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Abstract—In 2015, OLCF’s Titan supercomputer experienced
a significant increase in GPU related job failures. The impact
on jobs was serious and OLCF decided to replace ~50% of the
GPUs. Unfortunately, jobs using more than 20% of the machine
(i.e., leadership jobs) continued to encounter higher levels of
application failures. These jobs contained significant amounts
of both the low-failure rate and high-failure rate GPUs. The
impacts of these failures are more adversely felt by leadership
jobs due to longer wait times, runtimes, and higher charge rates.
In this work, we have designed techniques to increase the use of
low-failure GPUs in leadership jobs through targeted resource
allocation. We have employed two complementary techniques, up-
dating both the system ordering and the allocation mechanisms.
Using simulation, the application of these techniques resulted
in a 33% increase in low-failure GPU hours being assigned to
leadership jobs. Our GPU Age-Aware Scheduling has been used
in production on Titan since July of 2017.

I. INTRODUCTION

The Oak Ridge Leadership Computing Facility’s (OLCF)
Titan supercomputer is one of the largest, heterogeneous CPU-
GPU-based HPC deployments in the world with one GPU
per compute node, for a total of 18,688 GPUs. The GPUs
have enabled Titan to achieve high performance (27 petaflops
(PF) peak and 17.57 petaflops actual, formerly No. 1 and No.
5 on the November 2017 Top500 list) in an energy-efficient
fashion. As promising as this technological path is, we are
still in the early stages of understanding the reliability of
GPUs in extreme scale machines. This is particularly important
to OLCF for the following reasons. One, a majority of the
leadership jobs on Titan, those that use 20% or more of the
compute nodes, have successfully adopted the use of GPUs,
and the reliability of the GPUs impacts the reliability of
these large-scale jobs. Two, OLCF’s next system, the 200 PF
Summit system that is currently being deployed, is continuing
on the heterogeneous CPU-GPU node architectural path with
six GPUs per node, for a total of 27,648 GPUs. Potential issues
will only compound if left unaccounted for given the 48%
increase of physical GPU components in Summit.

With Titan’s operation beginning in 2013, the system exhib-
ited a lower than projected failure rate. One every seven days
compared with one every 24 hours. This changed in the second
half of 2015 when GPU failures increased, resulting in the loss
of several nodes per day. The failure rate accelerated through
2016 and into early 2017. A collaboration between OLCEF,
Cray, and NVIDIA identified that the failures were influenced
by temperature and lifetime. The identification of the defect
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and the rate of failures resulted in the need to preemptively
replace GPUs to mitigate the long-term impact to the system.

By early 2017, roughly 8,500 of Titan’s 18,688 GPUs were
replaced. Unfortunately, replacing every GPU was impossible
as NVIDIA no longer manufactured the part. Due to the
inability to replace all of the GPUs, replacements were limited
to the devices that were believed to be the most likely to fail.
This analysis was provided by NVIDIA and was based on
the criteria of number of past failures, age of the device, and
physical location of the device in the system. Location, both
on the machine floor and within a cabinet, plays a significant
role in the temperatures of the devices. Upon the completion
of the replacements, the loss of nodes per day stabilized but
large jobs continued to see higher failure rates than in the
past. This prompted the investigation of additional solutions
seeking to mitigate the impact to users.

In this work, we contribute two complementary techniques
for using scheduling and resource selection to improve the
number of stable GPUs allocated to leadership (large-scale or
high-priority) jobs. We use insights from the analysis of the
current system to accomplish this without impacting system
utilization, a major metric for evaluating the success of the
OLCEF flagship systems.

The first technique modifies the resource allocation list
created by the Application Level Placement Scheduler (ALPS)
and places stable GPUs in a scheduling order that makes
them more likely to be allocated to leadership applications.
In simulation, this technique shows approximately 200,000
additional stable GPU hours per week for large jobs. Our
results from production jobs on Titan demonstrate continued
positive impacts with several consecutive months where the
majority of failures occurred in non-leadership jobs.

The second technique builds upon a strategy developed in
related work called Dual-Ended Scheduling (DES). With this
technique, different classes of jobs are allocated from the
opposite “ends” of the resource list with the goal of reducing
fragmentation [1]. In this paper, we build upon that strategy
to reduce the contention for stable GPUs by mapping jobs
needing less stability, e.g. small short-lived jobs, to more
suitable resources. Additionally, we investigate scheduling
CPU-only jobs with DES moving these jobs to nodes with
less stable GPUs without impacting the stability of the job.
The result is an increase of availability of stable GPU nodes
for leadership jobs. Applying this technique with the reordered



resource list we were able to add an additional 100,000 stable
hours per week to large GPU jobs.

II. BACKGROUND AND MOTIVATION
A. Titan Specification

The Titan supercomputer is the OLCF’s 27 PF Cray XK7
system. It is powered through a combination of AMD Opteron
Interlagos CPUs and NVIDIA Tesla K20X GPUs. Most of the
27 PF comes from the GPUs. Each K20X is capable of 1.31
TFs of performance through the use of 2,688 CUDA cores. To
feed the huge number of available cores, each GPU contains 6
GB of GDDRS5 memory with 250 GB/s of memory bandwidth.
A Titan node contains one GPU per node and has 18,688
total compute nodes connected together by a Cray Gemini [2]
network, providing 5.2 GB/s of network access to each node.
Titan serves as the flagship resource for the OLCF.

