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Abstract—We consider the problem of estimating sparse in-
verse covariance matrices for high-dimensional datasets using the
`1-regularized Gaussian maximum likelihood method. This task is
particularly challenging as the required computational resources
increase superlinearly with the dimensionality of the dataset. We
introduce a performant and scalable algorithm which builds on
the current advancements of second-order, maximum likelihood
methods. The routine leverages the intrinsic parallelism in the
linear algebra operations and exploits the underlying sparsity of
the problem. The computational bottlenecks are identified and
the respective subroutines are parallelized using an MPI–OpenMP
approach. Experiments conducted on a 5,320 node Cray XC50
system at the Swiss National Supercomputing Center show that,
in comparison to the state-of-the-art algorithms, the proposed
routine provides significant strong scaling speedup with ideal
scalability up to 128 nodes. The developed framework is used to
estimate the sparse inverse covariance matrix of both synthetic
and real-world datasets with up to 10 million dimensions.

Index Terms—inverse covariance matrix, sparse matrices, ap-
proximate matrix inverse, high-performance computing.

I. INTRODUCTION

In statistical analysis, one is often faced with the problem
of estimating the sparse inverse covariance matrix of a high-
dimensional dataset or, equivalently, a dataset with a high
number of random variables. This type of analysis is useful
in elucidating the association between the random variables.
If the data samples are drawn from a Gaussian distribution,
the inverse covariance matrix encodes the graph structure of a
Gaussian Markov random field (GMRF). This general problem
description finds applications in many fields such as finance,
biology, health sciences, and many more [1]–[3]. There has
been recent interest, and significant success, in adapting and
extending ideas from statistical learning via Gaussian process
(GP) regression to optimization via simulation problems [4].
At the heart of all such methods is a GP representing knowl-
edge about the objective function. Calculating the conditional
distribution requires inverting a large, dense covariance matrix,
and this is the primary bottleneck for applying GP learning
to large-scale problems. If the GP is a GMRF, then the
precision matrix (inverse of the covariance matrix) can be
constructed to be sparse. However, in a high-dimensional

setting, this problem becomes especially challenging as (i) the
number of data samples is usually limited in comparison to
the number of random variables and (ii) the computational
resources required increase superlinearly with the number of
random variables. There exist multiple methods to address the
mathematical soundness when dealing with large datasets with
a limited number of samples; however, the computability of
such methods remains a challenge when dealing with a high
number of dimensions. We will focus our attention on this
computational challenge for large-scale applications (a million
dimensions or more) where the underlying inverse covariance
matrix is sparse, or at least it is assumed to be sufficiently
approximated as sparse. This assumption is commonly made in
the literature [4]–[7] and is a necessary attribute when dealing
with high-dimensional inverse covariance matrices.

Two common approaches for estimating a sparse inverse
covariance matrix are the `1-regularized maximum likelihood
(ML)- and pseudolikelihood (PL)-based methods. For the
ML method one minimizes the `1-regularized negative log-
likelihood function; see, e.g., [8]–[10]. The resulting problem
is nonsmooth but convex and, thus, there are a larger number
of approaches from convex optimization which have been
developed such as (inexact) interior point methods [11]–[13],
blockwise descent methods [14]–[17], iterative threshold-
ing [18], alternating linearization [19], projected subgradi-
ents [20], greedy-type descent methods [21], and more recently
developed second-order methods [22]–[26]. The QUadratic
Inverse Covariance algorithm (QUIC) is a computationally
efficient second-order technique which has multiple desirable
properties; see [23] for further details. With this said, the
applicability of the algorithm is limited to problem sizes
of a few thousand dimensions. A variant of the algorithm,
aptly named BigQUIC, is introduced in [25] for large-scale
applications. This routine uses shared-memory parallelism and
avoids the explicit construction of the larger dense matrices,
thus reducing the overall runtime and memory footprint.
However, even with this added performance and efficiency, the
time-to-solution quickly becomes impractical when working
with datasets with millions of dimensions. To address this
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issue, an extended version of QUIC called Sparse QUIC
(SQUIC) has been proposed in [27]. SQUIC makes heavy use
of sparse matrix operations with a greater focus on utilizing
state-of-the-art high-performance sparse matrix routines. The
resulting code uses multithreaded level-3 BLAS and has been
shown to be significantly faster than BigQUIC but the memory
requirements are higher due to the explicit representation of
large sparse matrices. Both BigQUIC and SQUIC share a
common problem in that they are limited to the performance
and scalability of a single compute node.

Another approach for recovering sparse inverse covariance
matrices are the PL-based methods. These methods utilize
computationally simpler objective functions in an attempt to
have a more efficient and direct exploitation of the underlying
graphical structure [28]. Though the developments in PL-based
methods have lagged in comparisons with ML methods, recent
theoretical and computational advancements have led to the
introduction of new algorithms with encouraging results; see,
for example, [28]–[33]. With regard to large-scale applications,
the High Performance CONvex CORrelation selection methoD
(HP-CONCORD) is the state-of-the-art PL-based method in-
troduced in [34]. HP-CONCORD is a distributed memory
framework which has been shown to be highly scalable and
performant. Single node tests show that in comparison to
BigQUIC, HP-CONCORD exhibits a superior or equivalent
performance for various datasets; refer to [34] for details.

Here we introduce an MPI–OpenMP parallelized version of
SQUIC referred to as PRL-SQUIC, which is shown to have
significantly better performance than the above noted ML- and
PL-based methods, and ideal scalability for sufficiently large
problems. The major computational bottlenecks of SQUIC
are identified and a parallelization scheme is introduced to
eliminate the scalability issues caused by the key restric-
tive subroutines. The developed framework is deployed at
the Swiss National Supercomputing Centre (CSCS) where
comparative performance tests are conducted. We illustrate
the performance and scalability of PRL-SQUIC by using the
framework to recover the approximate inverse covariance ma-
trices of synthetic datasets of unprecedented dimensionality of
up to 10 million variables. Finally, to motivate the applicability
of the proposed method, we apply the PRL-SQUIC on a high-
dimensional functional magnetic resonance imaging (fMRI)
dataset of the human brain [35]. We emphasize that although
the introduced algorithm provides impressive performance and
scalability results for both the synthetic and the real-world
datasets, the overall efficiency of the algorithm is dependent
on the sparsity of intermediary matrix operations.

