Fault Tolerant One-sided Matrix Decompositions on
Heterogeneous Systems with GPUs

Jieyang Chen*, Hongbo Li*, Sihuan Li*, Xin Liang*, Panruo Wu',

Dingwen Tao®, Kaiming Ouyang*, Yuanlai Liu*, Kai Zhao*, Qiang Guan®, and Zizhong Chen*
*University of California, Riverside University of Houston ©University of Alabama * Kent State University
{jchen098, hli035, sli049, x1ian007, kouya001, yliul58, kzhao016, chen}@cs.ucr.edu,
tao@cs.ua.edu pwu7@uh.edu qguan@kent.edu

Abstract—Current algorithm-based fault tolerance (ABFT)
approach for one-sided matrix decomposition on heterogeneous
systems with GPUs have following limitations: (1) they do not
provide sufficient protection as most of them only maintain
checksum in one dimension; (2) their checking scheme is not
efficient due to redundant checksum verifications; (3) they fail to
protect PCle communication; and (4) the checksum calculation
based on a special type of matrix multiplication is far from
efficient. By overcoming the above limitations, we design an
efficient ABFT approach providing stronger protection for one-
sided matrix decomposition methods on heterogeneous systems.
First, we provide full matrix protection by using checksums in
two dimensions. Second, our checking scheme is more efficient by
prioritizing the checksum verification according to the sensitivity
of matrix operations to soft errors. Third, we protect PCle
communication by reordering checksum verifications and decom-
position steps. Fourth, we accelerate the checksum calculation by
1.7x via better utilizing GPUs.

Index Terms—Algorithm-based fault tolerance, Linear algebra,
Matrix decomposition, GPU, Heterogeneous system

I. INTRODUCTION

A 100% reliable computing system is non-existent. Hard-
ware faults can occur in almost every component of a com-
puting system due to erroneous bit flips. When a fault strikes
a critical hardware component at a critical timepoint, the fault
occurs as an error such as CPU logic error, data corruption,
disk crash, and network error [1]-[8]]. These errors can either
cause the abnormal termination of the computing process or
lead to incorrect results — an error causing the former is
known as fail-stop error and one causing the latter is known
as soft error or fail-continue error. Soft errors are far more
challenging to be dealt with than fail-stop errors [9] as soft
errors’ occurrences are hard to detect at runtime [[10]—[14]. In
this paper, we restrict our scope to handling faults that cause
soft errors in computing systems.

Heterogeneous computing systems with GPUs are no excep-
tion — soft errors also occur in GPUs. Recent research has
shown that GPUs are also very susceptible to soft errors [[15]—
[21] and soft error rate increases significantly as the GPU
workload increases [22]]. Also energy saving approaches for
GPUs based on undervolting and overclocking greatly disrupt
GPU’s stability and thus incur frequent soft errors [23]-[25].
Though GPUs accelerate the scientific discoveries by deliver-
ing great performance, the existence of soft-errors significantly
weakens the credibility of these discoveries.

One-sided matrix decomposition methods like LU,
Cholesky, and QR play a pivotal role in many scientific
applications. Much work has been done to develop highly
optimized one-sided matrix decompositions on heterogeneous
systems with GPUs [26]-[29]. However, a single error can

SC18, November 11-16, 2018, Dallas, Texas, USA
978-1-5386-8384-2/18/$31.00 (©2018 IEEE

invalidate a large portion of values in the resulting matrix
due to the error propagation property in the process of matrix
decomposition [13]], [30]-[32]. Matrix decomposition’s
incorrect results resulting from soft errors greatly undermine
the validity of applications depending on them.

Triple Modular Redundancy (TMR) [33] is a general ap-
proach to tolerate soft errors. TMR works in following way:
it first either performs three identical computations with each
on one hardware platform at the same time or performs
the computation for three times on the same hardware, then
compares the three results obtained, and finally reports the
assumed correct result based on majority voting. Though it is
a general approach that can be applied to any application, it
introduces very high overhead (i.e., 200%).

To avoid such significant overhead, the algorithm-based
fault tolerance (ABFT) technique was first proposed by Huang
and Abraham [34]], whichtolerate soft errors for matrix op-
erations with far less overhead. Huang and Abraham proved
that for many matrix operations the relationship between input
matrix and its checksum holds in the final computation results,
which can be used for error detection and correction in the
end of computation. Suppose an n-by-n matrix is given.
Its decomposition complexity is O(n?), the error detection
complexity is only O(n?), and the overhead of error recovery
is far less than that of TMR considering the recovery does not
require re-execution. Due to this good property, much effort
has been spent on using ABFT to protect one-sided matrix
decompositions [11]-[13]], [30]—[32].

A. Limitation of current works

Though tremendous progress has been made, existing ABFT
approaches for one-sided matrix decomposition on heteroge-
neous systems with GPUs have following limitations:

1) Insufficient protection. Most current ABFT one-sided
matrix decompositions [[11f], [[12]], [31]], [32] only maintain
single-side checksum protection, i.e., maintain checksum
either by row or column, and thus they only protect
a part of the matrix. Though full checksum protection
based on both row and column checksums can provide
better protection, it is only applied to LU decomposition
and limited to CPU [13|]. The study of full checksum
protection for other matrix decomposition methods on
GPU platform is non-existent. In addition, one single soft
error in the GPU’s memory system (DRAM and on-chip
memory) caused by multiple bit-flips can propagate along
a row (column) during major computations of matrix
decompositions and thus corrupt the row (column), but
it cannot be protected by either NVIDIA GPU’s default
Error-Correcting Code (ECC) [35]—[39] or current ABFT
approaches.

2) Inefficient checking scheme. ABFT checking scheme
determines when to perform correctness check. It plays a
pivotal role in determining the ABFT checking overhead.
Using traditional ABFT checking scheme designed for
single-side checksum [[11]], [[12], [31], [32], full checksum
based ABFT incurs unnecessary protection overhead due
to redundant correctness check.

3) Lack of PCle communication protection. PCle is one
the most important uncore component in heterogeneous
systems with GPUs. Matrix decompositions heavily rely
on it to transfer large-sized sub-matrices between CPU
and GPU or inter-GPU. Soft errors can also affect PCle
and thus disrupt communication [[1]], [40], [41]. However,
none of the previous ABFT approaches protect PCle
communication.

4) Inefficient checksum calculation on GPU. Checksum
calculation [[11], [12] requires the multiplication of a
regular-sized matrix and a tall-and-skinny matrix based
on an underlying linear algebra library [42]. However,
the underlying library is very inefficient for the above
type of matrix multiplication as GPU is significantly
underutilized in this case.

B. Our contribution

By overcoming the above limitations, we design an efficient
ABFT approach to provide stronger protection for three major
one-sided matrix decomposition methods including Cholesky,
LU, and QR on heterogeneous systems with GPUs.

1) Full matrix protection. We prove that full checksum
protection is also applicable for Cholesky and QR de-
composition. Based on full checksum protection, we are
able to provide full matrix protection for all three core
one-sided matrix decomposition methods except for a
trivial step of QR that computes triangular factor. In
addition, since the full checksum encodes the matrix in
two dimensions, the protection comes along with the
benefit of tolerating errors that accumulate along one row
or column, which is usually caused by GPU memory error
during matrix decompositions.

2) Efficient checking scheme. We study the error propaga-
tion pattern caused by computation, memory system, and
communication error that occurs in all major operations
of matrix decompositions. It helps us tell the sensitivity of
a matrix operation to soft errors. We provide an efficient
ABFT checking scheme by prioritizing the checksum ver-
ification according to the sensitivity of matrix operations,
i.e., performing more verifications on more sensitive
operations and less verifications on less sensitive ones.

3) Protection for PCle communication. By carefully
reordering checksum verification, communication, and
computation, our new ABFT checking scheme can protect
soft errors that occur in the communication over PCle. It
brings negligible overhead in error-free executions and
less than 1% recovery overhead when error occurs.

4) Optimized kernel for ABFT on GPU: Based on the
characteristics of its calculation and GPU architecture,
we design an innovative highly optimized checksum
encoding kernel on GPUs. Experiments show that our
optimized kernel improves performance of checksum
calculation by 1.7x on average and up to 1.9x compared
with the existing best works [11]], [12].

II. RELATED WORK
ABFT was first proposed by Abraham and Huang [34] for
LU decomposition. This approach is very effective to detect
any number of errors in the computation, but it is only able to
correct up to one error in the decomposed matrices based on

TABLE I: Notation in Algorithms and Formulations.

c(A4) Column checksum(s) of matrix/matrix block A.
r(A) Row checksum(s) of matrix/matrix block A.
recal_c(A) Recalculated column checksum(s) of matrix/matrix block A.

Recalculated row checksum(s) of matrix/matrix block A.
Matrix/matrix block A with its column checksum(s).

recal_r(A)
AC

AT Matrix/matrix block A with its row checksum(s).

AF Matrix/matrix block A with its full checksum(s).

n Input matrix size (n X n).

NB Matrix blocks size (NB X NB).

K Number of DRAM/on-chip memory error(s) that cause 1D

error propagation during TMU.

the checksum invariant in the end of computation. However,
this recovery approach is not effective in practice as usually
one error lead to amounts of errors due to the error propagation
property of matrix operations [|13]], [30].