B. Leadership Facility

The OLCEF is tasked with the goal of providing resources
necessary to run large-scale scientific applications. Scientific
applications requiring significant resources are prioritized over
smaller applications. Providing compute core hours to leader-
ship jobs is a major metric that the OLCF is evaluated on
annually. DOE also evaluates OLCF on other metrics such as,
system utilization, in which OLCF must ensure that 90% of
the compute hours are used.

Access to Titan is handled through a highly competitive
peer-reviewed, proposal process where 90% of the hours on the
machine are split between two programs, INCITE and ALCC.
Both programs support a wide range of science in academia,
government, and industry. A key evaluation criterion for
proposals is a computational readiness metric that determines
if an application can scale to the appropriate leadership class
sizes on Titan and can also make use of the computational
benefits of the GPU devices. A leadership job is one that uses
at least 20% of the 18,688 compute nodes or 3,750 nodes. As
a result of this process, the workload on Titan tends to favor
leadership class applications using GPUs for acceleration.

C. GPU Reliability

Due to the role of GPUs as the primary driver for flops,
it is important to understand GPU reliability. Since Titan was
one of the first flagship GPU supercomputers, much has been
learned from observing Titan in production. The common
types of GPU hardware errors and their impact on jobs are
discussed in [3]. Several of these errors are associated with
failing hardware and have been uncommon since the initial
component burn-in. Other errors, transient soft errors such as
off-the-bus or double-bit errors (DBE), occurred infrequently.
In an early study [4] using two years of GPU data, the mean
time between job failure on Titan was 7 days.

GPU failure rates started increasing in July 2015. Figure 1
shows the increasing trend in GPU failures. However, it was
not until the significant set of loses in April 2016, that the
magnitude of the problem was apparent. The GPU failures
highlighted an increase in the number of GPUs experiencing

regular DBEs. Figure 2 shows the rate of failures caused by
DBEs increasing in early 2016. The first two months of 2016
resulted in 47 job failures by DBE errors compared with 58
total in the previous year.

The sharp increase in the number of DBEs on a node was
later discovered as the indicator of a failing device. A failing
device could cause job and data loss in multiple separate
jobs prior to being removed from the cluster. Since DBEs
are transient and can occur in healthy equipment, the removal
procedure was not enacted until a single GPU device received
multiple errors before being pulled from the node. Typically a
node would be removed from service, the faulting component
would be replaced, and the node would be released back into
the system. At the peak of the problem, Titan was losing an
average of 12 nodes per day.

Titan GPU Failures (2014 - Present)

—— Weekly Failures
——— Trendline

Fig. 1. GPU total failures by week on Titan, show the increasing rate of
failures until the replacement of the GPUs. After replacement, the failure rate
has stabilized and the trend is continuing to decrease.
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Fig. 2. GPU DBE failures by year on Titan, demonstrate the low failure rate
of the system leading into mid 2015 and accelerating through 2016

By late-2016 the underlying cause of the failures was found
to be a manufacturing issue on the card, but not on the GPU
chip itself. The fix meant replacing failing GPU SXM devices
since the component could not be easily repaired. At the peak
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Fig. 3. Failures since September 2016 and the accuracy of NVIDIA’s
predictive model.

of these failures, Titan had been in service for 3.5 years.
NVIDIA no longer manufactured the Tesla K20X and their
failure models did not account for the number of parts created
by this scenario. This meant that only a portion of Titan’s
GPUs could be replaced.

Ultimately, a significant number of replacement GPUs were
either located or manufactured and as of July 2017, 9,500
GPUs were replaced. The choice of which GPUs to replace
was based on predictive models developed by NVIDIA, which
took into account the age, location in the room, and heat
exposure for individual GPUs with heat identified as the prime
contributor to failure. GPUs highest in a rack would fail sooner
and more frequently than those lower in a rack. Figure 3
depicts the actual failures since September 2016 and the ability
of NVIDIA’s model to predict which specific GPUs would
fail. When the failures were at their peak, NVIDIA’s model
was over 90% accurate and provided confidence on which
GPUs to replace. As the replacements lowered the failure rate,
the model’s ability to predict specific failures decreased as
well. The predictive model indicated that the components most
likely to fail were based on the lifetime of the component and
temperature exposure over time. This overlaps with previous
studies [5] that identified clusters of failures based on spatial
locality, i.e., location of the rack in the data center and the
location of GPUs within a rack. While this decision was
pragmatic, the impact on scheduling was not well understood.

