cases of 2563 and 5123

grid points. Complex numbers of the Fourier coefficients are
represented with two different DP variables, which represent
the real parts and imaginary parts of the complex numbers,
in the code. Since the performance of this implementation
greatly affects memory performance, performance tuning such
as modification of variable structure and cache blocking can
further improve the hit rates.

Approximately 10% of the execution time is occupied by
bank conflicts in all cases. Stride and indirect accesses in
the innermost loop seem to affect the memory performance.
Further optimization and careful tuning to memory accesses
lead to a high sustained performance, and thereby can exploit
the potential of SX-Aurora TSUBASA.

VI. CONCLUSIONS

A new vector supercomputer, SX-Aurora TSUBASA, with
the world’s highest memory bandwidth was released with the
aim of achieving high sustained performance while main-
taining the high usability of vector supercomputing systems.
SX-Aurora TSUBASA has a new system architecture that
consists of several VEs and a VH. The VEs are responsible for
executing an application, and the VH is used for processing
system calls invoked by the application. As system calls
are transparently offloaded to the VH, programmers do not
need to worry about system calls. Therefore, programmers
can write application programs in standard programming lan-
guages without any special languages, which leads to high

usability. Furthermore, SX-Aurora TSUBASA has the world’s
highest memory bandwidth thanks to using six HBM2 memory
modules that are tightly connected to the VE on a silicon
interposer made with a 3D die stacking technology. Therefore,
high sustained performance can be expected, especially for
memory-intensive applications.

This paper clarifies the potential of SX-Aurora TSUBASA
by describing performance evaluations of various programs
including standard benchmark programs, a microbenchmark,
kernels of practical applications, and entire practical appli-
cations. The results show that the high sustained memory
bandwidth of SX-Aurora TSUBASA leads to t high sustained
performance in various applications. Furthermore, the new ex-
ecution model especially designed for SX-Aurora TSUBASA
overcomes the drawback of the conventional execution model
of accelerators. This paper also analyzes causes of bottlenecks
by using four different B/F ratios: code B/F, actual B/F, LLC
B/F, and memory B/F.

The evaluations show the importance of high sustained
memory performance. The SX-Aurora TSUBASA opens up
the field of supercomputing systems to more than just increas-
ing theoretical computing performance. The balance between
memory performance and computing performance is crucial to
achieving high sustained performance. A new methodology to
utilize the execution model and new optimization techniques
for the SX-Aurora TSUBASA will be addressed in future
work.

ACKNOWLEDGMENTS

The authors would like to thank Hiroyuki Takizawa,
Ryusuke Egawa, Yasuhisa Masaoka, and Souya Fujimoto for
useful discussions. The authors also thank Association for
Real-time Tsunami Science (ARTS) for use of the tsunami
simulation code. The authors also thank the SX-Aurora TSUB-
ASA beta program for early access to SX-Aurora TSUBASA.
This research was partially supported by Grants-in-Aid for
Scientific Research(S) #17H06108, Research(B) #16H02822,
Research(C) #18K11322, Research(C) #18K11325, and Joint
Usage/Research Center for Interdisciplinary Large-scale Infor-
mation Infrastructures in Japan (Project ID: jh180040-NAH).

REFERENCES

[1] TOP500 Supercomputer Sites. [Online]. Available:
http://www.top500.org/

[2] W. A. Wulf and S. A. McKee, “Hitting the memory wall:
Implications of the obvious,” SIGARCH Comput. Archit. News,
vol. 23, no. 1, pp. 20–24, Mar. 1995. [Online]. Available:
http://doi.acm.org/10.1145/216585.216588

[3] T. Soga, A. Musa, Y. Shimomura, R. Egawa, K. Itakura, H. Takizawa,
K. Okabe, and H. Kobayashi, “Performance evaluation of NEC SX-9
using real science and engineering applications,” in Proceedings of
the Conference on High Performance Computing Networking, Storage
and Analysis, ser. SC ’09, 2009, pp. 28:1–28:12. [Online]. Available:
http://doi.acm.org/10.1145/1654059.1654088

[4] R. Egawa, K. Komatsu, S. Momose, Y. Isobe, A. Musa, H. Takizawa,
and H. Kobayashi, “Potential of a modern vector supercomputer
for practical applications: performance evaluation of SX-ACE,” The
Journal of Supercomputing, vol. 73, no. 9, pp. 3948–3976, Sep 2017.
[Online]. Available: https://doi.org/10.1007/s11227-017-1993-y

[5] K. Komatsu, R. Egawa, Y. Isobe, R. Ogata, H. Takizawa, and
H. Kobayashi, “An approach to the highest efficiency of the HPCG
benchmark on the SX-ACE supercomputer,” in Proceedings of the
Conference on High Performance Computing Networking, Storage and
Analysis (SC15), Poster, Nov 2015, pp. 1–2.