Later works proposed online ABFT that can detect errors
during computation when they are not propagated far away and
makes error correction much easier. In [43]], Wu et al. proposed
an online ABFT for matrix multiplication. In [32], Davies
proposed an online ABFT for LU decomposition. In [31], Wu
et al. extended online ABFT to three core one-sided matrix
decompositions - Cholesky, LU, and QR on distributed mem-
ory computing systems. In [[11]], [12], Chen et al. proposed an
online ABFT approach to protect memory error in additional
to computation error in Cholesky decomposition on GPUs. Wu
et al. [13]] proposed a full checksum-based LU decomposition
to handle memory error in CPU cache and registers.

III. BACKGROUNDS
A. Blocked matrix decomposition

Efficient one-sided matrix decomposition algorithms com-
monly follow blocked fashion as it delivers better performance.
During the decomposition, the input matrix is divided logically
into matrix blocks. Such matrix block is a basic unit in the
decomposition process. one or multiple blocks can form a
panel and a trailing matrix. The decomposition is an iterative
process of update operations. In each update operation, sub-
matrices composed of a part of the matrix blocks are used to
update a sub-matrix composed of some blocks. Update part
is a sub-matrix that gets updated during the update operation.
Reference part is a sub-matrix that only gets referenced during
the update operation.

Matrix decompositions share three similar major update
operations in one iteration: (1) Panel decomposition (PD), (2)
Panel update (PU), and (3) Trailing matrix update (TMU).
The decomposition starts from the top left corner of the input
matrix and iteratively works towards bottom right corner until
done. Fig. [I] shows one iteration of LU decomposition. In
this iteration: first, column panel A.; is decomposed into
L.; and Uj;; then, row panel Ao is updated into Ujs;
finally, trailing matrix Ass is updated into A’,. Due to data
dependencies, these three steps have to be done in order.
In implementations on modern heterogeneous systems with
GPUs, e.g., the state-of-the-art MAGMA library [44]-[46].
these three steps are assigned to different computation units
based on their specialties. PD follows irregular computation
pattern, so it is assigned to CPUs. PU and TMU are highly
parallelizable, so they are assigned to GPUs.

AN u N u
N N

N

A A2 N Ur
LitN

L one iteration | L
b
At Az L21 Az

Fig. 1: Full checksum LU decomposition.

B. Checksum error detection and correction

ABFT is based on the idea that if we encode the input
matrix with checksum, and perform a checksum maintaining
algorithm along with the matrix operation, the relationship
between checksum and the input matrix will still hold for
resulting matrix, which can be used for error detection and cor-
rection. The key difference between online and offline ABFT
is that online ABFT can maintain checksum relation during
matrix decomposition (i.e., after each update operation). Of-
fline ABFT, on the other hand, can only maintain checksum
relation in the end of decomposition. In this subsection, we
show how checksums are used in online ABFT [11], [32], [47].
We also adopt the similar general mechanism in this work.

Before the matrix decomposition, we first encode the input
matrix with checksums. The checksum is the sum of matrix
elements along either rows or columns. So the checksum
can be used for error detection by verifying this relationship.
To correct errors, the first step is to get error location and
magnitude. The first step in turn requires two checksums
encoded by two different checksum weights must be used.
A usual choice of the two checksum weights are: vy =
[1,1,1..1]" and vy, = [1,2,3..n]". In practice [11], [12],
each matrix block, not the whole input matrix, is usually
used as a unit for checksum encoding, error detection and
correction on heterogeneous systems with GPUs, since this
fine-grained checksum encoding can be easily integrated with
the original heterogeneous GPU version matrix decomposition
implementations and it can significantly strengthen the fault
tolerance protection density. For matrix block A, the column

T
and row checksums are calculated as: c(A) = {ZIT] - A and
2

r(A) = A - [viva].

During matrix decompositions, using properly designed
checksum maintaining algorithms, we can update checksums
along with each update operation during the matrix decom-
position, so that checksum relation is maintained after each
update operation and we can use that to detect and correct
errors on-line.

Upon error detection and correction, we check if the check-
sum relation still holds by calculating the checksums again on
each relevant matrix block (i.e., recal_c(A) and recal_r(A))
and comparing them with the checksums we maintained. We
use the column checksum verification as an example here (row
checksum verification is similar): we compare recal_c(A)
with ¢(A) to see whether they are close enough (within
round-off error) by calculating: § = c¢(A) — recal_c(A).
For instance, if we find that [6;,] > e., where e. is the
round-off error bound of column checksums, then an error is
detected on the i*” column of the matrix block. By calculating
round(d2,;/61,) = j (round to the nearest integer), we get
the row index j of the error and §;; gives us the difference
between the correct value and corrupted value. With both row
and column index of the error and the magnitude of the error,
we can correct the error.

Due to round-off error, the maintained checksums usually
do not precisely match with corresponding matrix blocks even
if no error occurs. To distinguish checksum mismatch caused
by error or round-off error, we need to quantify to what degree
a round-off error can develop (i.e., bound). For example, for
full checksum protected TMU (C7 + Cf — A° x B"), based
on [48]], round-off error bound for column and row checksum
can be derived from priori norm based error bound as follows:

ec = [c(C) —recal_¢(C)| < vn [|A°[ly [B"[]y

er = [r(C) —recal_r(C)] < A% 1Bl

In the above equations, vy, = nu/(1 — nu), in which u is
the unit round-off error (in IEEE 754 double bit floating point
standard, u ~ 10716).

C. Full checksum LU decomposition

One of the most challenging part of designing online ABFT
is maintaining checksums during matrix decompositions. Pre-
vious works were only able to maintain single-side checksums
(i.e., either row or column checksum) during matrix decompo-
sitions [[11f], [[12f], [31fI, [32]]. They usually only protect a part
of the matrix and cannot tolerate errors that accumulate along
one row or column, which is usually caused by memory error
during matrix decompositions.

Recently, [13]] made an improvement to online ABFT that
can maintain full checksum for LU. It works as follows:
(1) Before the decomposition, the input matrix is first en-
coded with full checksum; (2) During the decomposition,
full checksum is maintained for trailing matrix, and single-
side checksum is maintained for all panels; (3) In the end
of decomposition, all decomposed matrices are protected by
either column or row checksum. For example, Fig. |1| shows
one iteration of full checksum LU. Before this iteration, un-
decomposed part, trailing matrix A.. (white part), has full
checksum encoded. After the iteration, single-side checksum
is maintained and extended for partially decomposed matrix
(gray part). Full checksum is maintained for the new smaller
trailing matrix, which will be used for the next iteration (sub-
matrix Aj,).

1) Al = Lg x UL,

2) A{ — Lq1 X U{2

3) Ay Agz — L5, x Uj

The full checksum brings two major benefits: wider pro-
tection coverage and stronger protection. Wider protection
coverage means all parts of the matrix in LU are protected by
checksums. Stronger protection means it can tolerate an erro-
neous row or column checksum in matrix [13]], whereas single-
side checksum can only tolerate one error at a time, since full
checksum encode matrix on both matrix dimensions, which
record more redundant information than single-side checksum
[11], [31], [32]. In LU, full checksum is maintained for the
trailing matrix, which is used in the majority computation
(i.e., TMU) of one-sided matrix decompositions. So, it greatly
strengthens the protection to LU. If we can maintain full
checksum for TMU in other one-sided matrix decompositions,
we can also provide wider and stronger protection for them.
However, it is still unclear whether it can also be applied
to other one-sided matrix decompositions, since maintain full
checksum is non-trivial.

IV. FULL CHECKSUM FOR CHOLESKY AND QR

In previous works [[11]], [12]], [31]], [32], the common way to
maintain checksums during matrix decompositions is updating
the checksums during decompositions as if the checksums are
an extended part of the original input matrix. That’s to say,
we update checksums by applying the same operation as the
corresponding update operation. In this way, the checksum
relation is naturally preserved during error-free executions.
However, due to the characteristic of one-sided matrix de-
compositions, usually only single-side checksums were able
to be maintained in this way. Maintaining full checksum,
on the other hand, is challenging. In this work, we develop
full checksum maintaining algorithm for Cholesky and QR
decomposition by leveraging the algorithmic knowledge and
developing deep-customized update operations for checksums
that are not naturally preserved. Note that although in this
paper we focus on implementations on heterogeneous systems

with GPUs, our full checksum for matrix decompositions can
actually be applied to any computing systems. The design
details are discussed as follows.

TABLE II: Single and full checksum Cholesky decomposition.
Single-side Checksum Full Checksum

PD LT <~ A7, LT <~ A7,

PU | L§ « Ay x L] LS, + A5, x LT

TMU | A’y « Ag, — Lg, x (Lax™) | A"}, « AL, — LS, x (LaaT)"
#A11/21/L11 /21 is panel before/after current iteration. A22/A5, is

trailing matrix before/after current iteration.

\ \
\ \
N N b
N
An A2 N LnT
Li1N
[
L . . I
one 1teration . /I
—_
A21 A22 L21 A2z ,
e
-1--- ,
-
o) olA)

Before current iteration, column
checksum c(L) is maintained for
partially decomposed part L and
full checksum is maintained for
trailing matrix A.