D. Scheduling

1) MOAB: Titan schedules jobs through Adaptive Com-
puting’s MOAB [6] scheduler. Since Titan contains a single
node type, there is one primary queue for batch scheduling as
node differentiation is unnecessary. The policy MOAB uses
is broken into four domains based on the size criterion. This
policy is outlined in Table I and as shown, large leadership jobs
receive the highest priority and are enabled to run up to 24
hours, the maximum duration allowed. While this significantly
reduces the queue wait times experienced by leadership jobs,
they still generally wait the most time in the queue, since
smaller jobs primarily run in backfill windows [7]. The concept

of backfill is a technique for enabling higher system utilization
by shuttling smaller, shorter jobs onto the machine through
side channel scheduling. Essentially, the concept works by
calculating the soonest that the highest priority job can be
placed on the machine. This is performed by forcing each
application to input the expected time duration of their job.
A job exceeding this time will be forcibly terminated. Using
this information the scheduler is able to calculate the set of
nodes that will be available soonest, if all jobs run up to their
wallclock time. This set of nodes becomes a backfill window.
As jobs running in this allocation finish up, smaller jobs on
the queue can be placed on these nodes, out of order, if their
requested wall clock time do not impede the larger job trying
to get onto the machine. This significantly reduces the time to
placement for smaller applications on Titan, traditionally large
jobs can spend several days to weeks in queue prior to being
scheduled on the machine. Resource reservations are granted
to the two highest priority jobs on the scheduling queue. Once
resource reservations have been calculated, it can take up to
an additional 24 hours before a job is actually placed on the
machine.

Policy Name Nodes/Job Maximum  Aging
Runtime Boost
Bin60 11,250 - 18,688 24 Hours 15 Days
Bin20 3,750 - 11,249 24 Hours 5 Days
Bin0 125 - 3,749 6 Hours 0 Days
SmallMaxJobs 1-124 2 Hours 0 Days
TABLE I

SCHEDULING BINS FROM TITAN MOAB CONFIGURATION SHOWING THE
PRIORITIZATION AND TIME DURATION BASED ON REQUESTED JOB SIZE.

2) ALPS: Resources, in this case compute nodes, are
scheduled from an ordered list that is generated by Cray’s
ALPS. The list is constructed at system boot time and in-
tegrates knowledge of the network into the resulting list.
There are several network properties that are important in the
construction of the ALPS list. First, the Gemini 3D Torus
is anisotropic, meaning that latency and bandwidth in the
X,Y, and Z dimensions are not symmetric. In particular, the
Y-dimension of the network alternates between 4.68 GB/s
and 9.36 GB/s, while the X and Z dimensions achieve 9.36
GB/s and 15 GB/s respectively. ALPS takes advantage of this
knowledge by using basic building blocks to construct the
list. A basic building block on Titan is a 4x2x4 block of
nodes, shown in Figure 4. The block is 4 wide in the X-
dimension, 2 wide in the Y-dimension, and 4 wide in the Z-
dimension. From an application MPI placement perspective,
this results in a grouping of processes that have 9.36 GB/s
of bandwidth in the X and Y dimensions and 15 GB/s in
the Z-dimension. Each block contains 4, 2x2x2 Hilbert curves
using a clockwise orientation, as depicted in the second half
of Figure 4. Basic building blocks are used to populate the
system. Blocks are placed starting from the 0,0,0 coordinates
filling up the z-dimension first. The y-dimension is populated
second, until fully populated, and the x-dimension is populated
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Fig. 4. ALPS 4x2x4 Basic Building Block, used for network aware enumer-
ation of Titans nodes for scheduling and rank placement
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Fig. 5. Building block placement in a 3D torus. Population prioritizes the Z,
Y, and then the X dimension

third. Figure 5 shows the population of a Titan like system
using 13 basic blocks. The result is a list of nodes, as shown
in Figure 5.

Outcome: As GPUs were being replaced the position in
the ALPs list was not considered. The results was a wide
distribution of stable GPUs across the ALPs list. This meant
that even when jobs got large contiguous allocations, the
mixture of nodes contained a random mix of stable and
unstable GPUs. The high mixture of GPU types in a job
reduced the potential impacts intended by the replacements.
Leadership jobs continued to accumulate the majority of job
failures on Titan.

III. DESIGN

1) Design Space:

a) Motivating Example: To motivate the problem, we
present analysis of the impacts and rates of failure based on
a simplistic representation of the system. For this effort we
consider a single 4,000 node leadership job running for 24
hours. Using the scheduling and resource selection mechanism
described in the previous section, we consider the impact to
the job’s MTBF at different ratios of GPUs. Titan contains
two separate pools of GPU resources. Pool A contains 9,500
nodes of stable GPUs with a failure rate of 1 node per 24 hours
while Pool B contains 9,188 nodes of unstable GPUs with a
system-wide failure rate of 5 nodes per 24 hours. We consider
five different ratios of new and old GPUs in Table II. We treat
the two pools as a series (i.e., failure of either pool causes
system failure) and we compute the MTBF for the combined
pool.

Pool A Pool B
(New GPUs) (Old GPUs) MTBF
0 4,000 11.0
1,000 3,000 13.8
2,000 2,000 18.5
3,000 1,000 27.9
4,000 0 57.0
TABLE 11

IMPACT ON MTBF FOR A 4000 NODE JOB ON TITAN USING DIFFERENT
RATIOS OF NEW AND OLD GPUS.

