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∗Koç University, Istanbul, Turkey †Lawrence Berkeley National Laboratory, Berkeley, CA, USA
mfarooqi14@ku.edu.tr, {tannguyen, weiqunzhang, asalmgren, jshalf}@lbl.gov, dunat@ku.edu.tr

Abstract—Adaptive Mesh Refinement (AMR) is an approach
to solving PDEs that reduces the computational and memory re-
quirements at the expense of increased communication. Although
adopting asynchronous execution can overcome communication
issues, manually restructuring an AMR application to realize
asynchrony is extremely complicated and hinders readability
and long-term maintainability. To balance performance against
productivity, we design a user-friendly API and adopt phase
asynchronous execution model where all subgrids at an AMR
level can be computed asynchronously.

We apply the phase asynchrony to transform a real-world
AMR application, CASTRO, which solves multicomponent com-
pressible hydrodynamic equations for astrophysical flows. We
evaluate the performance and programming effort required to use
our carefully designed API and execution model for transitioning
large legacy codes from synchronous to asynchronous execution
up to 278,528 Intel-KNL cores. CASTRO is about 100K lines of
code but less than 0.2% code changes are required to achieve
significant performance improvement.

Index Terms—Asynchronous Runtime, Communication Over-
lap, CASTRO, AMR

I. INTRODUCTION

Domain-specific high-level software frameworks emerged
to insulate domain scientists from the evolving programming
models and complicated hardware architectures. These frame-
works retain a balance between productivity and performance
where domain scientists can focus on physics implementa-
tion while framework developers focus on getting maximum
performance by exploiting advanced parallel programming
models and hardware architectures. AMReX [1] is such a
framework designed to develop block-structured Adaptive
Mesh Refinement (AMR) applications and is currently being
evolved to adapt to Exascale architectures. CASTRO [2], LMC
[3], SMC [4] and Nyx [5] are among the many research codes
in use today that are based on AMReX. There are variety
of AMR techniques and this work discusses AMR in the
context of time-subcycled blocked-structured AMR. Blocked-
structured AMR employs multiple levels of refinements to
solve partial differential equations where refined levels are
created to focus on the region of interest rather than the entire
domain.

Although AMR reduces the computation, it requires ex-
tra communication for inter-level data synchronization. To
overcome the scalability problems due to the increasingly
high communication cost, AMR developers can adopt one
of the many asynchronous execution models. For example,
Chan et al. [6] discussed four different execution models for

AMR ranging from fully synchronous to fully asynchronous
with different programmability tradeoffs. In fully synchronous
execution, all ranks (processes) synchronize to complete com-
munication before moving on to computation. Another variant
of the synchronous execution is rank synchronous execution
where synchronization within a rank occurs before moving on
to computation on that rank. Phase asynchronous execution
further elevates the synchronization to a refinement level where
computation for a level is synchronized before moving on
to computation at the next finer level. In fully asynchronous
model, the computation on each subgrid at any refinement
level can start as soon as its required data inputs are available.

Moving from synchronous to fully asynchronous execution
increases performance but also brings tremendous program-
ming complexity. In the AMR context, asynchronous pro-
gramming requires explicitly declaring and handling subgrid’s
data dependencies, scheduling a subgrid for computation upon
successful completion of its data dependencies and triggering
data communication upon computation of a subgrid. Although
this seems quite intuitive in theory but it is hard to program
in practice and requires major modifications on the entire
application to expose potential asynchrony at all levels. In this
paper, we show that phase asynchrony provides an application
with both the performance and productivity benefits and is
a viable execution model for AMR applications transitioning
from synchronous to asynchronous models.

In this work, we present the integration of the phase
asynchronous execution model with the help of a legacy
application, called CASTRO [2]. This is an application for
compressible astrophysical flows developed using the AM-
ReX framework and being used for simulations of Type Ia
supernovae and core-collapse supernovae. CASTRO employs
the multigrid method in its radiation transport and Poisson
gravity modules, and also has the option of performing syn-
chronous solve on multiple AMR levels. These solvers put
restrictions on asynchronous execution because the algorithm
introduces necessary synchronization points. Therefore, we
restrict the work in this paper on the hydrodynamics solver
with constant gravity. CASTRO underlines the challenges of
the communication overlap technique when done manually.
Specifically, CASTRO employs complex data structures and
input-dependent communication activities, which cannot be
identified easily at compilation time. As a result, manually
modifying the source code to overlap communication with
computation is not a viable approach. Thus, we represent
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Fig. 1: AMR with 2 refinement levels in 2D

the CASTRO code as a task dependency graph and build an
AMR runtime system that can identify chances to overlap as
the program executes. We show how our runtime facilitates
the expression of different AMR communication types and
utilizes hardware resources for work assignment for tasks.
Lastly, we study the impact of asynchronous execution on load
balancing and the use of hyperthreading to improve both the
communication and computation. In summary, we make the
following contributions in this paper:

• Integrate the phase asynchronous AMR algorithm into the
AMReX framework.

• Unveil the simple application programming interface to
reduce programming effort

• Discuss the experience in porting a large astrophysics
application, CASTRO, that solves compressible hydro-
dynamics equations and quantify the programming effort
required for porting this legacy AMR application

• Provide implementation details of the runtime and its
hyperthreading support for communication threads

• Study two load balancing strategies and perform scaling
studies on Cori-KNL and Cori-Haswell supercomputer
using up to 278,528 cores.

II. BACKGROUND

A. AMReX: An AMR Framework

AMReX [1], the successor of BoxLib, is a publicly available
AMR framework being developed as part of the US Depart-
ment of Energy’s Exascale Computing Project. It is designed
for developing applications solving hyperbolic, parabolic and
elliptic partial differential equations on a hierarchy of block-
structured adaptive grids with supports for particles and the
embedded boundary method for complex geometry. It is the
basis of many multi-scale multi-physics application codes.