Fig. 2: Full checksum Cholesky decomposition.
A. Full checksum for Cholesky decomposition

In Cholesky, similar to LU, there are three major steps
in each iteration: PD, PU, and TMU. In existing ABFT ap-
proaches [11]], [12f], [31]], only single-side checksum (column
checksums for lower triangular Cholesky decomposition or
row checksums for upper triangular Cholesky decomposition)
is maintained for Cholesky as shown in the second column of
Table [T} Since Cholesky only decomposes half of the matrix
(upper or lower triangular), it does not naturally preserve
checksums for the other dimension.

To maintain full checksum for Cholesky, we need to modify
the TMU. Using lower triangular Cholesky as an example,
as shown in Fig. 2] since the input matrix is symmetrical,
column annel Loy also serves (logically transposed) as row

21

During TMU, column panel L21 is
logically transposed into row panel
together with it checksum c(L21), so
that full checksum can be maintained
for the new trailing matrix A’22.

panel L3, during TMU. Also, column checksum of column
panel ¢(Lo;) is also the row checksum 7(L1}) when it is
logically transposed to row panel. As proved in [34]], if we
encode one matrix with column checksums and the other
matrix with row checksums, the resulting multiplied matrix
will have full checksum encoded and the basic computation
of TMU is matrix-matrix multiplication. So, by transposing
the column checksum of column panel to get row checksum,
we can maintain full checksum for TMU as shown in right
part of Fig. 2] We derive the equations for maintaining full
checksum for Cholesky decomposition in the third column of
Table H] (red symbols show the modifications).

B. Full checksum for QR decomposition

TABLE III: Single and full checksum QR decomposition.
Single-side Checksum Full Checksum

PD | Va& R}, « A7} VS & Ry — Al

CTF TV, TV,

T™MU | A, « A% —VaTTvTar, | A — Al —vsrTvT A,
*A.q 1s panel before current iteration, V" and R are panels after

current iteration. T is triangular factor matrix. A.o/A’, is trailing

matrix before/after current iteration.

There are three major steps in each iteration of QR decom-
position: PD, computing triangular factor (CTF), and TMU.
In exiting QR decomposition with ABFT [31], only row
checksum is used to protect row panel R as shown in the
second column of Table

N N
N R N R
N Rt
A1 A2 S R12
V11N
v . . v
one iteration
—
A21 Az Va1 A22
oA)

Before current iteration, benefiting from
our new full checksum maintaining PD
algorithm, both column checksum c(V)
and row checksum r(R) are maintained
for partially decomposed part V and R.

Fig. 3: Full checksum QR decomposition.

During TMU, with column checksum
of column panel V21 and row
checksum of trailing matrix A12 and
A22, full checksum can be maintained
for the new trailing matrix A’22.

Algorithm 1 FT-xGEQRF2

input: panel P/, size: (m +1) x (NB + 1).
: output: Householder vectors V.
: output: Upper triangular matrix R".
:for j=1: NB do
T = Pj:m7j
v =z + sign(r1) || T1:0ast—11l5 €5
Viast = Viast — Lj-1,5
P)last,j:last = Plast,j:last - Pj—l,j:last
v =v/lvll,
jm+1,7: NB+1 =
2vvlzlast—1Pj¢m~,j5NB+1
11: Ve«
12: R" < upper triangular part of P
13: end for

SYENIURELY -

—

Pj:m+1,j:NB+1 -

To maintain full checksum for QR, we need to maintain full
checksum for TMU. So we need to be able to maintain column
checksum for the first matrix operand and row checksum for
the last matrix operand in the matrix-matrix multiplication
used in TMU [34] (i.e., column checksum of Householder
vectors V.1 and row checksum for trailing matrix A.5). The
challenge lies in maintaining checksum for PD, since only row
checksum can be maintained for decomposed upper triangular
matrix R as shown in previous works [31]. However, column
checksum cannot be naturally maintained for Householder
vectors V' in PD, due to its orthogonality [31].

In this work, we develop a new checksum maintaining
algorithm for PD of QR that can maintain both column check-
sums for Householder vectors V.; and row checksums for the
upper triangular part R1;. To maintain column checksum for
Householder vectors, we need to capture information during
PD, so the new checksum maintaining algorithm needs to be
integrated with the computation of original PD. The pseudo
code of PD integrated with our new checksum maintaining
algorithm is shown in Algorithm (1| Before the PD, we first
encode full checksum for panel. Then, we modify the House-
holder generating algorithm in lines 6~8 in order to preserve
its column checksums. This only brings O(1) extra operation
for each Householder vector generation. With checksum-ed
Householder vector, we slightly modify line 10 to include
column checksums. In the end we stored Householder vector
together with its column checksums, so that resulting panel
will have column checksums for Household vectors. With
column checksums maintained, we can maintain full checksum
for TMU with slight modification as shown in red symbols in
the third column of Table E] and red part in Fig. 3] Note that
the computation of triangular factor is very irregular, which
makes it hard to maintain checksums. To avoid catastrophic
error propagation, we need to make sure 7' is correct before us-

TABLE 1V: MUD of major update operations in one-sided
matrix decompositions.

TABLE V: Error propagation patterns of major update opera-
tions in matrix decompositions.

Computation Memory error Communication

Operation error Reference part | Update part error
PD 2D - 2D -
PU 1DT 2D 1DT
TMU 0D*T 1D7 oD*T -
Panel broadcast - - oD*T

Operation PD PU T™U
Elemicnt Update | Reference [Update Partf ~ Reference Part Update Part
Location Part Part
Example I ::j
element - % { % {
that brings _: L = | /= - P m——
maximum 1 A
MUD T L)
MUD 2D 2D 1D 1D 0D

ing. Error in T can be detected by verifying the orthogonality
of (I-VTTVT). Since there is no checksum associated with
T, we have to recover the corrupted 7' by re-computing it using
V' as shown in [31]]. The runtime overhead for the verification
and re-computation can be shown to be insignificant.

V. FAULT MODEL

In this work, we focus on tolerating three types of soft errors
caused by faults in three important hardware components in
heterogeneous systems with GPUs: CPU/GPU logic parts,
CPU/GPU memory system, and PCle.

1) Computation error occurs during update operations. It
is caused by fault in the logic part of CPUs/GPUs, and
results in calculation error (e.g., 1 + 1 = 3). It can
be observed as a standalone wrongly computed matrix
element in the result. When a wrongly computed result
is used to update other matrix elements, it can cause more
errors.

2) Memory system error occurs anytime when the matrix
is stored in the CPU/GPU memory system. It can occur
in both off-chip memory (DRAM) or on-chip memory
(cache, registers, or shared memory). It is caused by faults
in memory system, and results in a error in the storage
cell of memory. In this work, we only consider errors with
multiple bit-flips in a word as many memory systems
are equipped with ECC that cannot tolerate that kind
of error. Error propagation can occur when a corrupted
element is used to update other matrix elements. The
difference between the off-chip memory error and on-
chip memory error is that the initial corrupted matrix
element is always observable for off-chip memory error.
For on-chip memory error, on the other hand, the initial
corrupted element is not always observable as some
wrongly cached/loaded matrix elements may only get
referenced, so there is no data write back.

3) Communication error occurs during data transfer be-
tween CPU and GPU or inter-GPU through PCle. It is
caused by faults in PCle related hardware components,
and results in a bit being wrongly transfered (e.g., bit 1
is sent, but bit 0 is received). Some PCle Buses also have
ECC that can protect single bit error in a word. So, in
this work, we only consider multiple-bit error in a word.
‘When communication error occurs, it can be observed as
a standalone corrupted matrix element that appear in the
receiver side after data transfer.

We assume that no more than one fault strikes the same

matrix block between two neighbor checksum verifications.
This is a relative rare case and can be hard to tolerate.

VI. SYSTEMATIC ERROR PROPAGATION STUDY

Error propagation patterns in one-sided matrix decompo-
sitions was studied in [[13]], [32]. However, none of them
was systematic enough. [32]] focused on all three update
operations in LU, but it failed to distinguish the errors in
reference and update part. [|13]] did propagation study caused

* tolerable by single-side checksum
1 tolerable by full checksum

In non-tolerable cases, errors are detectable but need local in-memory recompute to
recover.

by error that occurs in both reference and update part, but
they only carefully studied TMU and overlooked the details
in other operations. In this work, we present a systematic error
propagation study focusing on all major update operations and
considering errors in both reference and update part.

A. Update patterns

We first analyze the computation patterns in each oper-
ation, which can help us characterize their error propaga-
tion patterns later. We define a term to quantify the com-
plexness of the computation: Maximum Update Dimensions
(MUD). MUD can be used to quantify elements or an
update/reference part. MUD of an element z, denoted as
MUD(z), equals the maximum number of dimensions of
any area where element = can directly or indirectly update
in an update operation. Here the number of dimensions is
defined as follows: MUD(z) = OD means = only updates
itself; MUD(x) = 1D means elements in whole or partial
of one row or column get updated by xz; MUD(xz) = 2D
means elements beyond one row or column get updated by
x; In addition, the MUD of an update/reference part A is

defined as: MUD(A) = mamA(MUD(xij)). This gives us a

quantifiable term to measure the complexity of each operation
in matrix decompositions. According to the algorithm of each
operation, we summarize the MU D of each update/reference
part of each update operation in Table IV} Each small box
represents one element. Red boxes represent sample elements
in corresponding update/reference part that bring the maxi-
mum MUD. Light gray/dark gray boxes represent elements
that are directly/indirectly updated by red element.