The table shows that job stability improves substantially by
increasing the Pool A GPUs within the allocation. Biasing
GPU-enabled tasks toward nodes with newer GPUs and CPU-
only tasks to nodes with older GPUs can benefit non-HPC,
work-stealing runtimes as well even though the impact of a
node failure may not be as large as in tightly-coupled HPC
simulations.

b) Alternatives and Challenges: From a practical per-
spective, influencing the number of new GPUs in a leadership
allocation is not trivial. Several strategies were proposed
including enabling more queues for users to specify alloca-
tion needs, such as CPU only, to free up GPU resources.
Unfortunately, without incentives, it would be difficult to get
users to specify such information. Additionally, incentives
may encourage unintended consequences such as a misuse
of the resource, creating more negative effects. We also
considered specifically reserving new GPUs for leadership
jobs. Unfortunately, the mechanisms for performing this, such
as a separate queue or a new-GPU resource flag, could impact
system utilization, create longer wait times on the system,
or both. Given that system utilization is one of the most
significant DOE metrics used to evaluate the effectiveness
of the OLCE, this option was not considered. We considered
moving GPUs, but moving old GPUs to higher heat locations
would accelerate their failures and moving large numbers of
GPUs to make contiguous allocations using the original node
ordering was impractical. A fourth option was to prioritize
new GPUs into large jobs. The challenge with this approach
would be validating that the change was effective and ensuring
that the impact on the allocations and the network did not
result in significant performance degradation due to increased
fragmentation.

c) Basis: A previous study [1] modified Titan’s schedul-
ing to improve application performance based on a job size
criteria to shape allocations by reordering the ALPS list.
Additionally, a secondary technique was developed called
Dual-Ended Scheduling (DES) that sought to alleviate the
impacts to network performance that were caused by allocation
fragmentation. The authors analyzed the number of hours that
had been historically allocated to each node based on the
node’s position within the ALPS scheduling list. They found
that the first-fit algorithm allocated the most hours to nodes
at the front of the list, with the back end of the list getting
the fewest hours. This is shown in Figure 6 prior to the
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Fig. 6. Allocated hours to each node of Titan based on position in the ALPS
list. Nodes in the first 20% of the machine are traditionally allocated first due
to a top-down first-fit allocation strategy.

implementation of DES on Titan. With the use of DES, the
back end of the list was allocated more small job hours, while
the front end of the list was allocated more large job hours.

d) Overview: In this work, we exploit the aforemen-
tioned scheduling strategies of ALPS ordering and DES on
Titan, and bring them to bear in a novel way to improve
the reliability of leadership jobs. These techniques were orig-
inally developed to fundamentally improve job performance
by reducing fragmentation. However, we see the potential
to apply smart scheduling to improve the reliability of the
jobs and consequently improve the productivity of the system.
Specifically, our contributions are as follows.

o GPU Age-aware ALPS Reordering: In this technique, we
create a new node ordering of the scheduling list, one
based on the age and stability of the GPUs.

e GPU Focused Dual-Ended Scheduling: A new application
of DES seeking to match jobs needing less GPU stability
such as small or cpu-only jobs, to the set of resources
offering less stability, creating less contention for stable
GPUs.

e Multi-parameter Simulation Study: Using scheduling
simulation we are able to evaluate a wide range of param-
eters to the proposed techniques on an actual workload
extracted from Titan.

o Large-Scale Test-shots on Titan: Simulation results pro-
vide the confidence necessary for live test-shots on the
full Titan system. Results from the test-shots allow us
to quantify the potential negative impacts to network
performance from the proposed strategies.

o Deployment: Our scheduling improvements have been
deployed in production for the past year, and has resulted
in tangibly improving the reliability of leadership jobs.
Finally we continue to perform on-going analysis of our
techniques on the production Titan system to gauge their
efficacy.

2) GPU Age-aware ALPS Reordering: From the scheduling

work mentioned previously, it became clear, that the policies in
MOAB have resulted in a preference being given to the nodes
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Fig. 7. Reordering to move new GPUs to the start of the list to service large,
GPU-enabled jobs

at the head of the list. From this, we propose a GPU Age-aware
reordering of the scheduling list in order to improve the relia-
bility of leadership jobs. A reorganization of the scheduling list
may be utilized to provide stable GPU preference to jobs that
are scheduled on the machine through traditional (non-backfill)
scheduling mechanisms. Further, when employed with a past
approach such as DES, it may be possible to additionally
schedule jobs not needing GPUs in a portion of the machine
with older GPUs.

The complexity built into ALPS, discussed in II-D2, is
intended to provide better network performance for jobs.
However, in practice, many of the impacts get lost. This is due
to operationally mixing multiple jobs into the supercomputer.
The result is fragmentation, an imperfect allocation that creates
several disjoint sets of nodes spread throughout the machine
for a job’s use. The result of fragmentation is decreased
network performance. There have been several studies on
fragmentation at different facilities [1] [8], each with solutions
meeting a particular facility’s operational needs.

