Energy Efficiency Modeling of Parallel Applications

Mark Endrei*, Chao Jin*, Minh Ngoc Dinh*, David Abramson*,
Heidi Poxon', Luiz DeRose' and Bronis R. de Supinski?
*Research Computing Center and School of ITEE, The University of Queensland, QLD, Australia
TCray Inc., Bloomington, MN, USA
fLawrence Livermore National Laboratory, Livermore, CA, USA
Email: *{mark.endrei, c.jin, m.dinhl, david.abramson}@ugq.edu.au, T{heidi, 1dr} @cray.com, ibronis@llnl.gov

Abstract—Energy efficiency has become increasingly important
in high performance computing (HPC), as power constraints
and costs escalate. Workload and system characteristics form
a complex optimization search space in which optimal settings
for energy efficiency and performance often diverge. Thus, we
must identify trade-off options for performance and energy
efficiency to find the desired balance between them. We present
an innovative statistical model that accurately predicts the Pareto
optimal performance and energy efficiency trade-off options
using only user-controllable parameters. Our approach can also
tolerate both measurement and model errors. We study model
training and validation using several HPC kernels, then explore
the feasibility of applying the model to more complex workloads,
including AMG and LAMMPS. We can calibrate an accurate
model from as few as 12 runs, with prediction error of less
than 10%. Our results identify trade-off options allowing up
to 40% improvement in energy efficiency at the cost of under
20% performance loss. For AMG, we reduce the required sample
measurement time from 13 hours to 74 minutes (about 90%).

I. INTRODUCTION

Presently power constraints limit the number of both CPU
cores and compute nodes in a supercomputer [1]. We must
develop innovative methods to predict the relationship between
performance and energy usage for parallel computing. Under-
standing the available trade-off options between performance
and energy efficiency is critical at both application develop-
ment [1] and deployment [2]. System resource management
must maximize performance subject to a given power budget
by configuring an application correctly at runtime [2], [3].
In addition, programmers need practical tools that efficiently
identify and select trade-off options to optimize energy effi-
ciency of their parallel applications.

Unfortunately, many factors influence the trade-off. These
factors include application characteristics, like computational
intensity, and memory and communication access patterns, and
system factors, like cache design, and memory and network
bandwidth. Thus, tools to optimize this multi-objective prob-
lem [4] must search a large and complicated space.

Pareto frontiers typically represent the trade-off options
between energy use and performance [4]. Thus, a model
that can predict optimal configurations along the Pareto front
can estimate the trade-off options. We propose a regression
modeling technique that predicts Pareto-optimal energy effi-
ciency and performance trade-off options but does not require
complete search space explorations.

SC18, November 11-16, 2018, Dallas, Texas, USA
978-1-5386-8384-2/18/$31.00 (©2018 IEEE

Our technique has several advantages over existing model-
based methods [5], [6], [7], [8] to improve energy efficiency
for parallel computing. First, it only needs a minimal set of
input variables that supercomputer users can simply access and
control by themselves. In contrast, most existing models [5],
[6] build on several runtime measurements that directly reflect
energy efficiency, such as computational intensity, cache miss
rate, stall cycles, the number of memory accesses, and the
amount of network communications. While these models
provide valuable insight, such parameters are very difficult
for application users to control. The process of acquiring
these measurements also increases the difficulty of automating
these models as practical tools. Second, our model considers
both sample measurement error and model prediction error in
predicted trade-off options. Third, most existing models do not
directly expose Pareto-efficient configurations [5], [6], [7], [8].

We demonstrate that our model accurately predicts, at low
cost, the Pareto front of optimal configurations for hybrid MPI/
OpenMP programs. We present a study that assesses the fit and
variance of our models for representative parallel kernels and
applications. From the study, we find that our methodology
and models can successfully identify trade-off options that
are consistent with measured data for a broad set of the
optimization search space. Further, building our model only
needs a small set of sample measurements, which minimizes
the effort and resources required for training. Overall, our
model is an ideal candidate for a practical, automated tool.

Specifically, this paper presents the following contributions:

o Energy and performance trade-offs using parameters that
parallel application users can directly control;

o A practical method to predict energy efficiency and per-
formance trade-off options from few input measurements;

o Multi-objective energy efficiency and performance mod-
els that accurately predict parallel application responses;

« A trade-off zone approach that improves Pareto optimiza-
tion, given measurement and/or modeling error.

The rest of this paper is organized as follows. Section II
provides an overview of related work and our motivation.
Section III introduces our modeling and error mitigation
methodology. Sections IV, V and VI describe the evaluation
of our methodology using a total of 2,420 experimental runs
on an HPC cluster. Section VII provides further validation of
model fit and variance. Our conclusions follow in Section VIII.