B. Error propagation patterns

Error propagation happens when corrupted data is ref-
erenced for update operation, and then causes more data
corruption. This is common in matrix decompositions, since
elements in matrix are repeatedly referenced and updated. We
define three levels of error propagation as follows:

o OD: a single standalone error with no error propagation;
« 1D: an error propagates to entire/part of one row/column;
¢ 2D: an error propagates beyond one row or column.

Higher degree of error propagation means the update operation
is more sensitive to errors.

With update pattern analyzed in Table [IV] we characterize
the error propagation patterns. Note that we only consider the
error propagation occurs within one operation. Error propa-
gation across multiple operations can almost definitely cause
2D error propagation which is not tolerable. It is interesting to
see that if an element is used to update certain other elements,
the corruption to the element can also propagate in the same
way as the update pattern. Depending on the type of soft error
and when an error occurs, the exact error propagation pattern
may be different, but we only consider the worst case where
all related elements may be corrupted. So, MU D(x) actually
also indicates what level of error propagation would happen
if x is corrupted. The corruption of = can be caused by all
three kinds of soft error mentioned in our fault model. While
MUD(z) indicates the error propagation pattern caused by a

specific element, MU D(A) indicates the worst case scenario
considering all elements in it. It is the highest level of error
propagation that can be caused by error in any element of
A. According to our conclusion in Table we summarize
degree of error propagation as in Table Compared with
previous works, [32] did not distinguish the errors in reference
part and update part and they only consider the worst case,
so it rated the error propagation level as follows: PD (2D),
PU (2D), and TMU (1D). [13]] successfully rated the different
cases for TMU, but failed to look into PD and PU, in which
they simply rated all of them as 2D. Our systematic study
gives much more details that can help us design new ABFT
checking scheme with more appropriate protection.

VII. NEW ABFT CHECKING SCHEME

ABFT checking scheme determines when to perform check-
sum verification. It plays a pivotal role in determining the
ABFT checking overhead. ABFT checking schemes can be
classified into two categories: prior-operation check ABFT
[11]], [12] performs check on input data before each update op-
eration; post-operation check ABFT [13]], [31]], [32] performs
check on output data after each update operation. However,
none of them are truly suitable for full checksum one-sided
matrix decompositions, because they incur unnecessary ABFT
verification overhead due to redundant verification when used
with full checksum.

In this section, based on our previously designed full check-
sum one-sided matrix decomposition and systematic error
propagation study, we design a new ABFT checking scheme
that brings lower ABFT checking overhead.

A. New ABFT checking scheme design

Table summarizes the protection capability of single-
side and full checksum scheme. In addition to OD error
propagation, full checksum scheme can also tolerate 1D error
propagation. When designing ABFT checking scheme, full
checksum offers the following benefits:

1) It can avoid local re-computation for 1D error propagation
cases, which significantly reduces recovery cost;

2) It also makes ABFT more tolerable to memory errors
including DRAM and on-chip memory of CPU/GPU;

3) Since TMU can only have 0D/1D error propagation, we
can partially eliminate or postpone its correctness check
to reduce ABFT checking overhead without sacrificing
protection strength. In addition, we can put more protec-
tion to operations that can lead to 2D propagations (e.g.,
PD and PU) to reduce the possibility of 2D propagations.

Algorithm [2| shows our new ABFT checking scheme.

Since both PD and PU can have 2D propagation (i.e. high
sensitive), we put correctness check both before and after their
operations. This protection is stronger than previous works, in
which they only put correctness check before [11], [[12] or after
[13], [31]], [32]] PD and PU. In addition, we postpone the post-
operation correctness check of PD and PU to the time after
their decomposed/update panel has been broadcasted. This
further helps detect and correct communication error to avoid
further propagation. Previous works [13]], [31], [32] check
the panel before panel broadcast. If an error occurs during
communication, it may propagate to the next operation. Since
we only postpone the correctness check, it does not bring extra
ABFT checking overhead. Finally, we totally eliminate all cor-
rectness check of input before TMU. The reason is as follows.
TMU relies on the decomposed panel and updated panel from
previous PD and PU. Since we already put correctness check
after those two operations, no 2D or 1D propagation can exist
on those two panels before TMU. The only possible error
propagation is OD, which could be caused by memory errors

while those two panels are stored in DRAM after PD/PU and
before TMU. However, it can only leads to 1D propagation
during TMU, so we discard all correctness check before TMU.
After TMU, we propose a heuristic checking approach to
protect TMU with low overhead, which will be discussed in
the next subsection.

B. Heuristic checking for TMU

Detect error
in panel
\

\ — -
\

Detect multiple
L errors in one row
of panel

N
A1 A12 AN u

~

g ’
nt | ¥ 2 L ‘_;

Correct error
directly in trailing
matrix

Correct errors -

directly - ~<

Detect memory (DRAM)
errors right after TMU.

Detect on-chip memory
errors in the next iteration
before PD/PU.

(a) (b)

Fig. 4: Heuristic checking for TMU.

After TMU, there is no need to check the whole output.
We don’t need to worry about 0D propagation, since part of
the result that needs attention will be verified before use in
the next iteration, so that any OD propagation will be fixed
before use. For 1D propagation in TMU, we propose several
heuristic checking rules for efficient handling. (1) for 1D
memory (DRAM) error propagation, it must come from the
memory errors in row/column panel, so we can detect them
by checking row and column panel instead of the expensive
correctness check to trailing matrix as shown in Fig. dh. In
case of error, we can just fix the corresponding rows/columns
in trailing matrix. (2) for 1D on-chip memory propagation, it
also comes from row/column panel, but it cannot be observed
in them since memory is not corrupted (only the cached data
in on-chip memory is corrupted). The only observable fact is
part of one row/column of trailing matrix is incorrect. So, we
leave it to the column/row panel check of the next iteration.
Once we detect multiple errors occur to the same row/column
of a matrix block before PD or PU, its likely that’s caused
by the on-chip memory error occurred in previous TMU, then
we check the whole row/column to fix it as shown in Fig. dp.
Note that one rare case is ignored in this heuristic checking
where multiple not-yet-detected on-chip 1D error propagations
accumulate within the same matrix blocks that becomes 2D
propagation, which needs re-compute of multiple iterations
to fix. However, we can easily overcome this problem by
periodically check the correctness of trailing matrix based on
the on-chip memory error rate to avoid 2D propagation. For
simplicity, we omit the overhead for this correctness check
in our analysis. It can be shown that even if we add this
correctness check, the overall ABFT checking overhead is still
lower than previous works, in which they need to check the
trailing matrix in every iteration.

C. Distinguish communication error with other kinds of error

Once each GPU received decomposed/update panel, it
checks the correctness of the panel. If error is detected, the
error could cause by computation/memory error during the
last PD/PU or communication error during the panel broadcast.
Distinguish communication error with other kinds of error, we
count the number of GPUs that received panel with corrupted
elements (i.e., corrupted panel). If all GPUs received corrupted
panel, its very likely that the corruption is caused by error
during last PD/PU, and the worse case is 2D error propagation,
which is not correctable by ABFT. So, to be safe, we initiate
local in-memory restart of the last PD/PU, and then broadcast
again. We only need to make a copy of the panel before PD,
which only brings slight overhead. Otherwise, if only some

Algorithm 2 New ABFT checking scheme

1: ngpu < total number of GPUs

2: for j =1 : N/NB do

3: [GPU,oygpu — CPU] Transfer panel

4. [CPU] Check the panel to be decomposed with heuris-
tic checking for TMU

[CPU] Panel Decomposition

[CPU — GPUj1.. 54pu] Panel Broadcast

[GPU1.. ngpul Check decomposed panel

[GPU1.. ngpul Check the panel to be updated with
heuristic checking for TMU

9: [GPUj. ngpu] Panel Update

10: [GPUi. ngpu] Check updated panel

11: [GPUj%pngpu — GPU1. ngpu] Panel Broadcast

12: [GPUj. pngpe] Trailing Matrix Update

13: [GPU;.. pngpu] Heuristic panel checking for TMU

14: end for

TABLE VI: ABFT verification comparison (one iteration).
TMU

Checking scheme before | after | before | after before after Total
prior b 2b b2 +2b b2 +5b
post b b b2 bZ +2b
Ours b 2b b (K+2)b | (K+6)b

of the GPU received corrupted panel, they must be caused by
communication error, so we let each GPU correct those errors
using checksum.

D. Distinguish 1D and 2D error propagation in PU

Computation/memory error in PU can cause either 1D error
or 2D error propagation. 1D error propagation is actually
correctable, although we only have single side checksum for
the panel. According to Table [IV] error is always propagated
to one row/column for column/row panel and we always main-
tain column/row checksum for column/row panel as shown
in section 2D error propagation in updated panel, on the
other hand, needs local in-memory restart of the last PU. The
possibility of causing two different error propagation patterns
are overlooked in previous works [31]], [32]] where they treat all
cases as 2D error propagation. To distinguish the two cases, we
calculate the error row and column index in a matrix block. If
the calculated error locations do not reside in the same row (for
column panel) or column (for row panel), it must be caused
by 2D error propagation. Otherwise, we treat it as 1D error
propagation.