In section II we introduce the ML method for inverse co-
variance matrix estimation and the PL-based HP-CONCORD
algorithm. We proceed in section III with a high-level descrip-
tion of the quadratic approximation method, followed by an
outline of the QUIC and BigQUIC algorithms. In section IV
we provide a detailed description of the SQUIC algorithm.
Section V will be dedicated to the main contribution of the
paper where the bottleneck of the SQUIC program and the
developed parallelization scheme are described. In section VI,

we outline the experimental setup. Finally, we present our
numerical results in section VII and conclude in section VIII.

II. BACKGROUND

We aim to solve the following problem: given the dataset
Y ∈ Rp×n comprised of n independently drawn samples
from a p-variate Gaussian distribution N (µ∗,Σ∗), recover
an estimate of the true inverse covariance matrix Θ∗ :=
(Σ∗)−1 ∈ Rp×p, where µ∗ ∈ Rp is the true mean. Specifically
we are interested in a setting where Θ∗ is sparse and p� n.
A starting point is to define the sample covariance matrix

S =
1

n

n∑
j=1

(Y:,j − µ)(Y:,j − µ)>, µ =
1

n

n∑
j=1

Y:,j , (1)

where Y:,j denotes the jth column of Y and µ is the sample
mean. For simplicity, in the remaining text we will assume that
Y is both scaled by 1/

√
n and has the mean value deducted,

such that S = YY>. Notice that due to the limited number of
samples, S is both singular and contains significant noise. In
the subsections to follow we highlight two different methods
to solve this problem: the `1-regularized ML- and PL-based
HP-CONCORD methods. Focus will be put on the prior as
this will be the theoretical basis of our contribution.

We will adopt the following notation: for a vector or matrix,
‖·‖0, ‖·‖max, ‖·‖F , and ‖·‖1 denote the number of nonzeros,
elementwise maximum absolute value, Frobenius norm, and
elementwise 1-norm, respectively. Finally, we use ‖ · ‖# for
the cardinality of a set or length of an array.

A. Maximum Likelihood Method

ML-based estimation methods recover Θ through minimiz-
ing the negative log-likelihood function

g(Θ) := − log detΘ+ tr[SΘ]. (2)

Given the sparsity parameter λ > 0, a sparsity prior is imposed
on Θ by `1-regularization of (2). This results in the convex
regularized log-determinate program

argmin
Θ�0

{
f(Θ)

}
, where f(Θ) = g(Θ) + λ‖Θ‖1, (3)

where Θ � 0 denotes positive-definiteness of Θ. The objective
function f has two parts: the convex and smooth negative
log-likelihood function g, and the nonsmooth but still convex
regularization term λ‖Θ‖1. A variety of methods exist for
solving (3); a selected subset includes [11], [14], [18]–[20],
and [21]. First-order methods benefit from lower time com-
plexity making them popular in high-dimensional settings,
while second-order methods exhibit superlinear convergence
but have higher computational costs. The QUIC algorithm, de-
scribed in section III-A, benefits from superlinear convergence
while still being computationally efficient.



B. HP-CONCORD Pseudolikelihood Method

The HP-CONCORD algorithm is a first-order method and to
our knowledge, it is the current state-of-the-art large-scale PL-
based technique. The algorithm solves the following convex
minimization problem

argmin
Θ

{
−log detΘ2

D+tr[SΘ2]+λ1‖ΘX‖1+λ2‖Θ‖2F
}
, (4)

where ΘD and ΘX refers to the diagonal and off-diagonal
elements of Θ such that Θ = ΘD+ΘX . To solve (4) a prox-
imal gradient method is used where the nondifferentiable term
λ1‖ΘX‖1 is separated and, in its place, a soft-thresholding
operator is used. At each iteration an appropriate step size is
selected and the new estimate is updated. For a detailed math-
ematical and algorithmic description refer to [32]–[34]. The
HP-CONCORD objective function (4) bears a resemblance to
(3), but the computation involved is simpler than the latter,
specifically as the log–determinant is of a diagonal matrix.

For large-scale applications, the authors [34] identify the
computational bottleneck to be the matrix multiplications
required for ΘS at each iteration and the construction of S.
To address this, a highly optimized communication-avoiding
matrix multiplication routine is developed; refer to [36] for
further details. We will use the HP-CONCORD framework
for performance tests outlined in section VII.

III. QUADRATIC APPROXIMATION METHOD

The QUIC algorithm [23] solves (3) following the same
approach as [37], [38], that is, the quadratic approximation
method. In this section, we will begin by giving a high-
level formulation of the quadratic approximation technique and
follow up with an outline of the QUIC algorithm. Finally, we
will highlight the specific differences between QUIC and its
large-scale implementation BigQUIC.

The full objective function f in (3) consists of the differ-
entiable negative log-likelihood g and nondifferentiable `1-
regularization term. We begin by generating a second-order
Taylor expansion of g around Θ. The quadratic approximation
of g(Θ+∆) is defined as

ĝ(∆) := g(Θ) + tr[(S−Θ−1)∆] +
1

2
tr[Θ−1∆Θ−1∆]. (5)

In standard form, the Hessian ∇2g ∈ Rp2×p2

is computation-
ally intractable due to its size. The authors [23] leverage the
specific structure of the formulation to rewrite the Hessian in
terms of the p×p matrix products; this corresponds to the last
term in the summation of (5). The Newton direction H of the
approximated f around Θ can be written as the solution of
the following coordinate descent problem:

H := argmin
∆

{
ĝ(∆) + λ‖Θ+∆‖1

}
. (6)

For the details on the solution to (6), we refer the reader
to [23]. The principal idea of quadratic approximation is to
solve (3) as a sequence of optimization problems. In each
step we use the local approximation Θ + H to generate the
quadratic expansion (5), and solve for the Newton step (6). The

QUIC algorithm described in the next section will leverage this
optimization technique to exploit the sparsity of the problem
and significantly reduce the required computation.