AMReX organizes the adaptive meshes into a collection of
levels where each level has a different numerical resolution
(i.e., size of numerical cells). Starting from level 0, the coarsest
level, finer refinement levels are added in regions where finer
resolution is desired until the desired level of accuracy or the
predefined maximum number of levels is reached. The grids
evolve adaptively to meet the resolution requirement as the
system evolves. Each AMR level consists of a number of non-
overlapping logically rectangular subgrids. The union of the

subgrids on a fine level is properly contained by the union of
the subgrids on the adjacent coarser level. However, there is no
direct parent-child connection between coarse and fine level
subgrids. Thus the adaptive mesh grids in AMReX cannot be
represented by a tree. Fig. 1 shows an example of AMR grids
in 2D with two levels of refinements where level 1 contains
two subgrids and level 3 contains three subgrids.

In AMReX, a subgrid’s data along with its metadata is
stored in a Fab. All subgrids at a single level are grouped in
MultiFab. In the rest of the manuscript, we refer to subgrids
as Fab and union of Fabs in a single level as MultiFab. AMR
typically requires two types of communication between Fabs.
First one is the intra-level communication, which occurs be-
tween Fabs at the same AMR level. This is a typical ghost cell
exchange that commonly appears in structured grid computa-
tions. Second is the inter-level communication, which occurs
between consecutive AMR levels with additional computation
besides communication. Prolongation interpolates data from
coarser Fab to a finer one while Restriction averages the
data from a finer to a coarser Fab, both causing inter-level
communication. In Fig. 1, shown with arrows, the grey cells
from level 0 are interpolated and copied to the grey cells at
level 1 and green cells from level 1 to green cells at level 2.
During Restriction, data from all cells at level 2 is averaged
out and copied to the cells enclosed in the green cells at level
1 and data from all cells at level 1 is averaged out and copied
to the cells enclosed in the grey cells at level 0.

B. Phase Asynchronous Execution

In this work we adopt the phase asynchronous execution
model described in [7]. In phase asynchronous execution, Fabs
at an AMR level can be computed independent of other Fabs
at the same level as long as their communication dependen-
cies are fulfilled. Fig. 1 illustrates the workings of phase
asynchronous model. After computing of Fab G01 at level
0, communication messages C01 and C02 are asynchronously
sent to Fabs G11 and G12 at level 1. After the reception of
message C01, unlike synchronous execution, Fab G11 can be
computed without waiting for the reception of message C02.
Once Fab G11 is done, message C11 can be sent to Fab
G21 at level 2. However, phase asynchrony requires G12’s
computation to be completed before computation starts at the
next level. For example, let us consider a scenario where
C11 arrives before C02, in a fully asynchronous execution
model G21 computation can be started immediately but in
phase asynchronous execution its computation will be delayed
because G12 at a lower level is still not computed. Delaying
subgrid computation at finer levels, while there are still grids
to be computed at coarser levels, can cost a little performance
loss but limiting asynchronous execution to AMR level enable
us to design a user-friendly API for porting legacy codes.

C. CASTRO

CASTRO [2], [8], [9] is an open source astrophysical
radiation hydrodynamics code that is developed using the
AMReX framework. An unsplit piecewise parabolic method



is employed for hydrodynamics. CASTRO supports nuclear
reaction networks, realistic equations of state for stellar astro-
physics, and Poisson gravity. The radiation solver is based on
the flux-limited diffusion approach that supports both gray and
multigroup radiation transport in either co-moving or mixed
frame. CASTRO has about 100,000 lines of C++ and Fortran
codes. C++ is used as the main driver and the computational
kernels are written in Fortran. A hybrid MPI+OpenMP ap-
proach is used for parallelism. CASTRO has been under active
development since 2007 and has been used for numerous
astrophysical simulations and in particular simulations of Type
Ia supernovae, core-collapse supernovae and pair instability
supernovas (e.g., [10]–[12]).

CASTRO uses subcycling in time and the time stepping is
driven by recursively evolving AMR levels. For example, for
refinement ratio of two, level 0 first advances its data for a
time step of dt0 followed by two calls to advance level 1 data
each with a time step of dt1 = dt0/2. Each advance of level
1 contains two calls to advance level 2 data each with a time
step of dt2 = dt1/2. For a total of three levels, a complete
coarse time step consists of evolving levels 0, 1, 2, 2, 1, 2, and
then 2. To advance a fine level requires temporal and spatial
interpolation of coarse level data.

III. RUNTIME USER INTERFACE

Exposing details of programming models to the application
programmers can enable them to fine tune the performance but
on the other hand will require increased programming effort
and divert their focus from domain science to performance en-
gineering. This is particularly true when asynchronous execu-
tion is desired. A well designed API with right abstractions can
reduce the efforts to develop an asynchronous execution model
in an application, ideally without sacrificing performance.

In close collaboration with domain experts, we develop
the runtime API for common use cases that can appear
while implementing AMR applications. We choose a task
dependency graph representation in which a node represents
computations on a Fab and an edge denotes data dependency
among a pair of tasks. We design nodes and edges of the
graph so that they can be easily constructed from the mesh
structure provided by AMReX. In particular, there are two
major parts of the API for the asynchronous execution that
we expose to the application programmers. One is extracting
metadata embedded in MultiFab which is used to infer data
dependencies (edges) by the runtime. The other is a graph
iterator that iterates over all the Fabs in a MultiFab. Each Fab
is treated as a task of the graph, which may be run as soon
as its data dependencies are satisfied. The rest of this section
presents details of metadata extraction and graph iterator.

A. Metadata Extraction

For metadata extraction, we introduce a new virtual function
initMetaData() to AMReX, which is automatically called
at the first iteration or after each regridding. Application
programmers need to override the initMetaData() function to
enable the metadata extraction. Application programmers also

ExchangeGhost:

tg = TaskGraph( myMultiFab )
extractExchangeGhost(tg, myMultiFab, ...)
graphArray.push_back(tg)

FillPatch:

ap = AsyncFillPatch( myMultiFab, StateID, ...)