E. Fault tolerance overhead analysis

To compare the ABFT checking overhead, Table [VI] com-
pared the number of matrix blocks needed to be checked for
correctness in one iteration. We assume the size of current un-
decomposed sub-matrix is j x j for simplicity. Given matrix
block size NB, and we define b = j/NB. K is the number
of memory/on-chip memory error that causes 1D propagation.
As we can see, when K is small, the new ABFT checking
scheme has much lower checking overhead than both existing
checking schemes.

VIII. CHECKSUM ENCODING OPTIMIZATION

Checksum encoding procedure is one of the key operations
in our fault tolerant matrix decompositions. It is used for
initializing checksums before decomposition and recalculate
checksum for each ABFT check. The most common choice of
implementation[/1 1] is to use general matrix-matrix multiplica-
tion (GEMM) in highly optimized linear algebra libraries [42],
[49]. However, input size of matrix of the checksum encoding
makes the computation to be memory intensive rather than
compute intensive. Implementations of GEMM are usually

optimized for computing intensive workloads, so it causes
GPU being inefficiently utilized during checksum encoding,
which brings considerable high overhead for ABFT on GPUs.
So, instead of using GEMM, we design a new computing
kernel on modern GPUs dedicated for checksum encoding.

A. Algorithm-level optimization

In our ABFT scheme, in order to both detect and recover
errors, we encode matrices with two checksums each with dif-
ferent weights: v; = (1,1,1,...,1)T and vo = (1,2,3,...,n)7T.
So, the column checksums of N B x N B matrix block A can
be calculated as: ¢(A) = [v1v2]” A and row checksum can
be calculated similarly. To optimize, since weights in v; are
all 1Is, so we reduce the first checksum encoding into simple
summation. For vy, we hard-code its weights into the kernel to
avoid unnecessary memory accesses. This allows us to reduce
25% of the flops and O(2N B?) global memory accesses.
B. Memory access optimization

Optimization for memory access has been one of the most
important aspects for GPU computing [50]-[52]]. Checksum
encoding is a memory-bound computation. So, improving its
memory access efficiency is even more critical for high perfor-
mance. The first challenge is ensuring full coalescing memory
access given different matrix storing types or checksum types
in ABFT. To optimize, we divide input matrix into smaller
tiles and use threads to load tiles of data to shared memory
and registers in a coalesced way. The tile loading style ensures
efficient coalesced memory access regardless of the input
matrix storage type or checksum encoding type. The choice
of tile size can affect concurrency on GPU. We pick its size
using off-line profile. The details is omitted here.

Even coalesced, long global memory access latency [53]]—
[55] can become another factor limiting the performance
of memory-bound computations on GPU. Due to the high
shared memory and register usage, the number concurrent
active threads is low [56]], which limits their abilities to hide
memory access latency. To overcome this limitation, we use
data prefetching to efficiently hide this latency. To optimize,
instead of loading current tile and consuming it in current
iteration, we now load the current tile in previous iteration
and process it in current iteration. While we are processing
current tile, we load the next tile, so that we can hide next
tile loading time using current tile’s processing time. As an
example, Fig. |5 shows the checksum encoding on the first two
tiles. By adjusting the tile size, we can achieve good latency
hiding effect and overall performance.

Compute Process

Sync. Sync ! Sync. , Sync. ,
! (Compute Chk. | | : Compute Chk. :
3 | | 1 .o
[Load Tile 0 J : [for Tile 0 1 Load Tile 1 : for Tile 1 :
1 1
(a) Checksum kernel without data prefetch : :
Sync. ! Sync. ! i i
. . — !
[Load Tile 0 JI [Load Tile 1 J: - i
1 1 : Performance :
| |
: Compute Chk. : Compute Chk.| | Improvement i
: for Tile 0 : for Tile 1 : :
b | |

(b) Checksum kernel with data prefetch

Fig. 5: Checksum encoding w/ and w/o data prefetch.

IX. OVERHEAD ANALYSIS

In this section, we analyze the overhead of our new ABFT
scheme applied to Cholesky, LU and QR decomposition on
heterogeneous system with GPUs. We show that relative
performance and space overhead of all three decompositions
are only small constants.

A. Performance overhead

1) Checksum encoding: Input matrix is first encoded before
decomposition. Checksums are computed using our optimized
checksum encoding algorithm. Compute full checksum for
one block takes: 8N B~ flops. Cholesky decomposition only
references half of the matrix (upper or lower triangular),
so we only encode half of the matrix. LU and QR
decomposition use the whole matrix, so the entire matrix
is encoded. The relative checksum encodin; overhead is:

x6NB? 9

I TCho enc — (1/2)X(n/NB)
OCho_enc - Tono - (1/3)n3 — N
O _ TLu enc (n/]\}rB)QXGANVB2 _ 9
LU_enc = ~ T4, (2/3)n3 I~
O _ TQR_cnc _ (n/NB)2><6N32 _ i
QR_enc — TTon T (4/3)n3 ~ 2n

2) Checksum updating: Checksum updating operations
simply follows each original operation but with smaller input
size. We maintain full checksums for those operations, so the
relative overhead is:

_ Tcho_upd/LU_upd/QR_upd ., 6
OcCho_upd/LU_upd/QR_upd = F £ B~

Tcho/LU/QR NB

3) Checksum verification: Derived from Table [VI[we
compute the relative verification overhead of our new ABFT
scheme:

Toho vor _ 24(K+4)n?
OCho_ver = %LCM - ((1/3)n)3 = 72K:288
1) = Toyu wer — 24(K+4)n? _ 36K+144
LU_ver Tru (2/3)n3 P
19) _ Tor_ver _ 24(K+6)n” _ 18K+108
QR_ver Tor (4/3)n3 n

4) Overall performance overhead: By summarize the
above calculation, we derive the overall relative overhead of
each decomposition as shown in Table [VII] When matrix size
is large, the relative overhead is close to a small constant.

TABLE VII: Overall Overhead.

Matrix Decomposition | Overall Relative Overhead
Cholesky DREET 4 B
LU 36K ;153 T -8
36K 1225 6
QR 2n +

B. Memory space overhead

Memory space overhead mainly comes from encoding
checksums. We maintain full checksums for input matrix, so
the relative overhead brought by the checksum encoding is:

2x2xnxn/NB 4
n2 ~ NB

Ochk_space =

X. EXPERIMENTAL EVALUATION

We evaluate our implementation on HPCC, a heterogeneous
system. It is equipped with one 32-core Intel Haswell CPUs,
128 GB DRAM, and eight NVIDIA Tesla K80 GPUs with
each having 12 GB memory, where GPUs are connected
through PCle. Our fault tolerant matrix decomposition is built
based on MAGMA [27] 2.3.0 that is linked with cuBLAS
9.0 [42] and Intel MKL 2018.1.163 [49], where cuBLAS
and Intel MKL are respectively basic linear algebra libraries
on GPU and CPU. We implemented the double precision
Cholesky, LU, and QR decompositions for multi-GPUs.

A. Fault tolerance protection strength test

This evaluation aims to compare two checksum encoding
techniques combined with different ABFT checking schemes
based on erroneous executions caused by soft errors in terms of
two aspects: fault tolerance capability and recovery overhead.
Evaluating based on real-world soft errors is not possible
because we cannot know when errors occur, let alone if the

protection approach is triggered. Thus we simulate erroneous
executions caused by soft errors via fault injection in source
code level. We simulate four kinds of faults in total: (1)
computation error, (2) off-chip memory error, (3) on-chip
memory error, and (4) communication error. Computation
errors are simulated by flipping one bit in an element of the
output matrix block via XOR operation. The other three kinds
of errors are simulated by flipping two or more bits in the
same way considering ECC can correct the error resulting
from one bit flip. It should be noted that we always choose
significant enough bits to be flipped such that it will make
value alteration distinguishable from round-off errors based
on a known round-off error bound [48]]. It should be noted
that the simulation of each kind of error also depends on
good timing: (1) for computation error, we inject a fault to
an element in the matrix immediately after a target operation;
(2) for off-chip-memory error, we inject a fault to an element
before an operation; (3) for on-chip-memory error, we inject a
fault to an element before an operation and then change it back
after the operation but before ABFT correctness check; and
(4) for communication error, we inject a fault to an element
immediately after it is received. Note we only inject one fault
that causes one kind of error in one execution and thus can
observe if the ABFT protection is effective.

We compare single-side checksum prior-operation check
ABFT [11]], single-side checksum post-operation check ABFT
[31], [32], full checksum post-operation check ABFT [13]],
and full checksum ABFT with our new ABFT checking
scheme (note full checksum prior-operation check ABFT is
non-existent). The evaluation is based on Cholesky, LU, and
QR decomposition, but only the result of LU is shown in
Tableh@rdue to space limit considering the evaluation with
each shows very similar result (omitted results can be provided
upon request).

Table [VIII] shows full checksum provides more compre-
hensive protection against the above considered errors than
single-side checksum. We observe that single-side checksum
fails to tolerate errors occurring in PU as it is lack of checksum
protection on updated panel. Also single-side checksum pro-
vides very limited protection against memory errors in TMU
since it cannot tolerate errors causing 1D error propagation.
Instead, full checksum tolerates all kinds of listed errors.