[6] J. Dongarra, M. A. Heroux, and P. Luszczek, “High-performance
conjugate-gradient benchmark,” Int. J. High Perform. Comput.
Appl., vol. 30, no. 1, pp. 3–10, Feb. 2016. [Online]. Available:
http://dx.doi.org/10.1177/1094342015593158

[7] HPCG Benchmark. [Online]. Available: http://www.hpcg-
benchmark.org/

[8] NEC SX-Aurora TSUBASA - Vector Engine. [Online]. Available:
https://www.nec.com/en/global/solutions/hpc/sx/vector engine.html

[9] NEC releases new high-end HPC product line,
SX-Aurora TSUBASA Engine. [Online]. Available:
https://www.nec.com/en/press/201710/global 20171025 01.html

[10] S. Y. Hou, W. C. Chen, C. Hu, C. Chiu, K. C. Ting, T. S. Lin, W. H. Wei,
W. C. Chiou, V. J. C. Lin, V. C. Y. Chang, C. T. Wang, C. H. Wu, and
D. Yu, “Wafer-level integration of an advanced logic-memory system
through the second-generation CoWoS technology,” IEEE Transactions
on Electron Devices, vol. 64, no. 10, pp. 4071–4077, Oct 2017.

[11] M. Shimizu and A. Yonezawa, “Remote process execution and remote
file I/O for heterogeneous processors in cluster systems,” in 2010
10th IEEE/ACM International Conference on Cluster, Cloud and Grid
Computing, May 2010, pp. 145–154.

[12] B. Gerofi, M. Takagi, A. Hori, G. Nakamura, T. Shirasawa, and
Y. Ishikawa, “On the scalability, performance isolation and device driver
transparency of the IHK/McKernel hybrid lightweight kernel,” in 2016
IEEE International Parallel and Distributed Processing Symposium
(IPDPS), May 2016, pp. 1041–1050.

[13] M. Sato, T. Kobayashi, Z. Zeng, G. Fang, and X. Feng, “High resolution
GPR system for landmine detection,” in Proceedings of International
Conference Requirements and Technologies for the Detection, Removal
and Neutralization of Landmine and UXO, 01 2003, pp. 548–553.

[14] K. Ariyoshi, T. Matsuzawa, and A. Hasegawa, “The key frictional
parameters controlling spatial variations in the speed of postseismic-slip
propagation on a subduction plate boundary,” Earth and Planetary
Science Letters, vol. 256, no. 1, pp. 136 – 146, 2007. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0012821X07000374

[15] T. Tsukahara, K. Iwamoto, and H. Kawamura, “Evolution of material
line in turbulent channel flow,” in Proceedings of the Fifth International
Symposium on Turbulence and Shear Flow Phenomena, 01 2007, pp.
549–554.

[16] H. Sato, Y. Takagi, and K. Sawaya, “High gain antipodal Fermi antenna
with low cross polarization,” IEICE transactions on communications,
vol. 94, no. 8, pp. 2292–2297, Aug 2011. [Online]. Available:
https://ci.nii.ac.jp/naid/10030187090/

[17] Y. Katoh, T. Ono, and M. Iizima, “Numerical simulation of resonant
scattering of energetic electrons in the outer radiation belt,” Earth,
Planets and Space, vol. 57, no. 2, pp. 117–124, 2005.

[18] Y. Sasao and S. Yamamoto, “Numerical prediction of unsteady flows
through turbine stator-rotor channels with condensation,” ASME Fluids
Engineering Division Summer Meeting, vol. 1, Symposia, Parts A and
B, pp. 855–861, 2005.

[19] J. D. McCalpin, “Memory bandwidth and machine balance in current
high performance computers,” IEEE Computer Society Technical Com-
mittee on Computer Architecture (TCCA) Newsletter, pp. 19–25, Dec.
1995.

[20] Himeno benchmark. [Online]. Available: http://accc.riken.jp/en/super-
com/himenobmt/

[21] S. Koshimura, H. Yanagisawa, and F. Imamura, “Developing fragility
functions for tsunami damage estimation using numerical model and
post-tsunami data from Banda Aceh, Indonesia,” vol. 51, pp. 984–51,
09 2009.