Restriction:

tg_src = TaskGraph( srcMultiFab )
tg_dst = TaskGraph( dstMultiFab )
extractRestriction(tg_src, tg_dst,
srcMultiFab, dstMultiFab, ...)
graphArray.push_back(tg_src)
graphArray.push_back(tg_dst)

Fig. 2: Asynchronous runtime’s API for metadata extraction.
For clarity, the framework specific parameters are omitted.

need to implement deleteMetaData() virtual function to delete
all the task graphs created inside initMetaData(). Based on
the type of communication required for a MultiFab, following
three types of cases can occur:

1) ExchangeGhost: ExchangeGhost is intra-level commu-
nication required to fill the ghost cells of all Fabs inside a
MultiFab. ExchangeGhost is required whenever some compu-
tations that change the data, are performed on a MultiFab and
its ghost cell data is required for subsequent computations.

To extract the metadata for ExchangeGhost, programmers
first need to create a task graph that will hold the metadata as
shown in the code in Fig. 2. Metadata is then loaded from the
MultiFab into the task graph using the extractExchangeGhost()
subroutine. Finally, the task graph is added to an array of
task graphs graphArray, which is a member of the Amr class.
The Amr class in the AMReX framework contains all the
AMR related functions. Execution of all the task graphs inside
graphArray is handled transparently by our asynchronous
runtime system.

2) FillPatch: This type of communication contains both
intra-level and inter-level communication. The purpose of
intra-level communication is the same as described in Ex-
changeGhost while inter-level communication is performed for
Prolongation. Prolongation is required for the Fabs at the finer
level whose ghost cell data cannot be obtained from within
their level or boundary conditions. Prolongation interpolates
data from coarser level and copies it to the adjacent finer level.

Handling this type of communication is tricky and cumber-
some because it involves intra-level, inter-level communication
and interpolation both in time and space. More specifically,
Prolongation involves MultiFabs (old and new) from current
level and a target MultiFab at the finer level, where old
and new MultiFabs represent data from previous and cur-
rent timesteps, respectively. ExchangeGhost is performed for
target MultiFab at the finer level. Data from the old and
new MultiFabs at current level is interpolated in time to a
temporary MultiFab and data from that temporary MultiFab



is interpolated in space and copied to target MultiFab at the
finer level.

To make the application programmer’s job easier we im-
plement a special class, AsyncFillPatch for this purpose. As
shown in Fig. 2, the application programmer only needs to
create an object of the class AsyncFillPatch. AMReX handles
all the old and new timestep’s data allocation for problem
domain variables internally, where each variable is assigned
an identification number called StateID. Constructor of the
AsyncFillPatch class requires StateID of the variable for which
FillPatch is needed. All the task graph creation, metadata
extraction and pushing the task graphs to the graphArray are
transparently handled inside the class constructor.

3) Restriction: Restriction is the inter-level communica-
tion performed at the end of an iteration to synchronize the
data from finer levels to the adjacent coarser level and it is
carried out to reflect more accurate values computed using
finer mesh on the coarser mesh. During Restriction the points
at finer level are averaged out and copied to the corresponding
point at the coarser level.

As shown in the code in Fig. 2, two task graphs, one for
each level, are created to hold the metadata for Restriction.
Metadata is then extracted using the extractRestriction() sub-
routine, where the task graph holding the finer level metadata
serves as a source and task graph holding the coarser level
metadata serves as a destination. Both task graphs are then
added to the task graph array graphArray so that runtime’s
communication handler can process them.

B. Task Graph Iterators

AMReX provides a MultiFab iterator that sequentially it-
erates over all the Fabs within a single MultiFab. Fig. 3
shows the AMReX’s iterator where MFIter is the class that
implements this functionality. The iterator is implemented
using a for loop where an object of MFIter is created based on
the provided MultiFab object. The MFIter class implements
isValid() subroutine to check whether there are any further
Fabs to be processed. Increment operator (++) is overloaded
to point to the next Fab in the MultiFab. Inside the loop body
computation on a single Fab is performed.

To keep the API consistent with AMReX, we develop a
task graph iterator with a similar interface to the AMReX’s
MultiFab iterator as shown in Fig. 4. The functionality of the
task graph iterator is implemented inside the TGIter class. The
major difference between the iterators is that the MultiFab
iterator schedules Fabs sequentially while task graph iterator
schedules Fabs (tasks) out-of-order. The order depends on the
completion of task dependencies. Furthermore, as shown in
Fig. 4 the communication data received by the runtime is
required to be pulled when a task is first scheduled and the
communication data is pushed to the runtime for onwards
communication at the end of the computation. These send and
receive function calls are non-blocking; they handover com-
munication data to the runtime for overlapping communication
with computation.

MultiFab Iterator:

ExchangeGhost(myMultiFab, ...)
for(MFIter mfi( myMultiFab ); mfi.isValid();
++mfi)
{ //compute(mfi) }

Fig. 3: AMReX’s MultiFab iterator

Task Graph Iterator:

for(TGIter tgi( tg ); tgi.isValid(); ++tgi)
{
ExchangeGhost_receive(tgi, myMultiFab, ...)
//compute(tgi)
ExchangeGhost_send(tgi, myMultiFab, ...)
}

Fig. 4: Asynchronous runtime’s task graph iterator.

Following are different varieties of the task graph iterator
based on the use case scenarios:

Iterator for single dependency graph: This type of iterator
deals with a single dependency graph. This iterator can be
created by providing the task graph that is created for either
an intra-level or an inter-level communication as shown in Fig.
4. It iterates over all the tasks and schedules a task as soon as
the task’s dependent communication is completed.

Iterator for multiple dependency graphs: This type of itera-
tor is created when both intra-level and inter-level communica-
tion or multiple intra-level or multiple inter-level communica-
tion task graphs are required to complete the communication.
The iterator schedules a task as soon as all the dependent
communication from multiple graphs is completed by the
runtime. To create this type of iterator either an object of
class AsyncFillPatch is passed or multiple task graph objects
for which the communication is awaited are passed to the
constructor of the TGIter class.

Iterator with implicit communication calls: To provide
more parallelism and ease the usage of the iterator, we
implemented an alternative iterator that automatically and
transparently handles pulling the data before computation
and pushing of the data after computation. This type of
iterator can be created by passing additional parameters like
StateID, number of ghost cells, current iteration number and
current simulation time along with the task graph or the
AsyncFillPatch object.