GPU Age-aware ALPS Reordering is simple in implemen-
tation, yet very powerful. Titan continues to use ALPS to
generate the original scheduling list based on the network
enumeration of the system. A secondary reorder pass of the
list is conducted prior to handing off to MOAB, shifting all
known stable GPUs upward in order as shown in Figure 7. The
resulting list has the 9,500 new GPUs at the top of the list and
the 9,188 older GPUs below them. The ordering of the GPUs
in relation to their type is maintained. The list was created with
the understanding that it would impact network performance.
However, due to natural fragmentation that occurs on the
system, it is possible that the resulting allocations under a
traditional workload would have marginal impact.

3) GPU Focused Dual-Ended Scheduling: Dual-Ended
scheduling is a strategy used on Titan that reduces the impact
of fragmentation on large jobs by scheduling smaller jobs from
the opposite end of the ALPS list. In the original work, it
was observed that the top-down scheduling strategy of jobs
of different sizes and wall-clock times would lead to gaps in
the scheduling list. This was particularly true at the OLCF
with a mixture of very large jobs running upward of 24
hours. Instead, Dual-Ended scheduling combines the use of
top-down and bottom-up scheduling for the machine using a
demarcation point to select which strategy to use. The current



implementation on Titan uses a demarcation point of jobs sized
at 16 nodes to trigger bottom up scheduling. The challenge was
the selection criteria of the demarcation point for best results.

Similarly, the impact of dual-ended scheduling could be
used to move smaller jobs away from larger jobs needing more
stable GPUs. Using a similar strategy it may be possible to
improve the matching of jobs with less stability requirements
to nodes better matching those needs. Again, the question
becomes, how to to select a demarcation point to match the
needs of the system.

In the past, job-size was a good selection to reduce fragmen-
tation because of the system imposed time-limits on these jobs
(24-hours). Other strategies were evaluated, such as selecting
jobs with short wall clock requests. It is reasonable to prioritize
small jobs to less stable GPUs. Their shorter wall-clock
duration makes them less likely to lose significant work in the
face of a failure. However, the definition of a small job remains
rather nebulous. With the specific goal of seeking to improve
stability for leadership class jobs over 3,750 nodes, any job less
than 3,750 nodes could potentially constitute a small job. For
the course of this study, we compare the current dual-ended 16
node (DE16) with a demarcation point that considers any less
than 20% (3,750 nodes) of the system for separate scheduling.

Another potential demarcation point relies on the knowledge
that we have projects on the machine that operate using only
CPUs. The most common leadership job size on Titan sits
within the Bin20 bucket. These jobs, shown in table I, have
a large range, but the most common job submissions sit at
the lower end of that bucket. This means that the machine
is often running simultaneous 3,750-4,096 node jobs. For
instance applications from Climate studies tend to use CPUs
only for computation over particularly large allocations. If
CPU only leadership jobs are prioritized to stable GPUs, that
could reduce the stability of a subsequent job that is scheduled
slightly later. Instead it may be possible to use the dual-ended
techniques to prioritize known CPU only accounts on nodes
containing older GPUs. The number of CPU only accounts
on Titan is small and the numbers decrease as scientific users
become more comfortable with GPUs. For this reason, we do
not consider CPU only accounts as a primary demarcation
point, and instead couple it with one of the other sized based
approaches.

4) Motivation for Simulation and Test-Shots: The study
and implementation of scheduling policies on Titan is chal-
lenging. The policies used on the production system are
well understood as well as the impacts to the scheduling
queues and utilization. New scheduling policies could intro-
duce unintended consequences such as increased queue lengths
or decreased utilization. Ultimately, pushing new scheduling
policies onto Titan requires in depth analysis and demonstrable
impacts. A second challenge is understanding the impact
to the network performance associated with changing the
allocation policy. As mentioned previously, the ALPS ordering
integrates knowledge of Titan’s network into the list to densely
pack processes for better communication performance. While
maintaining this order is important, it often becomes the case

that jobs are naturally fragmented due to the system being
multiplexed. However, impacts to application performance
through scheduling should be understood prior to deploying
such changes.

We address these challenges in several experimental phases.
To study the possible set of changes to the scheduling system,
we use scheduling simulations that model the Titan system.
These simulations allow us to take actual workloads from
Titan and modify the scheduling approaches to observe the
effects without impacting our production resource. The results
of the simulation can then be analyzed to determine quantifi-
able impacts to the production workload. Studying the actual
impacts to network performance from scheduling requires the
use of a test-shot. A test-shot is a targeted study on the
actual machine where a representative workload is run using
base and modified conditions. Careful measurements are taken
during the experiments to serve as a basis for comparison. At
this point an argument can be made for pushing the changes
to the production machine. Upon successful deployment to
production, monitoring is continued to verify the outcome of
the changes. In the next section we will discuss our simulation
analysis.