Table [VIII| also shows ABFT checking scheme incurs up
to 7% less overhead to recover from a soft error than post-
operation checking scheme, which is shown by comparing
our ABFT approach with the ABFT approach based on full
checksum and post-operation check. The efficiency of our
ABFT checking scheme results from following techniques:
(1) it detects and corrects errors more timely as it prioritizes
checksum verifications on sensitive operations like PD and
PU, which doesn’t require local restart in many cases; (2) it
tolerates errors in PCle communication with much less over-
head than existing work via postponing checksum verification
after panel broadcast; and (3) based on our error propagation
study, we can recover from 1D error propagation with far
less overhead, which was previously recovered with a more
expensive method used to correct 2D error propagation, i.e.,
local restart.

B. Fault tolerance coverage analysis

To compare the protection coverage of our new full check-
sum ABFT with existing works in a statistical view, we use
a probability model to estimate the expected fault recovery
overhead needed for each approach given hardware error rates.
We define the following cases that can occur during each
operation with calculations of probability of each case. In
the equations, O P represents operation, which can be replace

TABLE VIII: ABFT protection strength and overhead comparison based on LU decomposition.

PD (CPU y PU(GPU TMU (GPU
Fault— Mem.® A ¢ M)em.T b Pgndt@ Mem. n (M)emT b P;melt® Mem. n (Me)m.T
Ref. T Upd. | CO™P' Ref. | Upd. | o0 Ref. | Upd. | Comp- Ref. [Upd | ~odeds Ref. [Upd. | Comp- Rel. [Upd.
Prior Gingle) |- Y R3% | - | R.3% R. 5% Y Y N N N N N Y Y N Y
Post(single) | - [R.3% [R3% | - [R 3% R8% | R8% | N N N N N N Y Y N Y
Post (full) —R3% | R3% | - [R3% R8% | R 8% [R8% | Rs% | Rs% [R8% | R8% | RS8%| Y Y Y 3% | Y
Ours (ful) | - Y R.3% | - | R3% Y Y Y Y R, 8% | Y Y Y Y Y Y,3% | Y

Notations: (1) A, DRAM memory fault between two operations; T, DRAM and on-chip memory fault during update operations; Also, we distinguish memory faults that occurs
to the reference part and (uypdate part of an update operation; &, PCle fault during panel broadcast; N, computation fault in CPU/GPU during update operations. (2) Y®, errors are
(4

fixed by ABFT with < 1

overhead in addition to fault free execution; Y, errors are fixed by ABFT with certain overhead in addition to fault free execution; R, errors are detected

but need local restarting to fix with certain overhead in addition to fault free execution; N, errors are not detected and causes incorrect final results and need a complete restart.

with PD, PU, or TMU. OP’ represent the operation before
current the operation.

TABLE IX: Notation in Probability Model.

R Floating point calculation error rate.

Ry (T) Off-chip memory error (per matrix element) in a
given time period of 7.

R3(T) On-chip memory error (per matrix element) in a
given time period of 7.

R4 PCle data transfer error (per matrix element) between
CPU-GPU and GPUs.

n the size of current trailing matrix.

nb block size.

Top(n,nb) Time complexity of OP.

Aop(n,nb) Actual time cost of OP on a given platform.

Mop_U or rR(n,nb) | Memory footprint of update part/reference part of
OP in terms of number of matrix elements.

Mop_pc(n,nb) The amount of data transfered after OP in terms of
number of matrix elements.

No calculation error occurred during an update operation
P(A) = (1 — Ry)Tor(nnb),

B: A calculation error occurred during an update operation.
P(B) = Top(n,nb) x (1 — Ry)Tor(mnb) x Ry:

C: No off-chip memory error occurred among matrix
elements in the update/reference part of an opera-
tion (in between update operations) P(C) = (1 —
RQ(AOp(n,nb)))MOP—U or R(n,nb);

D: An off-chip memory error causes one matrix
element in the update/reference part of an
operation being wrongly stored (in between update
operations) P(D) = Mop yorr(n,nb) x (1 —
Ro(App(n,nb)))Morv or mnnb]=1 5 Ry,

E: No off-chip/on-chip memory error occurred among ma-
trix elements in the update/reference part of an op-
eration (during an update operation)(P(E) = 1 —
Ry o 3(Aop(n,nb)))Mor-v or nlnnb);

F: An off-chip/on-chip memory error causes one
matrix element in the update/reference part of
an operation being wrongly stored (during an

update operation) P(F) = Mop y(n,nb) x (1 —
R2 or B(AOP(na nb)))MOP‘U or R(nm‘byil X R2 or 35
G: No error during broadcasting P(G)
R4)MOP_BO(”7"b);
PCle error causes one matrix element being wrongly trans-
fered during broadcasting P(H) = Mop_pc(n,nb)x (1—
R4)Mop_30(n,nb)71 X R4’
In our analysis, we assume at most one faulty case can occur

to one operation at the same time. We calculate four possible
outcome that each operation can have:

o Fault Free: None of the error we consider in the work
occurred during the operation;

o ABFT Fixable: An error is detected and can be recovered
by ABFT;

o Local Restart: An error is detected but cannot be re-
covered by ABFT. Local restart (only restart the faulty
operation) is needed to recover;

o Complete Restart: An error has occurred, but it is not
detectable until the very end of computation. The whole
computation needs to restart to recover;

We use one iteration of LU decomposition as an example
here. We set T} le — 13, 15 le — 9, T3 le — 9,
T, =1le — 11, n = 10240, and nb = 256. The values chosen
here are only for illustration propose. Actual error rate highly
depends on multiple factors of hardware platform. The off-chip
memory error is set to be linearly proportional to storage time.
The on-chip memory error is set to be linearly proportional
to operation’s execution time. The recovery overhead for each
case is based our experiment in the previous subsection. Fig.
[7} [8) shows the probability of four outcomes of the three
operations. We truncated the probability of fault free execution
to better zoom in to the part with faults. Fig. shows
expected time cost for fault recovery given the probability of
four outcomes of the three operations. We can see that by
combining the full checksum and our new checking scheme,
the new ABFT brings wider coverage and lower or similar
fault recovery overhead compared with previous works.

Full new check ABFT
Full post check ABFT
Single prior check ABFT
Single post check ABFT

99.0% 99.2% 99.4% 99.6%

W Fault free W Fixable by ABFT
Fixable by local restart Fixable by complete restart

Fig. 6: Probability of four possible outcomes of PD.

99.8% 100.0%

Full new check ABFT
Full post check ABFT
Single prior check ABFT
Single post check ABFT

97.5% 98.0% 98.5% 99.0%
m Fault free m Fixable by ABFT
Fixable by local restart Fixable by complete restart

Fig. 7: Probability of four possible outcomes of PU.

99.5% 100.0%

Full new check ABFT
Full post check ABFT
Single prior check ABFT
Single post check ABFT

60.0% 70.0% 80.0% 90.0%
B Fault free m Fixable by ABFT
Fixable by local restart Fixable by complete restart

Fig. 8: Probability of four possible outcomes of TMU.

100.0%

C. Performance boost of checksum encoding

Our specialized designed kernel boosts the performance of
checksum encoding significantly and thus also reduces the

0.6%

= ©0.5%
2T 04%
T 3 03%
g g 0.2%
Z 3 01%
@ 0.0% — —
Single post check Single prior Full post check Full new check
ABFT check ABFT ABFT BFT

A
Fig. 9: Expected Recovery Overhead of PD.

0.08%
0.06%
0.04%
0.02%

Single post check

Expected fault
recovery overehad

0.00%

Single prior Full post check Full new check

. ABFT check ABFT ABFT ABFT
Fig. 10: Expected Recovery Overhead of PU.
20.0%
©
o @
5 5 15.0%
&g
T 8 10.0%
Sz
g8 50%
Q >
58 oo]] -

Single post check Single prior Full post check Full new check
check ABFT ABFT ABFT

ABFT
Fig. 11: Expected Recovery Overhead of TMU.

0.14
New Kernel

Neo YT RN
hRRR83B
ANmTn o

o w
g R
~ ®

9728
10752
11776
26112
27136
28160

29184
30208

g3 8
88 R
B

20992
22016

838
gr88
Matrix Size
Fig. 12: Performance of new checksum encoding kernel vs.
default (GEMM).

35

.5
2
1.5
' i il
0.5
< it I
1 2 3 4 5 6 7 8

Numberof GPUs
m Original m Single post check ABFT
m Single post check ABFT w/ optimized kemel — m Single prior check ABFT
m Single prior check ABFT w/ optimized kemel ® Full post check ABFT
m Full post check ABFT w/ optimized kemel m Full new check ABFT
Full new check ABFT w/ optimized kemel

Fig. 13: Overhead comparison of Cholesky decomposition.
25

2
L5
1
0.5 ||| |
0
1 2 3 4 5 6 7 8

Numberof GPUs
m Original m Single post check ABFT
m Single post check ABFT w/ optimized kemel m Single prior check ABFT
m Single prior check ABFT w/ optimized kemel = Full post check ABFT
m Full post check ABFT w/ optimized kemel m Full new check ABFT
Full new check ABFT w/ optimized kemel

Fig. 14: Overhead comparison of LU decomposition.
4.5

14848
15872

13824

8
g

Eexecution time (s)
[

Eexecution time (s)

3

4
1.5
1 2 3 4 5 6 7 8

Numberof GPUs

m Single post check ABFT

m Single prior check ABFT
Full post check ABFT

m Full new check ABFT

)

S L= L W W

Eexecution time (s)

m Original

m Single post check ABFT w/ optimized kemel

m Single prior check ABFT w/ optimized kemel

m Full post check ABFT w/ optimized kemnel
Full new check ABFT w/ optimized kemel

Fig. 15: Overhead comparison of QR decomposition.

overall fault tolerance overhead. We evaluate the performance
boost of checksum encoding by comparing the checksum
encoding performance using our kernel and that of the default
in the same ABFT framework on different matrix sizes. Fig. [12]
shows our kernel achieves 1.7x speedup on average and up
to 1.9x speedup. This positive result demonstrates our kernel
makes far more efficient use of GPU to encode checksums.