This type of iterator allows us to perform thread-level
optimizations. The iterator sets aside one dedicated worker
thread for pushing and pulling of the communication data.
While rest of the workers are busy computing a task, this
dedicated thread handles pulling the communication data for
the ready tasks or pushing the communication data for the
already computed tasks. This type of iterator is convenient to
use but may not be always applicable because both sending and
receiving data for the same MultiFab may not be carried out in
the same loop but rather data might be received in one loop and



sent in some later loop as is the case in the CASTRO code.
This iterator is mostly suitable for rather small applications
where all computation can be gathered in a single loop.

As in many frameworks, AMReX owns the memory allo-
cation and thread/process management therefore an OpenMP
parallel region is created inside the asynchronous AMReX.
Execution enters the parallel region before starting computa-
tion at level 0 and exits after Restriction is completed for level
0. Application programmers should be careful while inserting
their own MPI or OpenMP calls as this may break the code.

IV. CASTRO IMPLEMENTATION

To port an existing AMReX application to get benefit of
the asynchronous runtime, application programmers need to
follow these steps: 1) Implement the initMetaData() subroutine
to create task graphs and extract metadata for MultiFabs that
need to be communicated during execution. 2) Reorganize
the structure of the application and replace MultiFab itera-
tors (MFIter) with task graph iterators (TGIter). 3) Replace
communication subroutines with their asynchronous send and
receive equivalents at the appropriate places.

Extracting metadata is fairly straightforward and already
explained in the API section. Here we will focus more on
the control structure organization of CASTRO.

A. Control Structure (Synchronous)

The equation solved by CASTRO is in a conservation law
form with source term.

∂~U

∂t
+∇ · ~F = ~S. (1)

Here ~U is the conservative state variable, ~F is the hyper-
bolic flux of hydrodynamics, and ~S is the source term for
gravity, reaction, etc. The main method in CASTRO employs
Strang splitting to achieve second-order accuracy for multi-
physics problems with smooth hydrodynamic flows coupled
with gravity and reaction. At the beginning of a timestep, the
state is evolved for half time step with the source term. Then
the hydrodynamics solver is called for evolving the state for
whole time step. Finally the state is evolved again for half
time step. The hydrodynamics solver performs characteristic
tracing involving ghost cell data. Thus the ghost cells need
to be properly updated after the first half time step with the
source term.

Fig. 5 shows the control structure of the synchronous
CASTRO. The figure only shows the computation performed
within a single level at a single time step. All the variables used
in the figure are MultiFabs unless stated otherwise. Before the
start of an iteration, pointers to the data from previous time
step and current time step are swapped, and the temporary
variables that are used during the time step are reset (memory
reallocation). Ghost cells for the phi old from the current level
and the adjacent coarser level are filled by using the FillPatch()
subroutine where phi old is a MultiFab. Next, old sources are
constructed where src old is an array of MultiFabs, where
each MultiFab represents a different source. ExchangeGhost

is only called for the external old source old src[ext src]
if present. After construction of the hydro source hydro src,
ExchangeGhost is called for both hydro src and dSdt new.
The rest of the code involves computation of hydro src, fluxes,
new src, nuclear reactions and phi new.

B. Control Structure (Asynchronous)

The asynchronous control structure is influenced mostly by
the communication. A general guideline for the asynchronous
execution model is to send communication data as early as
possible and run compute tasks as soon as required data arrive.
This strategy allows to attain the maximum achievable overlap
of communication with computation.

Asynchronous control structure of CASTRO is shown in
Fig. 6. After swapping old and new pointers and resetting
memory allocation of the variables, we post sending dSdt new
early to overlap its communication with construction of
sources. Calling ExchangeGhost for dSdt new at an earlier
location in the synchronous version would not produce any
benefit because communication is performed synchronously
and the communication time is always the same. The asyn-
chronous version allows us the flexibility to post sends earlier
and hide the communication cost. The loop here uses a task
graph iterator constructed with the AsyncFillPatch class object
created for phi old because FillPatch is required for phi old
and computation of old sources requires phi old with updated
ghost cells. At the end of the loop body, we start sending the
communication data from old src[ext src] to the dependent
tasks.

In the subsequent loop, we merge computation of phi new
and hydro src in the loop body. Merging these two computa-
tions increases the compute time. As a result this allows more
time for old src to be received and hydro src to be sent for
the subsequent computation.

The next loop body merges the rest of the computation. The
computation here depends on both hydro src and dSdt new
so the iterator for multiple dependency graphs is used for
creating the loop iterator. The task graphs of both MultiFabs
are used to create the iterator. At the end of the loop body,
FillPatch Send() is called for phi new that sends the commu-
nication data to the finer level. If current level is the finest
level then the communication data is sent for the next time
step of the current level.

C. Programming Effort

The programming effort required to port the legacy AMReX
applications to asynchronous AMReX is reasonably low. Most
of the effort is required for understanding the application orga-
nization and communication and computation dependencies. If
the programmer is already familiar with the application then
the coding effort is negligible compared to the size of the
application.

CASTRO is large code base of 100K lines of code where
nearly 25K lines consist of C++ control flow code imple-
mented in AMReX and the rest of the code comprises For-
tran computation kernels. The code implements four physics
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Fig. 5: CASTRO’s control structure (Synchronous)

modules; compressible hydrodynamics, self-gravity, nuclear
reactions and radiations. It may take about a month to un-
derstand the CASTRO code organization and communication
dependencies but it will arguably take a couple of days to port
it to the asynchronous AMReX. We ported the hydrodynamics
solver with constant gravity, where a few dozen lines of addi-
tional code is required for metadata extraction. Nine MFIters
are replaced with four TGIters. Communication subroutines
are replaced with their send and receive equivalents resulting
in an additional dozen lines of code. In total, less than 200
lines of code is required to be either changed or added to port
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Fig. 6: CASTRO’s control structure (Asynchronous)

these modules.