A. QUIC Algorithm

The QUIC algorithm solves the problem outlined in the
previous section through the following three steps: (i) start
with an initial or current estimate Θ, generate the local
approximation (5); (ii) solve the local minimization problem in
(6); (iii) update the current estimate to be Θ+H and proceed
with the next Newton iteration. Interestingly, in the one-
dimensional case, in [23] it is shown that (6) has an analytical
solution. With this said, a line search procedure is required
to keep the updated estimate positive-definite (required by
(3)). The line search procedure is outlined in the algorithmic
description at the end of this section.

A hallmark of the QUIC algorithm is that only a subset of
the elements of H and, in turn, Θ need to be computed at
each Newton iteration. The indices that need to be updated
are referred to as free and those that remain unchanged are
fixed. It has been proven in [23] that the collection of these
indices form the following two disjoint sets:

Ifixed :=
{
(i, j) ∈ I : |Sij −Θ−1

ij | ≤ λ and Θij = 0
}
, (7)

Ifree := I\Ifixed,

where I := {1, 2, . . . , p} × {1, 2, . . . , p}. The key assump-
tion here is that for a properly selected λ, we will have
‖Ifree‖# � p2. In such a case the computation of the
coordinate descent in (6) is reduced to a relatively small set
of indices (i, j) ∈ Ifree.

The QUIC routine is summarized in Algorithm 1. The
program is executed with the inputs Y, λ, T , and εterm
corresponding to the dataset, sparsity parameter, maximum
iteration, and termination tolerance, respectively. The routine
begins in steps 1–3 by computing S and initializing the initial
guess of Θ to be identity I. Entering the iterative portion of
the algorithm, the Newton iteration in steps 3–19 is begun by
computing Ifree, f(Θ), and H. The updated estimate Θ+H
is not constrained to be positive-definite as required by (3).
Positive-definiteness is ensured in steps 7–14 by using a line
search procedure, where an appropriate step size α ∈ (0, 1] is
selected such that the updated estimate Θ + αH is positive-
definite and sufficiently decreases the objective function. This
procedure is done iteratively by first defining α := 0.5m,
and starting at iteration m = 0, the updated estimate is
checked for positive-definiteness by attempting a Cholesky
decomposition. In step 10, if the updated estimate is positive-
definite, an Armijo-type criterion, denoted as AC (refer to [25]
for further details) is used to check if the objective function has
sufficiently decreased. If both of these conditions are satisfied,
the update is accepted, else the update is deducted, and the
procedure is repeated for m = m + 1. The convergence is
checked in step 15 by computing f at the updated Θ. Notice
that having the Cholesky factors, we can easily compute the
log-determinant term of f (see (11) in section IV-B for a



Algorithm 1 QUIC.

Require: Y, λ, T, εterm
1: S← YY>

2: Θ← Θ−1 ← I
3: for t = 1 to T do
4: compute : Ifree
5: obj← f(Θ)
6: compute : Hij ∀ (i, j) ∈ Ifree
7: for m = 0 to . . . do
8: α← 0.5m

9: Θ← Θ+ αH
10: if Θ � 0 ∨ AC(Θ) then
11: break
12: end if
13: Θ← Θ− αH
14: end for
15: if |obj− f(Θ)| < εterm then
16: break
17: end if
18: Θ−1 ← inv(Θ)
19: end for
20: return Θ

similar approach using LDL decomposition). Finally in step
18, to construct the quadratic expansion of the next iteration,
Θ−1 is computed straightforwardly by using the already
available Cholesky factors of Θ.

The QUIC algorithm is not designed for large-scale appli-
cations as it uses dense linear algebra subroutines. On modern
machines with 64 GB of memory, QUIC will be limited to
roughly p = 4·104 dimensions. In the section to follow we will
highlight the key differences of BigQUIC which is designed
for large-scale inverse covariance matrix approximation.

B. BigQUIC Algorithm

BigQUIC has been developed to address the performance
and scalability issues of QUIC in high-dimensional applica-
tions. The authors in [25] have shown that BigQUIC is capable
of dealing with problem sizes up to p = 106 dimensions. The
underlying theme of BigQUIC is not to form S or Θ−1, as
they will be dense. To do this the required elements of S
are computed on the fly. Positive-definiteness is checked by
computing log detΘ, which is, in turn, calculated recursively
using the Schur complement. The explicit construction Θ−1

is avoided by computing it column by column. Using the con-
jugate gradient method, the jth column of Θ−1 is computed
as the solution to the system ΘΘ−1

:j = ej , where ej is the
jth unit vector. This same technique is also used in computing
the inverse of the submatrices for the Schur complement. We
refer the reader to [25] for details of the BigQUIC algorithm.

IV. SPARSE QUIC

In this section, we will describe the SQUIC algorithm
which will form the basis of the main contribution of the
paper. In comparison to BigQUIC, SQUIC takes a different
approach which is distinguished by (i) computing a sparse

representation of the sample covariance matrix, (ii) utilizing a
sparse Cholesky factorization routine, and (iii) implementing
an approximate inversion scheme. We elaborate each of these
methods in the respective sections IV-A, IV-B, and IV-C.