[22] C. Goto, Y. Ogawa, N. Shuto, and F. Imamura, “Numerical method
of tsunami simulation with the leap-frog scheme,” Intergovernmental
Oceanographic Commission of UNESCO, 1997. [Online]. Available:
https://ci.nii.ac.jp/naid/20001358454/

[23] A. Musa, H. Matsuoka, O. Watanabe, Y. Murashima, S. Koshimura,
R. Hino, Y. Ohta, and H. Kobayashi, “A real-time tsunami inunda-
tion forecast system for tsunami disaster prevention and mitigation,”
in Proceedings of the Conference on High Performance Computing
Networking, Storage and Analysis (SC15), Poster, Nov 2015, pp. 1–2.

[24] A. Musa, T. Abe, T. Inoue, H. Hokari, Y. Murashima, Y. Kido,
S. Date, S. Shimojo, S. Koshimura, and H. Kobayashi, “A real-time
tsunami inundation forecast system using vector supercomputer SX-
ACE,” Journal of Disaster Research, vol. 13, no. 2, pp. 234–244, March
2018.

[25] M. Yokokawa, K. Itakura, A. Uno, T. Ishihara, and Y. Kaneda, “16.4-
tflops direct numerical simulation of turbulence by a Fourier spectral
method on the earth simulator,” in Supercomputing, ACM/IEEE 2002
Conference, Nov 2002, pp. 50–50.

[26] T. Ishihara, K. Morishita, M. Yokokawa, A. Uno, and Y. Kaneda,
“Energy spectrum in high-resolution direct numerical simulations of
turbulence,” Phys. Rev. Fluids, vol. 1, p. 082403, Dec 2016. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevFluids.1.082403

APPENDIX

A. Additional application evaluations

An additional study on the new execution model of SX-
Aurora TSUBASA was carried out by evaluating I/O perfor-
mance of system calls, which are invoked on the VE and then
executed on the VH. The DNS code in Subsection V-B is used.

Snapshots of the velocity fields in the spectral space are
stored at an appropriate interval in time integration of the
DNS as checkpoints so that the simulation with the same
parameters can be restarted to continue at the time when the
snapshot is taken. In particular, since DNSs need long time to
reach a quasi-stationary state, and a CPU resource allocated
for each batch job is generally limited in a normal operation
at any computer center, the checkpoint restart function plays
an important role for an actual computing environments.

The amount of output data in a binary format for a snapshot
of the velocity field is given by a formula

16 bytes (double precision complex variable)

×3 arrays (velocities)×N ×N ×
N

2
,

(3)

where N is the number of grid points in each direction of
the three-dimensional Fourier spectral space. The velocity in
a physical space is real and the conjugates of Fourier modes
can be omitted in the spectral space. Therefore, the number
of complex variables in the spectral space becomes a half.

In this study, seven cases of grid points N =128, 160,
192, 256, 320, 384, and 512 are considered. These numbers
can be factorized by prime numbers of 2, 3, and 5 so that
standard FFT can be applied in the DNS code. The amounts of
snapshots of a file for each case are 48 MiB, 94 MiB, 162 MiB,
384 MiB, 750 MiB, 1296 MiB, and 3072 MiB, respectively.
The snapshot is distributed among processes, each of which
performs checkpointing. For example, in the case of eight
MPI processes, the amount of a snapshot per process becomes
one eighth of the whole snapshot. The interval of checkpoints
should be determined properly by considering CPU and I/O
performances. During the interval when I/O system calls are
off-loaded to the VH, the calculations of the next several time
steps that are approximately equivalent to the checkpoint time
can be performed.

The performance of a check point function in the DNS code
was measured for each case on A300-2. As the checkpoint
includes WRITE system calls, it is transparently off-loaded to
the VHs from the VEs.

Figure 15 shows the WRITE performances for the seven
cases by changing the number of MPI processes. It is found
that the WRITE performance increases as the number of MPI
processes increases. The performances of 16 MPI processes
for any cases are 2x or more than those of eight processes. In
the case of 16 processes, two VEs are utilized, and then two
VE processes and their corresponding pseudo processes work
simultaneously. As a result, almost twice improvement of I/O
performance can be achieved when the number of VEs is two.

This figure also shows that 1.7 GB/s and 3.4 GB/s I/O
performances are obtained in the case of 8 processes and 16

0

500

1000

1500

2000

2500

3000

3500

4000

4500

128 160 192 256 320 384 512

I/
O

 p
er

fo
rm

an
ce

 (
M

B
/s

)

Grid size

1 process 2 processes 4 processes

8 processes 16 processes

Fig. 15. I/O Performance of checkpointing the DNS code.

processes at maximum, respectively. Although the data trans-
fers between the VH and the VEs and additional buffer copy
are necessary, the I/O performances can achieve about 80% of
the I/O performance of the VH. These results indicate that SX-
Aurora TSUBASA achieves sufficient I/O performance even
on the new execution model.