V. IMPLEMENTATION OF PHASE ASYNCHRONY

The asynchronous execution model we employed in this
work is inspired by the Perilla runtime system [13] and by
the phase asynchronous AMR algorithm proposed in [7]. We
incorporate the phase asynchronous AMR algorithm and its
execution model into the AMReX framework and apply the
method to a large and complex CASTRO application. In
phase asynchrony, each Fab is considered as a task. A task
within an AMR level can perform its computation and post
communication to other levels independent of other tasks at
the same level as soon as its ghost cell data is available.

Our runtime uses a data-driven and graph-based model. The
input of the runtime is a task graph, which is a collection of
tasks connected via dependencies on data. We implement the
runtime on top of MPI and OpenMP. The programmer can
configure the runtime with a single or multiple OpenMP thread
teams per MPI process, where OpenMP threads are equally
distributed among all teams. If a single MPI process is created
per node then a single thread team per socket is effective to
take advantage of NUMA-aware memory accesses. Multiple



MPI processes per node can be also created to utilize network
bandwidth more effectively. Depending on the architecture of
the machine, number of MPI processes and thread teams can
be configured to balance the number of MPI processes and
teams per node.

A. Thread-Work Assignment

Each MPI process of the runtime system consists of a local
and a remote communication handlers that service intra and
inter-process communication requests, respectively. Within a
team, some threads are dedicated to handle communication
while some threads (worker threads) are responsible for
computation. The runtime schedules one task at a time for
computation while communication is being carried out for all
other tasks. To keep all computation threads busy, tiling [14],
[15] within each grid is used for load distribution among
threads, where a number of tiles are assigned to each thread.

Modern architectures often provide multiple hardware
threads per core and we utilize hyperthreading within a team
in the runtime. A challenge posed by using hyperthreads is to
evenly divide computation and communication work among all
the threads. The work should be divided so that the threads
being idle are kept to the minimum because the work does not
increase as the number of available hardware threads increases.
To further increase parallelism, the runtime distributes work
among the communication threads and among the worker
threads when they are pushing or pulling the communication
data. We spare a few threads for handling communication.
When hyperthreading is enabled, one of the communication
threads is dedicated for remote (MPI) communication, one is
dedicated for local ghost cell exchange, and one is dedicated
for local prolongation and restriction. If two hyperthreads are
spared for communication, we combine local communication
into one. If there is no hyperthreading, then all these different
types of communication are handled by a single thread.
Besides doing computation, the worker threads are divided
into two groups where one group pushes or pulls the local
communication data while the other group pushes or pulls the
remote communication data.

An example thread distribution for the runtime using scatter
and compact affinities for communication threads is shown in
Fig. 7a and Fig. 7b, respectively. Assuming two hyperthreads
per core, we set aside two threads for communication and
assign them to the available cores as shown with red lines in
the figure. Rest are computation threads and during push or
pull operations these are divided into local and remote groups
as shown with green-dashed and blue-solid lines in the figure,
respectively. Communication threads can adhere to scatter or
compact affinity independent of the compute threads’ affinity.

B. Load Balancing

Load balancing strategies for AMR usually focus on evenly
distributing the number of cells among the processes. How-
ever, the communication overhead for several small subgrids
is not equivalent to one large subgrid even if they contain
equal number of cells. Performance improvement in phase

Core-0 Core-1 Core-2 Core-3 Core-4 

Computation threads Communication threads 

Local push/pull group Remote push/pull group 

Core-6 

(a) scatter affinity for both communication and compute threads

Core-0 Core-1 Core-2 Core-3 Core-4 

Computation threads Communication threads 

Local push/pull group Remote push/pull group 

Core-5 

(b) compact affinity for communication threads, scatter affinity
for compute threads

Fig. 7: Thread-work assignment

asynchronous execution model is sensitive to the computation
versus communication ratio [7]. Thus, turning a blind eye to
the number grids per process and only focusing on the even
distribution of the number of cells per process may work
well for the synchronous execution models but can cause
deviation in execution times among different processes in
phase asynchronous model. We analyze two different load
balancing strategies, Space Filling Curve (SFC) and Round
Robin (RR), for phase asynchronous model. SFC distributes
the subgrids taking into the account the locality of the sub-
grids, placing the neighboring grids on the same process
to reduce communication. On the other hand, RR sorts all
subgrids based on number of cells and distributes the sorted
subgrids in a round robin fashion among the processes.

VI. EVALUATION

For performance studies we used Cori supercomputer lo-
cated at Lawrence Berkeley National Laboratory, CA, USA.
We conducted experiments on both the Intel’s Haswell and
Intel’s Xeon Phi (Knights Landing) architectures. The latter
is configured with quadrant cluster mode and MCDRAM as
the last level cache. Node specifications for both machines are
provided in Table I.

There are several modules in CASTRO. We use three
dimensional Rayleigh-Taylor (R-T) and Sedov-Taylor (S-T) as
test problems. A brief description of both problems is given in
Appendix. All experiments use two subcycling iterations and
a refinement ratio of two. We use two refinement levels and
a larger mesh size for R-T while three refinement levels and
slightly smaller mesh size for the S-T test problem.

A. Input Configuration Selection

Table II lists the input configurations used for all the
experiments. For a fair comparison, we selected the parameters
based on the best performance for the synchronous AMReX.
Tiling within a Fab is enabled to create OpenMP parallelism
supported by AMReX. For communication threads, we use



Cori-Haswell Cori-KNL
CPUs Haswell Knights Landing

Intel Xeon E5-2698 v3 Intel Xeon Phi 7250
Sockets 2 1
Cores/socket 16 68
Threads/core 2 4
Clock Rate 2.3 GHz 1.4 GHz
LLC 40 MB 16 GB
Total main memory 128 GB 96 GB
Memory bandwidth/socket 68 GB/s 102 GB/s
Interconnect Cray Aries Dragonfly Cray Aries Dragonfly

TABLE I: Machine specifications

scatter affinity on Cori-KNL and compact affinity on Cori-
Haswell and for compute threads we use scatter affinity on
both architectures due to their better performance. We ran
all the experiments multiple times to make sure that the
performance results are consistent and are not effected by run-
to-run variance.