IV. SIMULATION

The workload on Titan includes a wide range of job sizes,
arrival times, and run times. Modeling the workload is best
done by using historical traces. As mentioned in the previous
section, Titan uses the Adaptive MOAB scheduling system.
The MOAB scheduler provides a simulation mode that enables
historical traces to be replayed using different scheduling
conditions. While replaying applications, the simulator is able
to use the timings from a JOBEND record to model the request
that was originally used on Titan.

Along with other information, a scheduling trace contains
the number of nodes, submission time, project, and wall
clock time. Each of these plays a factor in the scheduling
decision made for the job. For replaying, the traces contain the
actual job outcome (completed), completion time, and original
dispatch time so that the simulator is aware of how long the
job actually ran for compared to the requested wall clock. The
result of changing the scheduling decision coupled with the
actual run time of the job impacts the set of nodes and backfill
windows that are available at each scheduling iteration. The
result of a simulation is a change to the scheduling decisions of
when jobs are dispatched, what nodes are used, and impacts to
average utilization, i.e. how often nodes sit idle due to inability
to schedule.

As discussed in the design section, we are interested in
determining the impact to scheduling from the modification
of two separate but correlated scheduling policies with the
goal of increasing large job stability. In our set of simulation
experiments, we used a one month trace from the period before
the GPU stability issues. Our simulation hardware environment
consisted of 8,500 stable GPUs and 10,188 original GPUs.
At the time of the simulation experiments, this modeled the
configuration on Titan. This trace contained roughly 4,000



jobs and had a common distribution of job sizes that made
it a good candidate for studying the impacts across a wide
range of leadership job sizes. We chose a trace from before
the GPU stability problems to model workloads from when
the system was healthier. At the peak of the stability problems
the scheduling traces had a higher failure rate and the number
of successful jobs dropped. Users were also modifying their
usage behavior in an attempt to mitigate the impact of job
loss.

We ran our simulation to measure four different cases.

1) DE16 Base: The base system, which was the default
ALPS ordering coupled with the DE16 scheduling de-
marcation point.

2) DE16 Reorg: The modified ALPS ordering with the
DE16 demarcation point.

3) Bin20Bin60 Base: The default ALPS ordering with less
than Bin20Bin60 used in the demarcation point.

4) Bin20Bin60 Reorg: The modified ALPS ordering with
less than Bin20Bin60 use in the demarcation point.

The simulation was run over the course of several weeks
as the MOAB simulator has little acceleration capability and
playback is at near real time. The results of the simulation
informed policy decisions and changes to Titan’s scheduling
preferences. From these changes we were able to determine
the new sets of nodes that jobs were allocated to, allowing
us to infer information about the type of GPUs the jobs were
given and the layout of the job within the network. We split the
leadership sized jobs into 3 buckets representing jobs greater
than 20%, 40%, and 60% of the machine (total number of
nodes). Due to size constraints it was likely that the most
impact would be in the 20% bucket, while the 60% was
unlikely to be affected much because these jobs allocate most
of the nodes in the machine. A reordering strategy will have
no effect on a full machine size job. The first set of analyses
broke large jobs into the three buckets and calculated a min,
max, and average on the number of “New GPUs” across the
set of jobs.

Figure 8 shows the results from the 20% bucket. The jobs
in this bucket represent the majority of the representative
leadership class jobs in the simulated workload. These results
show an interesting impact with the reorganized ALPS list
strategies. In these results, the minimum measured job shows
that it actually received zero stable GPUs, however the average
in both cases saw increases. The largest increase was with the
base reordering and the original DE16 demarcation point. In
this case the average Bin20 job saw almost 500 more stable
GPUs on average. Deeper analysis of the cases showing zero
GPUs were shown to occur when two or more leadership
jobs were simultaneously allocated. This increase in number
of simultaneous leadership class jobs running at a given
point means that there are fewer stable GPUs available for
subsequent jobs.

The next set of results in Figure 9, show similar impacts.
Both reorganized models showed significant improvements
to allocated stable GPUs. However, the overall impact was
greater than in the Bin20 bucket. These results were promising
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Fig. 9. Simulation results showing the impact to Bin40 jobs using GPU
Age-aware ALPS Reordering and varying the DES demarcation Point

as they demonstrated that in many cases the allocation mech-
anism was able to schedule the full set of stable GPUs into
these Bin20 jobs. Compared with early allocation strategies
which commonly left 50% or more of the GPUs allocated
into smaller jobs. This bucket also saw scenarios where the
maximization of stable GPUs into one job, left co-scheduled
jobs with no stable GPUs.

The Bin60 bucket analysis shown in Figure 10 has some
surprising results. Due to the node coverage of these jobs, it
was believed that there would be little impact at this scale.
However, the results demonstrate again, an increase in the
number of stable GPUs in the average job. Analysis following
the simulation on the Bin60 bucket indicates the impacts were
experienced by Bin60 jobs sitting within the 11,000 to 14,000
node count ranges. The average increase of over 1,000 nodes
into these jobs would provide significant boosts to stability.