D. Scalability and overhead comparison

A practical ABFT approach should incur low overhead and
demonstrate good scalability. To evaluate the effectiveness of
our new ABFT approach, we compare following four methods:
(1) single-side checksum prior-operation check ABFT, (2)
single-side checksum post-operation check ABFT, (3) our new
ABFT approach without the optimized checksum-encoding
kernel, and (4) our new ABFT approach with the kernel.
The ABFT approach used in shows similar overhead
to single-side checksum prior-operation check ABFT, so it is
omitted here. The comparison is based on weak scaling of the
three decomposition methods. For LU and QR, we fix matrix
size per GPU as 10240x10240, so the whole matrix size is
(num. of gpus x 10240) x 10240 For Cholesky, since the
input matrix needs to be symmetric, we adjust the matrix size
so that the workload on each GPU is close to 10240x10240.
For simplicity, we also round the matrix size to be multiplies
of block size set by MAGMA, which only brings less than
2% negligible workload change. The whole input matrix size
is round(y/num. of gpus x 10240 x 10240).

Fig. and [15|respectively shows the comparison result
for Cholesky, LU, and QR decomposition. Note this evalua-
tion is based on error-free execution and thus the measured
overhead only comes from error detection, i.e., no overhead
is spent on error recovery.

Regarding overhead, we observe following phenomenon: (1)
prior-operation check incurs 20% more overhead than post-
operation check, which is because the amount of input data of
an operation verified by prior-operation check is usually more
than that of output data verified by post-operation check; (2)
our optimized checksum encoding kernel reduces the overall
fault tolerance overhead by 3-5%; and (3) the overhead our
new ABFT approach based on the kernel is around 10% for
QR and 15% for Cholesky and LU, which is comparable to
the overhead of post-operation check ABFT.

Regarding scalability, we find that the overhead of our new
ABFT based on the optimized kernel remains constant in the
weak scaling for each decomposition method.

XI. CONCLUSION

We provide an efficient ABFT approach that provides
stronger protection for three major one-sided matrix decom-
position methods including Cholesky, LU and QR on hetero-
geneous systems. First, we provide full matrix protection by
using checksums in two dimensions. Second, our checking
scheme is more efficient by prioritizing the checksum verifi-
cation according to the sensitivity of matrix operations to soft
errors. Third, we protect PCle communication by reordering
checksum verifications and decomposition steps. Fourth, we
accelerate the checksum calculation by 1.7x on average via
optimizing the multiplication of a regular-sized matrix and
a tall-and-skinny matrix on GPU architecture. Evaluation
results demonstrate that our ABFT approach provides stronger
protection yet with no more overhead.

REFERENCES

[11 S. S. Mukherjee, J. Emer, and S. K. Reinhardt, “The soft error problem:
An architectural perspective,” in High-Performance Computer Architec-
ture, 2005. HPCA-11. 11th International Symposium on. 1EEE, 2005,
pp. 243-247.

[2]

[3]
[4]
[5]

[6]
[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

T. C. May and M. H. Woods, “Alpha-particle-induced soft errors in
dynamic memories,” IEEE Transactions on Electron Devices, vol. 26,
no. 1, pp. 2-9, 1979.

J. F. Ziegler and H. Puchner, SER-history, Trends and Challenges: A
Guide for Designing with Memory ICs. Cypress, 2004.

E. Normand, “Single event upset at ground level,” IEEE transactions on
Nuclear Science, vol. 43, no. 6, pp. 2742-2750, 1996.

S. E. Michalak, K. W. Harris, N. W. Hengartner, B. E. Takala, and S. A.
‘Wender, “Predicting the number of fatal soft errors in los alamos national
laboratory’s asc q supercomputer,” IEEE Transactions on Device and
Materials Reliability, vol. 5, no. 3, pp. 329-335, 2005.

S. Mukherjee, Architecture design for soft errors. Morgan Kaufmann,
2011.

T. Tsai, N. Theera-Ampornpunt, and S. Bagchi, “A study of soft error
consequences in hard disk drives,” in Dependable Systems and Networks
(DSN), 2012 42nd Annual IEEE/IFIP International Conference on.
IEEE, 2012, pp. 1-8.

B. Fang, Q. Guan, N. Debardeleben, K. Pattabiraman, and M. Ripeanu,
“LetGo: A Lightweight Continuous Framework for HPC Applications
Under Failures,” in Proceedings of the 26th International Symposium on
High-Performance Parallel and Distributed Computing. ~ACM, 2017,
pp. 117-130.

D. Tao, S. Di, X. Liang, Z. Chen, and F. Cappello, “Improving
performance of iterative methods by lossy checkponting,” in Proceedings
of the 27th International Symposium on High-Performance Parallel and
Distributed Computing. ACM, 2018, pp. 52-65.

X. Liang, J. Chen, D. Tao, S. Li, P. Wu, H. Li, K. Ouyang, Y. Liu,
F. Song, and Z. Chen, “Correcting Soft Errors Online in Fast Fourier
Transform,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. ACM,
2017, p. 30.

J. Chen, X. Liang, and Z. Chen, “Online algorithm-based fault tolerance
for cholesky decomposition on heterogeneous systems with gpus,”
in 2016 International Parallel and Distributed Processing Symposium
(IPDPS), 2016.

J. Chen, S. Li, and Z. Chen, “GPU-ABFT: Optimizing algorithm-based
fault tolerance for heterogeneous systems with GPUs,” in Networking,
Architecture and Storage (NAS), 2016 International Conference on,
2016.

P. Wu, Q. Guan, N. DeBardeleben, S. Blanchard, D. Tao, X. Liang,
J. Chen, and Z. Chen, “Towards practical algorithm based fault tolerance
in dense linear algebra,” in Proceedings of the 25th International
Symposium on High-Performance Parallel and Distributed Computing,
2016.

D. Tao, S. L. Song, S. Krishnamoorthy, P. Wu, X. Liang, E. Z. Zhang,
D. Kerbyson, and Z. Chen, “New-sum: A novel online abft scheme
for general iterative methods,” in Proceedings of the 25th International
Symposium on High-Performance Parallel and Distributed Computing,
2016.

I. S. Haque and V. S. Pande, “Hard data on soft errors: A large-scale
assessment of real-world error rates in GPGPU,” in Cluster, Cloud and
Grid Computing (CCGrid), 2010, 2010.

D. Tiwari, S. Gupta, J. Rogers, D. Maxwell, P. Rech, S. Vazhkudai,
D. Oliveira, D. Londo, N. DeBardeleben, P. Navaux et al., “Under-
standing GPU errors on large-scale hpc systems and the implications
for system design and operation,” in High Performance Computer
Architecture (HPCA), 2015 IEEE 21st International Symposium on.
IEEE, 2015, pp. 331-342.

B. Fang, K. Pattabiraman, M. Ripeanu, and S. Gurumurthi, “GPU-Qin:
A methodology for evaluating the error resilience of gpgpu applications,”
in Performance Analysis of Systems and Software (ISPASS), 2014 IEEE
International Symposium on. 1EEE, 2014, pp. 221-230.

L. B. Gomez, F. Cappello, L. Carro, N. DeBardeleben, B. Fang,
S. Gurumurthi, K. Pattabiraman, P. Rech, and M. S. Reorda, “GPGPUs:
how to combine high computational power with high reliability,” in
Proceedings of the conference on Design, Automation & Test in Europe.
European Design and Automation Association, 2014, p. 341.

B. Fang, J. Wei, K. Pattabiraman, and M. Ripeanu, “Evaluating error
resiliency of GPGPU applications,” in High Performance Computing,
Networking, Storage and Analysis (SCC), 2012 SC Companion:. 1EEE,
2012, pp. 1502-1503.

B. Fang, J. Wei, K. Pattabiraman, and M. Ripeanu, “Towards building
error resilient GPGPU applications,” SC Companion: High Performance
Computing, Networking Storage and Analysis, 2012.

[21]

[22]

(23]

[24]

[25]

[26]
[27]
(28]

[29]

[30]

[31]

(32]

(33]

[34]

[35]

[36]

[37]

(38]

(39]

[40]

[41]

[42]
[43]

B. Fang, K. Pattabiraman, M. Ripeanu, and S. Gurumurthi, “A systematic
methodology for evaluating the error resilience of GPGPU applications.”
IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 12, pp. 3397-3411, 2016.
J. Tan, N. Goswami, T. Li, and X. Fu, “Analyzing soft-error vulnerability
on GPGPU microarchitecture,” in Workload Characterization (IISWC),
2011 IEEE International Symposium on, 2011.