B. Load Balancing Strategies

It is important for the asynchronous execution to have
enough grids to compute and balance load for communication
overlap. We compare two load balancing strategies supported
in both synchronous and asynchronous versions of AMReX:
Space Filling Curve (SFC) and Round Robin (RR), where SFC
is the default option in AMReX.

Fig. 8 shows comparison of SFC and RR in terms of
max and mean execution times for the Rayleigh-Taylor test
problem. When the workload is well balanced, the maximum
execution time of a process is close to the mean execution time
of all the processes. The drop in speedup at 69632(1024) data
point in Fig. 8 for AMReX-RR is because we have fewer grids
than processes at level 1 and AMReX increases the number of
grids by reducing the grid sizes to balance the load. For the
last data point AMReX further increases the number of grids
at level 1 thus again changing the load distribution.

The performance gap between the maximum and the mean
time per process for the asynchronous runtime is higher as
seen in Fig. 8. The gap for AMReX is narrower, in fact
barely visible from the figure. This is because the AMReX
implements the rank synchronous execution model that avoids
global synchronization but still suffers from loose synchro-
nization due to bulk synchronous communication that occurs
multiple times at each level. Thus difference between the
mean and maximum time is negligible for AMReX. The
asynchronous execution on the other hand accumulates the
time difference that arises due to the load imbalance during

Cori-Haswell Cori-KNL
Mesh size for R-T (level 0) 1024 × 1024 × 2048
Mesh size for S-T (level 0) 1024 × 1024 × 1024

Fab size 643

Tile size 64 × 8 × 2 64 × 4 × 2
MPI processes per node 2 4
OpenMP threads per MPI process 32 68

TABLE II: Input configurations
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Fig. 8: SFC vs RR comparison in a strong scaling study on
Cori-KNL using AMReX-SFC as the baseline for Rayleigh-
Taylor problem. Lower and upper bounds indicates speedup
corresponding to the maximum execution time and to the mean
execution time of all MPI processes, respectively.

Fig. 9: Comparing SFC vs RR in terms of number of grids
(Fabs) per process (Rayleigh-Taylor)

computation of all levels in an entire timestep. This results
in an observable difference between the mean and maximum
time of MPI processes, highlighting the importance of load
balancing for asynchronous execution.

For our test problem, RR performs better than SFC for both
synchronous and asynchronous code variants. This is because
RR does a better job compared to SFC in load distribution in
terms of number of grids (Fabs) per process as shown in Fig. 9.
Not shown here but similar trend holds true for number of cells
per process. The number of grids (Fabs) are more important
for asynchronous execution model because computation of one
grid overlaps communication of other grids. Thus higher the
number of grids per process the more is the opportunity to
overlap. Moreover, we use 4 MPI processes per node thus the
locality benefit of SFC is low. All the results in this paper use
RR strategy both for AMReX and asynchronous AMReX and
report the maximum execution time.

C. Strong Scaling Studies

Fig. 10a and Fig. 10b show strong scaling results for R-
T and S-T test problems on Cori-KNL while Fig. 11 shows
strong scaling results for the R-T test problems on Cori-
Haswell. Asynchronous AMReX outperforms the original
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(a) Strong scaling on Cori-KNL (Rayleigh-Taylor)
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(b) Strong scaling on Cori-KNL (Sedov-Taylor)

Fig. 10: Strong scaling on Cori-KNL for test problems (a) Rayleigh-Taylor and (b) Sedov-Taylor. The percentages above each
bar correspond to the performance improvement in Asynchronous AMReX over Synchronous AMReX.

AMReX code variant on both architectures even though it
uses fewer cores for computation than AMReX (30 cores on
a Cori-Haswell node and 64 cores on a Cori-KNL node).
It can be easily seen that, at small scale, the performance
improvement is modest because the communication overhead
is relatively low. However, the performance improvement
quickly increases as the number of nodes grows. This result
makes sense since the communication overlap can amortize the
cost of task scheduling. For the S-T test problem, we use one
more refinement level as compared to R-T. This improves the
performance because the additional refinement level provides
more opportunity to overlap communication with computation.

The reason for lower performance improvement on Cori-
Haswell compared to Cori-KNL is that we are using half of
the MPI processes for same number of nodes on Cori-Haswell
as compared to Cori-KNL. This changes the computation to
communication ratio and reduces the opportunity for compu-
tation and communication overlap.

D. Performance at Large Scale

We next carry out performance studies at large scale using
all the KNL nodes that can be allocated to external users,
occupying half of the Cori-KNL supercomputer. We choose
not to refer to this study as weak scaling because one can
increase problem size at level 0 but increase in the number
of cells at finer levels is handled by AMReX based on the
problem characteristics and input settings. Thus the workload
per core at finer level would decrease if we increase the
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Fig. 11: Strong scaling on Cori-Haswell (Rayleigh-Taylor).
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Fig. 12: Performance at large scale on Cori-KNL for the test
problems R-T in blue and S-T in orange color.

number of cores and the number of cells at finer level does not
change. We could not perform this study on the Cori-Haswell
because at most 1024 nodes can be used by a user and we
already strong scale up to 1024 nodes.

We start with the data point ‘69632(1024)’ for R-T and data
point ‘34816(512)’ for S-T in the previous strong scaling study
on Cori-KNL and double the mesh size at level 0 as we double
the number of cores. Fig. 12 shows results for both R-T and S-
T test problems. Asynchronous AMReX maintains significant
performance improvement over AMReX. For RT, it can be
seen that the performance gap slightly reduces as the number
of node increases. This is due to the fact that the amount of
computation at fine levels does not double proportionally when
we double the mesh size at level 0. Thus the load distribution
changes at each data points and results in different amount
of performance improvements. However, overall we observe
good scaling at large number of cores.

E. Hyperthreading

As discussed in Section 5, in addition to using hyperthreads
for compute, our runtime can use hyperthreads for handling
communication. We found that using hyperthreading for com-
putation contributes about 12% performance improvement
as compared to using a single thread per core on Cori-
KNL as shown in Fig. 13. Hyperthreading for communica-
tion contributes to overall 4% performance improvement in
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Fig. 13: Different degrees of hyperthreading support in asyn-
chronous AMReX (1024 Cori-KNL nodes) using configura-
tions in Table II for the R-T test problem. C and S in the
x-axis labels represent Compact and Scatter affinity.

total. The contributions in details are as follows. Dividing
communication work among multiple threads gives about 1%,
while pushing or pulling local and remote communication data
in parallel using two groups of threads gives additional 2%
improvement. Lastly, using scatter affinity for communication
threads results in another 1% improvement.