A. Sparse Sample Covariance Matrix

The sample covariance matrix S is dense and, thus, it
poses an issue when p is large. We noted in section III that
BigQUIC sidesteps this issue by computing the elements of
S as required. This, however, leads to cache inefficiencies
and decreased performance, as the matrix S will be computed
incrementally as the index set Ifree grows. On the other hand,
precomputing S entirely may be computationally efficient, but
it will not be possible for large p. Here a composite approach
is taken by partially computing S and updating missing values
during the course of the routine. A sparse representation of S
is constructed by accepting the values of indices (i, j), such
that

λ ≤ |Sij | ≤
√
SiiSjj or i = j. (8)

Notice that the diagonal elements of S are always computed,
thus the Cauchy–Schwarz upper bound in (8) can be used as a
computationally cheap initial check of |Sij |. As shown in (7),
to update Ifree we require S to have a nonzero pattern which
overlaps Θ−1. Any such missing values of S are computed
on the fly. This method gives a balanced advantage of doing
some of the computation of S in a cache efficient way, while
at the same time not expending significant resource on indices
(i, j) /∈ Ifree.

B. Sparse Cholesky Factorization

Sparse Cholesky factorization is a critical operation in the
overall SQUIC algorithm. With the Cholesky decomposition,
we can validate positive-definiteness of Θ and also, as we
will see in this section, we can easily compute log detΘ.
In section IV-C an efficient method for computing L−1 is
shown. Having this inverse factor would, in turn, allow us to
easily compute Θ−1. There has been significant work put into
the development of high-performance Cholesky factorization
routines as they play a critical role in direct solvers used for
systems of linear equations [39]. One well-known attribute
of the Cholesky decomposition is the difference between the
nonzero structure of the sparse matrix Θ and its respective
factors L. The nonzero elements that appear in L but not in
Θ are called fill-in. Reducing the fill-in is a necessity for large-
scale direct solvers as problems with millions of variables are
common. The mechanism and theory of fill-in reduction are
beyond the scope of this paper, and we refer the interested
reader to [40] and, for more recent developments, to [41].

The authors in [27] argue that reduced fill-in matrix factor-
ization routines are well suited for the case of sparse inverse
covariance matrix approximation as they will be memory
efficient and performant for large sparse matrices. The soft-
ware package used in SQUIC is cholmod [42]; however,
many other high-performance sparse direct solvers packages
can be used [43]–[46]. Here we reformulate the Cholesky



decomposition in a slightly different form, its variant, the LDL
decomposition,

Θ = PLDL>P>, (9)

where P is the permutation matrix, D a diagonal matrix with
strictly positive values, and L is a lower triangular matrix with
identity as its diagonal. The presumption here is that Θ is
sparse and thus we expect the fill-in of L to be low, that is,
we expect L to also be sparse. This, of course, is dependent
on both Θ∗ and the selected parameter λ. Using the factor in
(9), it is easy to confirm the log-determinant and the inverse
can be written as follows:

log detΘ =

p∑
i=1

logDii, (10)

Θ−1 = PL−>D−1L−1P>. (11)

To compute Θ−1, the inversion of the factor L will pose a
problem, as it will be dense. This motivates the section to
follow, where we will describe an approximation scheme for
sparse representation of the inverse factor.

C. Approximate Matrix Inversion

As discussed in the previous section the main computation
required for Θ−1 is L−1; see (11). Direct inversion, as imple-
mented in QUIC, will pose a problem in a high-dimensional
setting as L−1 may be dense. Here the approximated Neumann
series is used to compute a sparse approximation of L−1. We
begin by considering the Neumann series

A−1 =

∞∑
k=0

(I−KA)kK (12)

s.t. lim
k→∞

(I−KA)k = 0,

where A and K ∈ Rp×p are a nonsingular and a diagonal ma-
trix, respectively. For a convergent series, K must be selected
such that the spectral radius of the matrix power is less than
one, ρ(I−KA) < 1. In this case, A = L, we can set K = I as
the matrix I−L is nilpotent. This will be a convergent series
for which only the terms exponentiated to k < p will have
nonzero values (a property of nilpotentcy). All higher-order
terms k ≥ p will not contribute to the summation in (12),
and thus truncation at k = p is not subject to approximation
error. To attain a sparse approximation L̂−1 ≈ L−1 we use
a dropout rule to only compute values of L̂−1

ij which have
significant update magnitude. We can compute (12) recursively
by rewriting it as

L̂−1
k+1 = L̂−1

k (I− L) + I, (13)

s.t. |(L̂−1
k+1)ij − (L̂−1

k )ij | > εinv,

where L̂−1
0 = I is the initial guess and εinv > 0 is the dropout

tolerance. Finally, using a similar dropout rule as in (13), the
sparse approximation of Θ−1 can be computed as

Θ̂−1 = PL̂−>D−1L̂−1P> s.t. |Θ̂−1
ij | > εinv. (14)

This approach explicitly makes two key assumptions. First,
the number of iterations required in the Neumann series should
be very small. For applications where p is large, computing
higher iterations of Neumann series will hinder performance;
indeed for a high-dimensional dataset, the number of iterations
must be� p. In section VII-A we validate this assumption for
the test case presented. The second assumption is that L−1 and
Θ−1 can be sufficiently approximated as sparse. The validity
of this hypothesis is dependent on the underlying true inverse
covariance matrix. If the matrix cannot be approximated as
sparse, for example, say all elements Θ−1

ij ≈ εinv , then the
required computational resources and memory footprint could
increase significantly.

V. IMPLEMENTATION

In this section, we will begin by motivating the paralleliza-
tion of SQUIC. An analysis and discussion of the bottlenecks
of scalability and performance are provided. Based on this
analysis, in section V-A, we will describe the proposed paral-
lelization scheme and the developed PRL-SQUIC routine.