From the original set of simulations we determined that
the reordered list with a dual-ended 16 node demarcation
point provided significant increases in the average number of
stable GPUs across all leadership buckets. In our next set of
results we add an additional simulated strategy which uses
a combined demarcation point for scheduling of DE16 and
CPU only accounts. In these results we analyze the set of
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jobs to the back end of the list indicates a promising impact in additional GPU
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used nodes against the number of hours each of the jobs run.
We present these results as the number of new GPU node
hours. These results show the aggregate number of new GPU
hours across the full set of leadership sized jobs based on
the scheduling algorithm used. From these results, we see that
the base reorganized strategies presented previously show a
significant improvement in the number of hours allocated on
stable GPUs. With the addition of CPU-only accounts, we see
an increase of almost 100,000 additional stable GPUs hours.
Clearly, the combination of reordering the ALPS list with a
DE16 + CPU-only account dual-ended scheduling can have
positive impacts on large job stability.

In the final set of simulation results provided, we inves-
tigate the impact to job fragmentation associated with the
DE16+CPU reorganized ALPS scheduling strategy. Job frag-
mentation serves as a good measure of performance impact.
The fragmentation measurement is a calculation of the network
hop count distance between every two sets of nodes in an
allocation. The measurements are averaged across all nodes
within a job. In general, the higher the fragmentation value, the
more it is possible for the job’s network performance to be low.
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Fig. 12. Simulation results showing the impact to network fragmentation
from the DE16+CPU Reordering Strategy

The results from the simulation compare jobs against the base
scheduling algorithm using the previously discussed buckets.
The results indicate that network fragmentation does increase
as expected from stability based scheduling improvements. It
will be necessary to measure these impacts to real applications
on the system.

A. Network Impact Study

The results from simulation indicate that targeted scheduling
can be used to improve reliability outcomes in leadership
jobs. It also indicates that using these techniques will pos-
sibly introduce additional fragmentation into the system. To
understand the impacts to performance, we performed a multi-
month study involving the measurements of jobs in both ideal
scheduling and production scheduling environments. Measur-
ing ideal scheduling, meaning the jobs are not fragmented
due to production based multiplexing, is done using a test-
shot. However, ordering based fragmentation will still occur.
Production scheduling measurements are performed by inject-
ing the same jobs into the production systems while in use
with other production jobs. This subjects jobs to adversarial
traffic loads and multiplexing induced fragmentation. In both
cases we compare ALPS ordering against the GPU Age-aware
Scheduling and measure the impact to application runtimes.

Our experiments use a set of benchmarks and applications
from the acceptance harness [9], [10] used by OLCF. In these
tests we use

e Ziz: A benchmark from the Chimera application model-
ing the core collapse of a supernova,

e XGC: A multiphysics simulation with significant GPU
use,

« LAMMPS: A molecular dynamics application,

o GTC: A turbulence simulation in plasma code,

o Minisweep: A benchmark modeling the sweep portion of
the Denovo radiation transport code,

e S3D: A turbulent combustion code and,

« DCA: A quantum monte-carlo solver
temperature superconductivity.

for high-
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These applications were originally chosen to be included in
the OLCF acceptance harness due to their being representative
of traditional workloads. We ran our applications against two
common leadership sizes seen on Titan, 4,096 and 8,192
nodes.

The first set of production measurements were taken over
the course of May and June 2017. Unfortunately, due to
unresolved library issues, we have no results for the ALPS
production runs of DCA. In early July of 2017, Titan was taken
offline for 8 hours to perform these tests in isolation. The first
half of the testshot was used to take baseline measurements
against the default ALPS ordering and the second half was
used to run applications using the new ALPS list. This list
would include the baseline fragmentation that was created
during the reordering. To maintain consistency, jobs were
deployed in the same order across both testshot tests.

The first set of results are shown in Figure 13. The re-
sults are normalized to the ALPS testshot performance. The
results broadly indicate that there are no significant negative
impacts when running the applications across the separate lists.
However, in some cases, such as with S3D, the production
ALPS runs are out performed by the GPU Aware runs.
These types of results are common in production and are
the result of network fragmentation and adversarial network
traffic introducing perturbation into the applications. These
negative performance impacts are often temporal and vary
from job to job. Overall, the results indicate, in both testshot
and production models, is that the 4,096 sized jobs do not
perform measurably worse than their ALPS production based
comparisons. Similar, results can also be seen in the 8,192
node job results shown in Figure 14.

Based on the promising results from these tests, GPU
ordering was left on when returning to production so that
additional measurements could be taken. These results are
labeled GPU Aware Production and shown in both the 4,096
results, Figure 13, and 8,192 results, Figure 14. What these
results indicate is that the additional fragmentation created by
the list reordering resulted in little appreciable degradation in
performance. The only test appearing to perform worse than
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Fig. 14. Network impact study application sizes of 8192 nodes normalized
to the ALPS testshot performance. Lower is better.

ALPS production occurs in the single benchmark application
Ziz. While in both sets of tests, the testshot results show
performance decline as the state of the machine is traditionally
fragmented. Based on these results and the potential to reduce
leadership class job failures, the decision was made to leave
the updated ordering in production and allow base reordering
on request for full system jobs when needed.