The performance improvement due to hyperthreading for
communication is modest as expected because communication
thread is responsible for light-weight operations like posting
MPI sends and receives, waiting for the completion of MPI
communication and doing local memory copies.

VII. RELATED WORK

Asynchronous communication primitives are supported in
de facto standard communication libraries such as MPI and
UPC. These primitives enable overlapping communication
with computation, an effective performance optimization that
has been used for years. Indeed, many studies [16]–[21]
highlighted the benefits of overlap on various compute classes.
Despite the fact that overlap provides significant performance
improvements, this technique requires code and data structure
transformations, which are labor intensive, prone to errors and
result in less readable code [22]–[24]. To reduce programming
cost further, there are compiler based tools [25], [26] that trans-
late MPI codes to a task-based form that can realize overlap.
Their success has been demonstrated on small problems but
their effectiveness is unclear on large legacy codes.

There are a number of task based programming models and
runtime systems such as Legion [27], Charm [28], DaGue [29]
that can provide automatic overlap of communication and
computation. However, programming effort to implement prac-
tical applications using these general-purpose task models is
normally too high, especially in the context of adaptive mesh
refinement. To overcome this challenge, higher level abstrac-
tion is required. For example, Legion introduces Regent [30],
a high level programming language that allows serial-like
programs to be transformed into Legion codes. Although this
technique is feasible, the required runtime analysis due to

implicit synchronization in Regent may cause some slow down
and it is not straightforward to covert legacy codes into Regent.

A number of AMR frameworks [31]–[33] exist which
support parallel computation in AMR applications. Only few
[34], [35] support communication and computation overlap.
Langer et al. [35] organize the oct-tree based adaptive mesh
as a collection of parallel objects distributed over virtual
processors and uses the Charm++ runtime system, where
parallel objects are represented using chare arrays. To support
fully asynchronous execution, they use their own parallel
mesh restructuring algorithm where subgrids can be refined
and coarsened without synchronization. Our approach works
with the existing mesh structuring algorithms and it does not
depend on any specific threading library. Uintah [34] is a
software framework that implements a task-based runtime to
support asynchronous execution of AMR applications. They
also represent a subgrid as a task where computation of a task
overlaps communication of other tasks. Porting legacy AMR
applications to their framework requires major rewriting of the
applications in Uintah’s task-based programming model.

We introduce an user-friendly API, especially the grid
iterator, that significantly reduces programming effort. We
eliminate the need to discover necessary communication at
runtime by leveraging communication metadata embedded in
an AMR program. We also make use of domain-specific
knowledge for optimizing internal components of our runtime.

VIII. CONCLUSIONS

This paper presents the great potential of a phase asyn-
chronous execution model for adaptive mesh refinement appli-
cations. As a case study, we use a large real world astrophysics
application CASTRO and unveil a simplified application pro-
gramming interface carefully designed in collaboration with
domain experts. We discussed the implementation strategy,
analyzed the programming effort required to port the CASTRO
code, and performed scaling studies on two different machine
architectures using up to 278,528 cores. We used Rayleigh-
Taylor and Sedov-Taylor as test problems, which contains
frequently used communication types found in most of the
AMR applications. The simplified API enabled us to port
such a large real world application just by modifying fewer
than 200 lines of code while achieving a significant amount
of performance improvement. Our runtime also utilizes all
the hardware threads to achieve maximum parallelism and
asynchrony. Lastly, we studied two load balancing strategies
and found out that phase asynchronous execution requires
an efficient load balancing strategy to achieve the maximum
possible performance.
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APPENDIX A
APPENDIX: PHASE ASYNCHRONOUS AMR EXECUTION
FOR PRODUCTIVE AND PERFORMANT ASTROPHYSICAL

FLOWS

A. AMReX Framework

A detailed explanation of how to develop an AMR appli-
cation using AMReX is available in its user guide. However,
we provide a basic overview here. AMReX, developed as a
collection of C++ classes, provides support functions such
as memory management, adaptive mesh structure manage-
ment and communication. Typical AMReX applications are
developed using C++ and Fortran where C++ is used for
control structure and computational kernels are implemented
in Fortran. Implementing an AMR application using AMReX
requires understanding of at least the following basic classes.

• FArrayBox (Fab): The Fab class defines a rectangular box
allocated as a Fortran array and provides a set of support
functions to be performed over that box. A subgrid at an
AMR level is represented with a Fab class object.

• MultiFab: The MultiFab class contains an array of Fab
objects along with a set of support functions. This class
also defines the function that identifies and performs
communication among adjacent Fabs in a MultiFab or
between two MultiFabs. A MultiFab is used to represent
all the subgrids at an AMR level.

• MFIter: It creates an iterator for a MultiFab to iterate over
all its member Fabs. Optionally, tiling can be enabled to
create tiles of desired dimension within all Fabs.

• AmrLevel: It is an abstract class that implements function-
ality related to an AMR level. It defines a few pure virtual
functions that should be implemented by the application
programmer. These virtual functions include functional-
ities such as computing dt value, data initialization and
main computation. A notable virtual function advance
is used for defining the main computation for the corre-
sponding level. The post timestep virtual function is used
for Restriction from fine to coarser levels. The AmrLevel
class also defines FillPatch for inter-level communication
that interpolates and communicates data from coarse to
finer levels.

• Amr: It implements the basic AMR execution algorithm
discussed in [7]. Applications are required to create an
object of the Amr class in the main method and iterate
over the coarseTimeStep method for desired number of
times. The coarseTimeStep method advances the coarsest
level by a single timestep along with finer levels that are
advanced to match the coarsest level.