The SQUIC algorithm is highly dependent on the spar-
sity of the intermediary arithmetic. As discussed in sec-
tions IV-A, IV-B, and IV-C, the three major subroutines of
the program are categorized as the sample covariance matrix,
sparse Cholesky factorization, and approximate inversion. In
Figure 1 we can see the runtimes of each key subroutine for
a fixed sample size of n = 100 and varying problem size
p. The program exhibits O(p2) complexity with the majority
of the compute time consumed by the construction of the
sample covariance matrix. This computation is dense as the
sparsity pattern cannot be assessed a priori. It is clear that
the scalability of the covariance matrix subroutine poses an
evident bottleneck for large-scale applications. This is seen
in the test case p = 105, where over 90% of the total
runtime is consumed by computing the sample covariance
matrix. Due to the dense arithmetic, a mixed approach of
distributed and shared-memory parallelism is fitting for an
efficient parallelization of this subroutine.
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Fig. 1: Normalized runtimes for overall and major SQUIC subroutines with
respect to the problem size p and a fixed n = 100. All tests use the datasets
described in section VI.



In our experiments, the approximate matrix inversion is the
second most time-consuming routine, but in comparison to
the overall runtime, it takes roughly 9% of the computation
time. The recursive formulation in (13) and (14) is not well
suited for distributed memory parallelization as the computa-
tion is sparse and synchronization occurs at every iteration.
Any performance gains from distributed parallelization would
be penalized at each iteration with repeated communication
and data reallocations. Also, from a strictly computational
point of view, we do not expect major concerns with this
routine as Θ̂−1 and L̂−1 are maintained sparse throughout the
computation. However, the validity of the imposed sparsity is
problem dependent; we refer the reader to section IV-C for
further discussions. With this said, we have adopted a shared-
memory approach for a communication-free parallelization
scheme.

Finally, the sparse Cholesky factorization subroutine has
the lowest impact on the overall runtime. It constitutes less
than 1% of the total execution time. The factorization library
cholmod provides sufficient performance such that this sub-
routine is not a primary bottleneck for large-scale applications.

A. Parallelization

Following the motivation of the previous section, we in-
troduce the PRL-SQUIC algorithm which builds on SQUIC
by parallelizing two key subroutines, the sample covariance
matrix and approximate inversion. In Figure 2 we can see
the overall computation scheme. The routine is broken into
two parts, separated by total MPI synchronization between
the top and bottom panel. The black arrows in the top panel
box represent MPI processes, while OpenMP parallelism is
isolated to within the dashed red boxes.

The algorithm begins by loading Y on each MPI process.
This is required as we will need access to the data from
any nodes to augment the sample covariance matrix during
the update of Ifree (see sections IV-A and III-A for further
details). Notice that this approach necessitates that the dataset
fits in the memory of a single node. Once loaded, we compute
the diagonal elements of S and then proceed with block matrix
multiplication. This operation is parallelized by partitioning
S into submatrices and assigning each submatrix described
by the collection of indices {i, j} to an MPI process. In
each process the computation is performed using OpenMP
parallelism such that only the respective element |Sij | > λ
are saved. Upon completion, the data structures are globally
synchronized. This provides an effective yet simple means to
distribute the major bottleneck described in the last section.
Notice that although the computation of the sample covariance
matrix is dense, we construct a sparse approximation, and
thus the size of the synchronized data structures are not
a concern. The detailed algorithm for the parallelization of
the sample covariance matrix subroutine will be described in
section V-A1.

In the second part of the algorithm, we begin the Newton
iteration which includes the line search, sparse matrix fac-
torization, and the approximate inversion. As mentioned in

Fig. 2: Two parts of the PRL-SQUIC algorithm: distributed memory in the
top and non distributed memory in the bottom box. Arrows in the top box
signify MPI processes. Parallelization using OpenMP is symbolized by the
dashed red boxes. Global MPI synchronization is required when transitioning
from the top to the bottom panel.

the previous section, the factorization accounts for a small
portion of the runtime and thus is not a performance bot-
tleneck; however, for the approximate matrix inversion, we
use OpenMP. The repeated evaluation of (13) is the major
computation accounting for roughly 70% of the total time of
the approximate inversion routine. The detailed algorithm for
the parallelization of the approximate inversion subroutine will
be described in section V-A2.

1) Parallel Sample Covariance Matrix: The kernel oper-
ation in (1) is matrix-matrix multiplication, which is highly
parallelizable. Though the sample covariance matrix is ap-
proximated as being sparse, the computation is dense, due to
the undetermined sparsity pattern. The pseudocode shown in
Algorithm 2 is executed with inputs Y, λ, p, and the work
block size b. In step 1 of the algorithm, we begin by assigning
the workload array q containing the lower-triangular block
indices of S, where each corresponds to b × b submatrices.
For simplicity we assume the number of processes, denoted
by “proc size,” is a divisor of p and set b = proc size/ p.
For example, given p = 90 and 3 processes, we would have
b = 30 and q = {{1, 1}, {2, 2}, {3, 3}, {2, 1}, {3, 1}, {3, 2}},
where task q4 would identify the 30 × 30 submatrix with
top left element S31,1. Next, from steps 2–4, we sequentially
compute the diagonal of the sample covariance matrix which
will be used to check the Cauchy–Schwarz condition outlined
in section IV-A. In development we use compressed sparse
column matrix format; however, for ease of notation in the
pseudocode, we show coordinate list sparse matrix format. The
arrays c and v are the collection of matrix indices and values,



Algorithm 2 Parallel sparse sample covariance matrix.