B. Production Impact

The scheduling changes to the ALPS ordering list have been
deployed in production on Titan since July 2017. On-going
analysis has shown immediate impact over the last several
months. Figure 15, shows the percentage of DBE failures
in leadership jobs that occurred between January of 2016 to
May of 2018. These results show that historically around 55%
of DBE failures would occur in leadership jobs. After the
implementation of our first set of changes, the reordering of
the ALPS list, the failures dropped immediately. In the months
of August 2017 - November 2017, the leadership jobs made
up less than 45% of the failures. In January 2018 - March
2018 these same jobs made up only 32% of the failures.

The results do show spikes in three of the months. Analysis
of the workload of these months show a large increase in
the number of jobs over 10,000 nodes. This could be due
to several scenarios. INCITE project allocations are based on
the calendar year and users often rush to run more leadership
jobs in December to finish out allocations. While this happens
annually, the size of the jobs associated with the allocations
change frequently depending on the awarded projects. The
months of April and May often have a significant boost in
the number of very large jobs as this time corresponds with
the SC Gordon Bell challenge paper submission season. Many
large jobs ran up to the deadline in mid-April and continued
beyond, as participants continue to tune applications for the
possibility of being Gordon Bell finalists.

The production results demonstrate a change to the trend of
job failure ratios starting in July of 2017. This time coincides
with the deployment of our scheduling change. Unfortunately,
it is very difficult to quantify the precise impact of our
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Fig. 15. Job failure data from Titan from the last 25 months. This data shows
a measurable change in the percentage of failures occurring in leadership jobs.
The GPU-Aware scheduler changes entered production in July 2017.

scheduling modifications in the production environment and
separate them from the effects of things such changes in sys-
tem workload. For this, we added another angle of analysis that
investigated the locations of failures under the new scheduling
paradigm for the months of August, September, October, and
November of 2017. In this analysis, we mapped the location
of the failure back to the original position in the ALPs list
and determined what job would have been running on the
node at that time of failure. Our findings indicate that in all of
the months measured, the majority of the failures would have
occurred in leadership sized jobs if we were still using the
original list. In particular, September 2017 and October 2017
would have had 65% and 69% of the failures in leadership
sized jobs compared to 46% and 43%, respectively, using the
revised list. We must point out that this analysis is simply
a “what if” analysis that has several caveats. GPU failures
may not have occurred in the same manner at the same time
depending on the changes in workload. Also, there was not
always a job running on a node at the time of failure.

The CPU-only job scheduling changes are currently under
development for automated integration into the scheduling
system that will update the set of accounts labeled CPU-only
intelligently. We expect these changes to positively increase
the impact to leadership class jobs.

V. RELATED WORK

Moab resource selection schemes are similar to traditional
memory allocation schemes such as traditional first fit or next
fit techniques [11]. Unfortunately, naive node selection can
have significant performance impacts if other system factors
are not considered. Thus many HPC schedulers maintain a
level of network awareness, this can be easily seen in [12],
where the authors study the performance impacts on the Blue-
Gene/L system and determine the importance of geometric
allocations.

The scheduling techniques on Titan such as the use of
Hilbert Curves [13], originally proposed in [14] are another
network aware adaptation for HPC systems finding that the

tight placement of processes work well with traditional com-
munication patterns. This work ultimately lead to the work
integrated into ALPS [15], [16] which evaluated several single
list enumeration techniques for torus networks. The findings
indicated that the single list techniques result in high network
locality and reduced scheduling costs for systems.

Targeted scheduling is a well studied area. Many HPC
systems have limitations associated with power, stability, or
performance that may require specialized scheduling tech-
niques. The previous discussed techniques are used for target-
ing network performance. Examples of power aware resource
allocation techniques such as those presented in [17], using
scheduling windows and online energy cost mechanisms for
delaying known power consuming applications to lower energy
demand periods. The techniques trade off utilization but at
significantly reduced power costs for the total system.

Another example of resource aware scheduling came in
recent changes to Spectrum Scale LSF [18], with the imple-
mentation of SSD awareness in scheduling. This change is
being integrated as a set of changes from LSF for the CORAL
systems which contain node-local SSD devices. LSF is adding
a layer of depth for node-local burst buffers to enable data pre-
staging, post-staging, and wear-aware node selection. In this
work, the scheduler is balancing the system workload based
on device drive writes per day to ensure that resources in the
machine are balanced. Resource scheduling like this in the
future could also be applied to accelerator devices to help
eliminate the need for scheduling techniques presented in this
work.

VI. CONCLUSION

In this work we have presented a multi-faceted strategy
for improving the reliability of leadership jobs in a mixed-
failure rate system. We have achieved this by modifying
Titan scheduling-reordering the ALPS list to actively target
more stable GPU resources and introducing a method for
moving CPU only jobs to less stable GPU nodes. We have
demonstrated the positive impacts using significant simulation
experiments and in production on the Titan system. We were
also able to demonstrate that the potential impact on network
performance associated with these changes is very low (virtu-
ally no impact) in typical operational modes of the system. The
success of these strategies has led to the active use of these
techniques on Titan to improve the reliability of large-scale
jobs.
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