B. Example Application Implementation

Fig. 14 shows the basic code structure of a typical applica-
tion implemented with AMReX. The application implements
a class (i.e. AmrTest) derived from the AmrLevel class. This
application class implements a few pure virtual functions such
as advance and post timestep. The advance method contains
the computation and communication at each AMR level. The

main.cpp:

int main (int argc, char* argv[]) {
amrex::Initialize(argc,argv);
Amr amr;
amr.init(strt_time,stop_time);
while(amr.okToContinue()){
amr.coarseTimeStep(stop_time);}

amrex::Finalize();
}

AmrTest.h:

class AmrTest : public amrex::AmrLevel {
...
virtual double advance (double time, double
dt, int iteration, int ncycle) override;

virtual void post_timestep (int iteration)
override;

MultiFab* testMF;
...
}

AmrTest.cpp:

...
double AmrTest::advance (double time, double
dt, int iteration, int ncycle){

...
ExchangeGhost(testMF, ...);
for (MFIter mfi(*testMF, true); mfi.isValid();
++mfi)
{ compute(...) }
...
}

void AmrTest::post_timestep (int iteration){
...
AmrTest& fineLvl = getLevel(level+1);
average_down(*(fineLvl.testMF), *testMF,...);
}
...

Fig. 14: Basic structure of an AMR application using AMReX

post timestep method performs the Restriction operation for
the desired MultiFabs. AMReX provides a builtin function
named average down that implements a commonly used al-
gorithm for Restriction. The main method of the application
is straightforward, where its creates an object of the class Amr
and then iterates over the coarseTimeStep method of that object
until the termination condition is reached.

Porting an application to the phase asynchronous execu-
tion model requires implementation of two additional virtual
functions, namely initMetaData and deleteMetaData defined
in the AmrLevel class. In addition, the programmer needs to
change MFIter loops in advance and post timestep to TGIter
loops, and replace the communication subroutines with their
respective send and receive asynchronous alternatives. Figure
15 shows the AmrTest.cpp file of the application implemen-
tation using asynchronous AMReX. Here we do not show
main.cpp and AmrTest.h because main.cpp is the same as
shown in Fig. 14 while the AmrTest.h file just needs to include



AmrTest.cpp:

...
double AmrTest::advance (double time, double
dt, int iteration, int ncycle){

...
for (TGIter tgi(tg); tgi.isValid(); ++tgi)
{ ExchangeGhost_receive(tgi, testMF, ...);
compute(...);
ExchangeGhost_send(tgi, testMF, ...);

}
...
}

void AmrTest::post_timestep (int iteration){
...
AmrTest& fineLvl = getLevel(level+1);
for (TGIter tgi(tg); tgi.isValid(); ++tgi)
{ average_down_receive(tgi,
*(fineLvl.testMF), *testMF,...);
}
AmrTest& coarseLvl = getLevel(level-1);
for (TGIter tgi(coarseLvl.tg, true);
tgi.isValid(); ++tgi)
{ average_down_send(tgi,
*(coarseLvl.testMF), *testMF,...);
}
}
...

Fig. 15: Basic structure of an AMR application using Asyn-
chronous AMReX

declaration of the initMetaData, deleteMetaData functions and
task graph variables.

In the body of the coarseTimeStep function, initMetaData
and deleteMetaData are called upon each regrid operation for
managing metadata extraction. deleteMetaData is called to de-
stroy the existing task graphs and initMetaData is then called
to create new task graphs that reflects the new grid structure.
A thread pool is then created and divided into communication
and worker threads. The thread pool lasts till completion of the
computation for the current time step. Communication threads
are dedicated to the runtime that handles all communication
while worker threads handle computation step by step for all
refinement levels. In this example, each refinement level is
represented by an object of the AmrTest class that is inherited
from the AmrLevel class.

In the asynchronous AMReX code variant, the communi-
cation subroutines like ExchangeGhost, FillPatch and aver-
age down are split into three components. send and receive
are two lightweight components. send notifies the runtime that
the communication data have been produced by the task, while
receive takes the communication data from the runtime and
injects them into the task data. The third component, which
is the actual heavyweight communication is performed by the
runtime and can be overlapped with computation. The task
graph iterator schedules tasks without any specific order as
long as their dependent communication data is received.

C. CASTRO Implementation

CASTRO is implemented similar to any other applications
implemented using AMReX. An application class named
Castro is created that is inherited from the AmrLevel class.
The class contains declaration of the required data. All the
computation and communication explained in the paper is
gathered into the advance method of this class.

D. Results

1) Test Problems: In this paper, we use the Rayleigh-Taylor
and Sedov-Taylor test problems in CASTRO.

• Rayleigh-Taylor instability is a ubiquitous phenomenon
in nature. High-fidelity simulation of Rayleigh-Taylor
instability is a key to the understanding of the dynamics
and nucleosynthesis of supernova explosions.

• The Sedov-Taylor solution is a self-similar solution of
the evolution of a blast wave from a powerful explosion
that quickly releases a huge amount of energy in a small
volume (e.g., supernova explosions in astrophysics). This
is a classical verification test problem for hydrodynamics
codes because of the existence of an analytic solution for
comparison, and it is also a common test problem for
AMR codes because most of the energy is concentrated
in a moving thin shell requiring high resolution.
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(a) Cori-Haswell
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(b) Cori-KNL

Fig. 16: Comparison of different number of MPI processes
per node on (a) Cori-Haswell using Rayleigh-Taylor and (b)
Cori-KNL using Sedov-Taylor.



2) Number of MPI Processes per Node: To select optimal
number of MPI processes per node for AMReX, we ran
multiple configurations on both Cori-Haswell and Cori-KNL
using two different load balancing strategies Space Filling
Curve (SFC) and Round Robin (RR). Results are shown in Fig.
16(a) Cori-Haswell and Fig. 16(b) Cori-KNL. Cori-Haswell
has 2 NUMA nodes and we use Cori-KNL in quadrant cluster
mode resulting in 4 NUMA nodes. Creating more than one
MPI process per node helps to use the network bandwidth
effectively and provides NUMA-aware data locality. We found
that using a single MPI process per NUMA node along with
RR load balancing strategy produces the best results.