J. Leng, A. Buyuktosunoglu, R. Bertran, P. Bose, and V. J. Reddi, “Safe
limits on voltage reduction efficiency in GPUs: a direct measurement
approach,” in Proceedings of the 48th International Symposium on
Microarchitecture. ACM, 2015, pp. 294-307.

J. Tan, S. L. Song, K. Yan, X. Fu, A. Marquez, and D. Kerbyson,
“Combating the reliability challenge of GPU register file at low supply
voltage,” in Parallel Architecture and Compilation Techniques (PACT),
2016 International Conference on. IEEE, 2016, pp. 3-15.

S. Cataldn Pallarés, J. R. Herrero Zaragoza, E. S. Quintana Orti, and
R. Rodriguez Sanchez, “Energy balance between voltage-frequency
scaling and resilience for linear algebra routines on low-power multicore
architectures,” 2017.

“CULA:.” [Online]. Available: www.culatools.com

“MAGMA:.” [Online]. Available: icl.cs.utk.edu/magma

J. Chen, L. Tan, P. Wu, D. Tao, H. Li, X. Liang, S. Li, R. Ge,
L. Bhuyan, and Z. Chen, “GreenLA: green linear algebra software
for gpu-accelerated heterogeneous computing,” in High Performance
Computing, Networking, Storage and Analysis, SC16: International
Conference for. 1EEE, 2016, pp. 667-677.

J. Chen and Z. Chen, “Cholesky Factorization on Heterogeneous CPU
and GPU Systems,” in Frontier of Computer Science and Technology
(FCST), 2015 Ninth International Conference on. 1EEE, 2015, pp.
19-26.

E. Yao, J. Zhang, M. Chen, G. Tan, and N. Sun, “Detection of soft errors
in lu decomposition with partial pivoting using algorithm-based fault
tolerance,” The International Journal of High Performance Computing
Applications, vol. 29, no. 4, pp. 422-436, 2015.

P. Wu and Z. Chen, “Ft-scalapack: Correcting soft errors on-line for
scalapack cholesky, qr, and lu factorization routines,” in Proceedings
of the 23rd international symposium on High-performance parallel and
distributed computing, 2014.

T. Davies and Z. Chen, “Correcting soft errors online in lu factoriza-
tion,” in Proceedings of the 22nd international symposium on High-
performance parallel and distributed computing, 2013.

R. E. Lyons and W. Vanderkulk, “The use of triple-modular redundancy
to improve computer reliability,” IBM Journal of Research and Devel-
opment, vol. 6, no. 2, pp. 200-209, 1962.

K.-H. Huang, J. Abraham et al., “Algorithm-based fault tolerance for
matrix operations,” Computers, IEEE Transactions on, 1984.
“NVIDIA Fermi Compute Architecture ~Whitepaper:.” [On-
line]. Available: https://www.nvidia.com/content/PDF/fermi_white_
papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf|
“NVIDIA Kepler Compute Architecture Whitepaper:.”
[Online]. Available: https://www.nvidia.com/content/PDF/kepler/
NVIDIA-Kepler-GK110- Architecture- Whitepaper.pdf]

“NVIDIA Maxwell Compute Architecture Whitepaper:” [On-
line]. Available: https://international.download.nvidia.com/geforce-com/
international/pdfs/GeForce_GTX_980_Whitepaper_FINAL.PDF
“NVIDIA Pascal Compute Architecture ~ Whitepaper:” [On-
line]. Available: https://images.nvidia.com/content/pdf/tesla/whitepaper/
pascal-architecture- whitepaper.pdf

“NVIDIA Volta Compute Architecture ~ Whitepaper:” [On-
line]. Available: http://images.nvidia.com/content/volta-architecture/pdf/
volta-architecture- whitepaper.pdf

H. Cho, C.-Y. Cher, T. Shepherd, and S. Mitra, “Understanding soft
errors in uncore components,” in Design Automation Conference (DAC),
2015 52nd ACM/EDAC/IEEE. 1EEE, 2015, pp. 1-6.

H. M. Quinn, D. A. Black, W. H. Robinson, and S. P. Buchner, “Fault
simulation and emulation tools to augment radiation-hardness assurance
testing,” IEEE Transactions on Nuclear Science, vol. 60, no. 3, pp. 2119-
2142, 2013.

“CUBLAS:.” [Online]. Available: developer.nvidia.com/cuBLAS

P. Wu, C. Ding, L. Chen, F. Gao, T. Davies, C. Karlsson, and Z. Chen,
“Fault tolerant matrix-matrix multiplication: correcting soft errors on-
line,” in Proceedings of the second workshop on Scalable algorithms
for large-scale systems, 2011.

www.culatools.com
icl.cs.utk.edu/magma
https://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
https://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
https://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
https://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_980_Whitepaper_FINAL.PDF
https://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_980_Whitepaper_FINAL.PDF
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
developer.nvidia.com/cuBLAS

[44]

[45]

[46]

[47]

[48]

[49]
[50]

[51]

[52]

[53]

[54]

[55]

[56]

S. Tomoyv, J. Dongarra, and M. Baboulin, “Towards dense linear algebra
for hybrid GPU accelerated manycore systems,” Parallel Computing,
vol. 36, no. 5-6, pp. 232-240, Jun. 2010.

S. Tomov, R. Nath, H. Ltaief, and J. Dongarra, “Dense linear algebra
solvers for multicore with GPU accelerators,” in Proc. of the IEEE
IPDPS’10. Atlanta, GA: IEEE Computer Society, April 19-23 2010,
pp. 1-8, DOI: 10.1109/IPDPSW.2010.5470941.

J. Dongarra, M. Gates, A. Haidar, J. Kurzak, P. Luszczek, S. Tomov, and
I. Yamazaki, “Accelerating numerical dense linear algebra calculations
with GPUs,” Numerical Computations with GPUs, pp. 1-26, 2014.

P. Wu, N. DeBardeleben, Q. Guan, S. Blanchard, J. Chen, D. Tao,
X. Liang, K. Ouyang, and Z. Chen, “Silent data corruption resilient
two-sided matrix factorizations,” in Proceedings of the 22nd Principles
and Practice of Parallel Programming, 2017.

G. H. Golub and C. F. Van Loan, Matrix computations. JHU Press,
2012, vol. 3.

“MKL:.” [Online]. Available: software.intel.com/en-us/mkl

A. Li, G.-J. van den Braak, A. Kumar, and H. Corporaal, “Adaptive
and transparent cache bypassing for gpus,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis. ACM, 2015, p. 17.

A. Li, S. L. Song, W. Liu, X. Liu, A. Kumar, and H. Corporaal,
“Locality-aware cta clustering for modern gpus,” in Proceedings of the
Twenty-Second International Conference on Architectural Support for
Programming Languages and Operating Systems. ACM, pp. 297-311.
A. Li, G.-J. van den Braak, H. Corporaal, and A. Kumar, “Fine-grained
synchronizations and dataflow programming on gpus,” in Proceedings of
the 29th ACM on International Conference on Supercomputing. ACM,
2015, pp. 109-118.

D. Shen, S. L. Song, A. Li, and X. Liu, “Cudaadvisor: Llvm-based
runtime profiling for modern gpus,” in Proceedings of the 2018 Interna-
tional Symposium on Code Generation and Optimization. ACM, 2018,
pp. 214-227.

A. Li, Y. Tay, A. Kumar, and H. Corporaal, “Transit: A visual ana-
lytical model for multithreaded machines,” in Proceedings of the 24th
International Symposium on High-Performance Parallel and Distributed
Computing. ACM, 2015, pp. 101-106.

A. Li, S. L. Song, E. Brugel, A. Kumar, D. Chavarria-Miranda, and
H. Corporaal, “X: A comprehensive analytic model for parallel ma-
chines,” in Parallel and Distributed Processing Symposium, 2016 IEEE
International. 1EEE, 2016, pp. 242-252.

A. Li, S. L. Song, A. Kumar, E. Z. Zhang, D. Chavarria-Miranda, and
H. Corporaal, “Critical points based register-concurrency autotuning for
gpus,” in Proceedings of the 2016 Conference on Design, Automation
& Test in Europe. EDA Consortium, 2016, pp. 1273-1278.

software.intel.com/en-us/mkl

	Introduction
	Limitation of current works
	Our contribution

	Related work
	Backgrounds
	Blocked matrix decomposition
	Checksum error detection and correction
	Full checksum LU decomposition

	Full checksum for Cholesky and QR
	Full checksum for Cholesky decomposition
	Full checksum for QR decomposition

	Fault model
	Systematic error propagation study
	Update patterns
	Error propagation patterns

	New ABFT checking scheme
	New ABFT checking scheme design
	Heuristic checking for TMU
	Distinguish communication error with other kinds of error
	Distinguish 1D and 2D error propagation in PU
	Fault tolerance overhead analysis

	Checksum encoding optimization
	Algorithm-level optimization
	Memory access optimization

	Overhead analysis
	Performance overhead
	Checksum encoding
	Checksum updating
	Checksum verification
	Overall performance overhead

	Memory space overhead

	Experimental evaluation
	Fault tolerance protection strength test
	Fault tolerance coverage analysis
	Performance boost of checksum encoding
	Scalability and overhead comparison

	Conclusion
	References