Require: Y, λ, p, b
1: q← {{n,m} : {1 ≤ m ≤ n ≤ b} ∈ N}
2: for i = 1 to p do
3: Sii ← Yi:Y

>
i:

4: end for
5: for k = 1 to ‖q‖# do
6: if k (mod proc size) = proc id then
7: {n,m} ← qk

8: #par region:static(default)
9: vtmp ← jtmp ← ∅

10: for j = (m− 1)b+ 1 to mb do
11: for i = (n− 1)b+ 1 to nb do
12: if λ2 ≤ SiiSjj ∧ i > j then
13: v ← Yi:Y

>
j:

14: if λ ≤ |v| then
15: vtmp ← {vtmp, v}
16: ctmp ← {ctmp, {i, j}}
17: end if
18: end if
19: end for
20: end for
21: critical : v← {v,vtmp}
22: critical : c← {c, ctmp}
23: #end par region
24: end if
25: end for
26: synchronize v, c
27: S← {v, c}
28: return S

respectively. The bulk of the algorithm begins at steps 5–25,
where each task qk is assigned to process “proc id” using the
modulo operator. This procedure ensures that the workload is
well distributed over the processes and eliminates significant
load imbalances. Using thread-level parallelism (denoted by
“par region”), we compute the respective submatrix of S
using the default OpenMP static scheduling. This scheduling
type divides the computation across each thread as evenly as
possible, in the largest possible contiguous chunks. Due to
the lack of knowledge about the size of the data structures,
efficient reallocation or resizing of shared data structures
within a process’s parallel region is not possible. As a solution,
local temporary buffers ctmp and vtmp are used. Since the
buffers are local to each thread, resizing can be done without
issue. Furthermore, since S is symmetric and the diagonal is
already computed, we only evaluate rows i > j. The accepted
values are stored in the respective temporary data structures.
Before exiting the parallel region the local temporary buffers
must be consolidated; this is done serially and is denoted
by “critical.” After step 25, we exit the parallel region of
each distributed memory process and globally synchronize the
partially computed S on each node. Finally, the full sparse
sample covariance matrix is reconstructed and returned on
each node.

Algorithm 3 Parallel approximate inversion.

Require: L, εinv
1: L̂−1 ← 2I− L
2: L← I− L
3: u← {0}
4: do
5: #par region:static(16)
6: for j = 1 to p do
7: r ← thread id
8: if ‖L:j‖0 > 0 then
9: for i = j to p do

10: v ← L̂−1
i: L:j − L̂−1

ij

11: if εinv ≤ |v| then
12: ur ← max(ur, |v|)
13: L̂−1

ij ← v + L̂−1
ij

14: end if
15: end for
16: end if
17: end for
18: #end par region
19: while max(u) > εinv
20: return L̂−1

2) Parallel Approximate Matrix Inversion: The approxi-
mate matrix inversion is dominated by sparse matrix-matrix
multiplication, but also requires intermediary logic for the
dropout rule (see section IV-C for more details). Unlike the
sample covariance matrix subroutine, the computation here
begins sparse, as L is sparse, and is kept sparse. We execute
Algorithm 3 with L and εinv as inputs. Here εinv is used
as both a termination and dropout tolerance. In steps 1–3
of the algorithm the appropriate variables are initialized to
their starting values. The value of L is written over as I− L
to simplify the computation (see (13) for more information).
Notice that we know L−1

ii = 1, as it is a unit-diagonal
triangular matrix, thus none of the arithmetic in (13) will
be performed on the diagonal entries. Each element of the
maximum absolute value array u is allocated to a thread id
r. In step 19 of the algorithm we use u to assess conver-
gence of the approximate Neumann series. The majority of
the computation takes place in the shared-memory parallel
region shown in steps 5–18. Here we use the OpenMP static
scheduling with a chunk size of 16. Decreasing the chunk size
will decrease load imbalances as it will be unlikely for clusters
of columns with high computational load to be allocated to the
single thread. With this said, larger chunk sizes will increase
cache efficiency, but also increase potential load imbalances.
The optimal selection of the chunk size is dependent on the
problem and system specification. Next, on line step 8 if
a given column of L−1 contains nonzeros, we proceed to
compute and store the respective update values of L̂−1

ij in
the local temporary variable v. If the update value surpasses
the tolerance, we adjust both u and L̂−1

ij with the temporary
variable. This process is repeated until convergence.



VI. EXPERIMENTAL SETUP

In this section, we outline the experimental setup for results
shown in section VII. Here we describe the procedure for gen-
erating the synthetic datasets and sparsity parameters used to
evaluate the scalability and performance of PRL-SQUIC. For
performance comparisons we use C++ packages of BigQUIC
and HP-CONCORD.

To construct the synthetic datasets, we start by defin-
ing Θ∗ and computing its exact inverse Σ∗. Given a ma-
trix of normally distributed uncorrelated random variables
Z ∈ N (0, I) ∈ Rp×n, the synthetic dataset is computed as
Y = ZL, where L is the lower-triangular Cholesky factor
of Σ∗. Generating large-scale test cases poses a problem as
computing the exact inverse of Θ∗ is a non-trivial task. To
sidestep this issue, we construct Θ∗ such that it is blockwise
equal and thus inversion can be computed on each block
θ∗ ∈ Rl×l, where l is the block size. We assign l = 10 and
define the symmetric block matrix

θ∗
ji = θ∗

ij :=


1, i = j,

(11− j)−1, i = 10,

0, else.
(15)

This matrix has an “arrowhead” sparsity structure and will
have on average 2.8 nonzero entries per row. The full p × p
matrix can be written as Θ∗ = Ip/l ⊗ θ∗. Notice that Θ∗

encodes the GMRF of p/l correlated hub-like clusters. The
inverse of Θ∗ can be easily computed as Σ∗ = Ip/l⊗ (θ∗)−1.
We know that (θ∗)−1 will be dense, but in a high-dimensional
setting Σ∗ will be sparse with a 10 × 10 dense block on the
diagonal.

The synthetic datasets generated have p = {10, 102, 103,
104, 105, 106, 107} random variables, all with n = 100 sam-
ples. We have selected the sparsity parameters for PRL-SQUIC
and BigQUIC as λ = {0.65, 0.70, 0.75, 0.80, 0.85, 1.0, 1.2}
for the respective problem sizes. For HP-CONCORD, tests
have been conducted for problem sizes up to p = 104, using
λ1 = {0.15, 0.20, 0.35, 0.45} and λ2 = 0.2. For the fMRI
dataset, λ = 0.95 is used for PRL-SQUIC and for HP-
CONCORD, λ1 = 0.8 and λ2 = 0.01 These parameters
have been selected such that PRL-SQUIC, BigQUIC, and HP-
CONCORD provide an equivalent number of nonzeros in the
recovered inverse covariance matrix which are also closest to
the ground truth in the synthetic test cases.

VII. NUMERICAL RESULTS

In this section, we will demonstrate the performance and
scalability of PRL-SQUIC. We begin in section VII-A with an
analysis of the approximate inversion scheme. In section VII-B
we evaluate the single node performance of PRL-SQUIC with
respect to BigQUIC and HP-CONCORD. In section VII-C
the scalability results for PRL-SQUIC are provided for both
distributed memory and single node configurations. Finally,
in section VII-D we apply PRL-SQUIC on an fMRI dataset
to recover the functional connectivity structure of the human
brain.
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Fig. 3: The maximum absolute updated values of L̂−1
k+1 (left axis) versus

Neumann series iteration k; see Algorithm 2 and section IV-C for details. The
ratio of the number of nonzero elements of L̂−1

k+1 with respect to L̂−1
k (right

axis) versus Neumann series iteration k. In all tests cases εinv = 10−12.

All tests have been conducted on “Piz Daint,” a Cray XC50
system that is installed at CSCS. Each of the compute nodes
is equipped with a 12-core Intel(R) Xeon(R) E5-2690 v3 @
2.60 GHz with 64 GB of memory.

A. Sparse Inverse Matrix Approximation

In this section, we look at the relationship between the
number of Neumann series iterations and the number of
nonzeros and maximum update values of L̂−1. For this test
we use the p = 105 synthetic and the fMRI datasets, with the
approximate inversion tolerance set to εinv = 10−12.

The reported results in Figure 3 show that for both datasets,
the ratio of the number of nonzero elements in L̂−1

k+1 with
respect to L̂−1

k approaches 1 after only 3 iterations. At this
point the maximum update value of the Neumann series is
sufficiently small, on the order of 10−3, and the number
of nonzeros per row of L̂−1 is equal to approximately 60
and 1,400 for the synthetic and fMRI datasets respectively.
This observation shows that for these synthetic and real-world
database the Neumann series requires only a few iterations to
capture both the structure and accuracy of the approximated
inverse. Notice that if we select, say, εinv = 10−3, the number
of nonzeros will be significantly less than what is observed in
this test. This is because what we are reporting is the maximum
update values and, thus, there could be many update values
which fall below the threshold εinv threshold. In practice
for the same test at εinv = 10−3, we observe only 3 and
20 nonzeros per row for the synthetic and fMRI datasets,
respectively. As a result we will use εinv = 10−4 for the
remaining tests outlined below. In the extreme cases where
L̂−1 might not be sparse and the majority of the elements
are large, we might expect some deteriorating performance
due to the increase of floating point operations and memory
footprint. However, in such an extreme scenario, the impact
of increased floating point operations can be mitigated due to
the multithreading shared-memory parallelism of the Neumann
series iteration; see section VII-C for details.
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B. Single Node Performance

As BigQUIC is not a distributed memory software package,
the performance comparison between PRL-SQUIC, BigQUIC,
and HP-CONCORD will be conducted on a single node.
We expect similar performance profiles between PRL-SQUIC
and HP-CONCORD in a distributed memory deployment, as
both programs exhibit efficient strong scalability (see VII-C
and [34] for PRL-SQUIC and HP-CONCORD, respectively).
In Figure 4 we report the total normalized runtime for the
synthetic test cases with p ≤ 105 and using a termination
tolerance of εterm = 10−4. We can observe that on a single
node the runtime of BigQUIC and HP-CONCORD converge
to be roughly the same. This observation corresponds to the
“chain graphical model” test case outlined in [34]. Notice that
for HP-CONCORD the problem size was limited to p < 105,
though the distributed memory deployment does not have this
restriction. PRL-SQUIC exhibits significantly faster runtimes
in comparison to both BigQUIC and HP-CONCORD. For the
test case of p = 105, PRL-SQUIC finished in 2 minutes,
while BigQUIC took over 2 hours. For this problem size, PRL-
SQUIC and BigQUIC converged in 4 and 8 Newton iterations,
respectively. Each iteration of PRL-SQUIC took roughly 2
seconds while the remaining time was spent on the sample
covariance matrix subroutine. For BigQUIC each iteration took
the same time of 15 minutes. Tests larger than p = 105 could
not be conducted at CSCS as the runtime of BigQUIC would
exceed the 24 hour maximum execution time.

C. Strong Scalability

Strong scaling for distributed memory parallelism for all
test cases is shown in the top panel of Figure 5. All ex-
perimental results are based on 4 Newton iterations. For
the synthetic datasets the number of nonzeros per row re-
covered in the inverse covariance matrix is {1.5, 1.3, 1.1}
for p = {105, 106, 107}, respectively, and 20 for the fMRI
dataset. In the p = 107 test case, we observe that PRL-
SQUIC exhibits ideal scalability from 8 to 128 nodes. For
the synthetic test case of p = 106 we observe almost ideal
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Fig. 5: Top panel—Strong scaling for distributed memory deployment of
PRL-SQUIC. Bottom panel—Node-level strong scaling for PRL-SQUIC and
respective subroutines. All tests run 4 Newton iterations with εinv = 10−4.
Note the normalized total and sample covariance matrix runtimes of the fMRI
test case are visually identical to the synthetic case.

scalability, with slight deterioration at 128 nodes. On the 128
node tests, the total compute time of the p = {106, 107}
synthetic examples was 3 minutes and 1.3 hours, respectively.
For the small test cases of p = 105 synthetic and the fMRI
example, we have reduced strong scaling starting at roughly
32 nodes. At this point, the routine runs in 8 and 419 seconds
for the respective tests and the critical bottleneck becomes
the non distributed approximate matrix inversion subroutine.
The observed efficient distributed memory scalability of PRL-
SQUIC in the large examples is justified because the sample
covariance matrix subroutine dominates the compute time in
these high-dimensional examples. In contrast to the smaller
test cases, the p = {106, 107} synthetic examples, 32% and
92% of the respective total compute time was spent on the
sample covariance matrix subroutine.

Node-level scaling for the parallelized subroutines and
overall program are shown in the bottom panel of Figure 5.
Tests have been conducted for a synthetic problem size of
p = 105 and the fMRI dataset. The normalized total and
sample covariance matrix runtimes of the fMRI test cases
exhibit visually identical parallelization in comparison to the
synthetic test case, and thus are ignored for clarity. For both
test cases, the overall routine attains a 5× speedup at 12 cores



with a majority of the performance gains attributed to the
sample covariance matrix subroutine. The approximate matrix
inversion subroutine exhibits 1.9× and 3× speedup at 12
cores, for the synthetic and fMRI test cases, respectively. The
lower performance gains of the approximate matrix inversion
using the Neumann iteration are expected as the multithreaded
sparse matrix-matrix multiplication has low arithmetic inten-
sity. For scenarios where L̂−1 is less sparse, for example, in
the fMRI test case, we can see that the parallelism in this
subroutine is more effective as the arithmetic intensity of the
computation is higher. With this said, for both subroutines,
there is visibly minimal deterioration in the parallelization with
increasing number of cores.

D. Case Study: fMRI dataset

The testing procedure outlined in this section follows
the approach of the authors of HP-CONCORD [34].
We use the “HCP 1200” fMRI dataset which is part
of the Human Connectome project [35] found at
https://db.humanconnectome.org, which contains
p = 91,282 random variables corresponding to the left
and right hemisphere, and subcortical regions of the brain.
Mapping the connectivity of the brain is objective in this
case study, and although the covariance matrix will provide
insight on this marginal connectivity [47], the inverse
covariance matrix is of particular interest for modeling direct
associations [48].

We will use PRL-SQUIC to map direct functional connec-
tivity of the brain and compare it in Table I to HP-CONCORD
on 128 nodes. First, we can see that both routines return
approximately the same number of nonzeros per row for the
recovered inverse covariance matrix Θ̂. In Figure 6 the sparsity
structure of Θ̂ recovered by PRL-SQUIC is visualized. We
can see two distinct block diagonal groups of connectivity
which correspond to the left and right hemisphere of the brain.
The lower portion of the matrix is associated with the sub-
cortical regions of the brain. The recovered sparsity structure
is coherent with results presented in HP-CONCORD [34].
Further, we can see that our approximation for Θ̂−1 is sparse
with only 2.5× more nonzeros per row than Θ̂. Although both
methods used the same initial guess, we can see in Table I that
PRL-SQUIC required fewer iterations than HP-CONCORD
for the same termination tolerance. This is expected as HP-
CONCORD is a first-order method with slower convergence,
while the PRL-SQUIC utilizes second-order information. The
total runtime of PRL-SQUIC is approximately 10× faster than
HP-CONCORD in this dataset.

VIII. CONCLUSION

In this work, we present PRL-SQUIC, a highly scalable
inverse covariance matrix estimation method. Based on the
`1-regularized ML method, our parallel algorithm leverages
distributed memory systems to recover the underlying graph
structure of large-scale datasets. Building on the current ad-
vancements of ML-based methods [23], [25], [27] we in-
troduce PRL-SQUIC, a novel hybrid MPI-OpenMP parallel

TABLE I. Functional Magnetic Resonance Imaging Dataset Comparison.

HP-CONCORD PRL-SQUIC

‖Θ̂‖0/p 21 20

‖Θ̂−1‖0/p – 50
Iterations 65 6
Total compute time (sec) 4,948 419

Sample covariance matrix time (sec) – 116
Approximate matrix inversion time (sec) – 10
Sparse Cholesky factorization time (sec) – 12

Fig. 6: Left panel—sparsity structure of recovered inverse covariance matrix
(91,282 × 91,282) for fMRI dataset. Right panel—zoom in of the sparsity
structure of the top left block of the recovered inverse covariance matrix
(29,696× 29,696), corresponding to the left hemisphere of the brain.

framework, which exhibits almost ideal strong scaling up to
thousands of cores. Our contributions exploit the intrinsic par-
allelism of various advanced sparse linear algebra techniques
in SQUIC, specifically, in the sample covariance matrix and
in the approximate matrix inversion of the Neumann series
iteration.

For single node performance, we have compared PRL-
SQUIC to BigQUIC [25] and HP-CONCORD [33], [34], [36].
The results are favorable for PRL-SQUIC with significant
performance gains that reduce runtimes from hours to minutes.
Furthermore, the distributed memory parallelization of PRL-
SQUIC is highly efficient, with almost ideal strong scaling to
up to 128 nodes. We show for the first time that PRL-SQUIC
is capable of approximating sparse inverse covariance matrices
of datasets up to 10 million dimensions, which is far beyond
what has been reported in the literature thus far.

We also tested PRL-SQUIC on a fMRI dataset, where the
recovered inverse covariance matrix encodes direct functional
connectivity of different regions of the human brain. Our
results show that PRL-SQUIC exhibits good strong scalability
and performance for this dataset as well, while at the same
time equivalent recovery of the inverse covariance matrix in
terms of structure and density.

ACKNOWLEDGMENTS

We gratefully acknowledge the collaboration of Penporn
Koanantakool (UC Berkeley, Google Brain) and Sang-Yun Oh
(UC Santa Barbara) for their guidance on the fMRI dataset and
the comparative performance results of HP-CONCORD. We
also acknowledge support by the Swiss Platform for Advanced
Scientific Computing which is a structuring project supported
by the Swiss Council of Federal Institutes of Technology.



REFERENCES

[1] J. Fan, Y. Fan, and J. Lv, “High dimensional covariance matrix esti-
mation using a factor model,” Journal of Econometrics, vol. 147, pp.
186–197, 2008.

[2] M. O. Kuismin and M. J. Sillanpää, “Estimation of covariance and
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