II. RELATED WORK

A wide-range of prior work [1] explores energy-efficient
computing. We briefly discuss some state-of-the-art techniques
to improve energy efficiency of HPC systems and their rela-
tionship to our work. Most existing work that optimizes power
usage for parallel computing consists of three groups.

The first group aims to lower energy consumption with-
out decreasing performance [9], [10], [11], [12]. Typically,
these “best effort” methods identify the opportunity of load
imbalance and processor underutilization at runtime to lower
power consumption without significantly hurting performance.
Often, profiling or tracing identifies finer regions with different
degrees of idleness in a parallel program. According to each re-
gion’s pattern, such as phases with memory stalls and intensive
computation, techniques use Dynamic Voltage and Frequency
Scaling (DVFES) to select a CPU frequency or Dynamic Con-
currency Throttling (DCT) [13] to adjust the number of active
cores to decrease the power wasted by idleness. The power
usage for the regions of MPI communications is also optimized
specifically according to communication patterns [14], [15],
[16]. Other techniques detect MPI processes that are not on
the critical path and slow them to save energy [17], [18].

The second group allows users to make trade-offs be-
tween power and performance, such as power-constrained
performance optimization and auto-tuning. Auto-tuning [19],
[20], [21], [22], [23], [24] methods typically search for the
right parameter settings and code transformations to deliver
optimal performance and power usage on a target platform.
The state-of-the-art auto-tuning tools apply various search
algorithms, such as machine learning algorithms and heuris-
tic algorithms, to prune the search space that consists of
environment settings, compiler flags and application-specific
parameters. Auto-tuning methods use either a combined sin-
gle objective [4], such as energy X delay (E x D) and
energy x delay x delay (E x D?), or multi-objective op-
timization to explore the optimal system configurations to
balance performance and energy use [21]. Multi-objective
optimization provides a Pareto set of optimal performance and
power configurations. The Pareto-efficient configurations can
guide users to achieve energy-optimal computing [25] and can
provide a power and performance model that assists resource
management, such as over-provisioned job scheduling [2].
Power-constrained performance optimization [3] also relies
on the Pareto-efficient configurations to detect the optimized
performance under a power budget.

The third group is model-based methods [5], [6], [7], [8],
[26], [27], [28]. Most power models extend performance
models, such as Amdahl’s Law, iso-efficiency, and the Roofline
model. The energy efficiency extension of Amdahl’s Law [27]
and the energy roofline model [26] provide a high-level view
of the relationship between energy use and performance while
varying parallelism and operational intensity.

Most other models [5], [6], [7] formulate the power and
performance relationship using “white-box” methods that rely
on runtime measurements, such as CPU cycles, stall cycles,

cache and memory bandwidth, and program structures, such as
loop nesting. For example, the iso-energy-efficiency model [6]
extends the traditional performance iso-efficiency function to
analyze the combined effect of performance and power while
adjusting system parameters. Iso-energy-efficiency is defined
as the ratio between energy consumed by sequential and par-
allel executions. About 30 system and application dependent
parameters are measured on a small scale to build the model.
The model can then be used to predict the performance and
power behavior on a large-scale system with different system
parameters, such as CPU frequency and node count. The
accuracy of these “white-box” models is highly dependent
on runtime measurements that are collected using traces or
by instrumentation to query performance counters, which is
often not a trivial process. Typically, performance and energy
counter events should be collected in separate runs to avoid
counter multiplexing. Otherwise, it may cause application
perturbation and decrease measurement accuracy [29]. The
process of building these models requires user intervention
to collect runtime traces or to analyze performance counters,
which complicates automation of these models. Importantly,
these existing “white-box” methods do not expose the Pareto
frontier of energy efficient configurations so users cannot
directly apply these models to find effective “sweet spots” that
balance performance and energy consumption.

Unlike prior work, our “black-box” model predicts the
Pareto-efficient configurations on the targeted platform. In
comparison to previous work, our approach only relies on
a minimum set of parameters that are fully controlled by
users, such as the number of threads, CPU frequency and
the number of compute nodes. Thus, our method is easy to
automate because it does not need any external instrumentation
tools, and its application across different platforms is less
restricted. Most importantly, we demonstrate that our “black-
box”” method can also provide high accuracy in terms of energy
and performance prediction. Previous performance prediction
methods [30], [31] have adopted regression-based models to
estimate the performance for various system configurations.
However, to the best of our knowledge, we present the first
method to use regression-based methods to explore Pareto-
efficient configurations that allow users to make trade-offs
between performance and energy use.

III. METHODOLOGY

This section describes our methodology to create and to
validate our models of energy efficiency and performance.

A. Model Predictors

The initial step selects model input parameters, or predic-
tors, that can accurately model our responses: system energy
efficiency and performance. Prior work [29] showed that a
complex relationship exists between system characteristics,
workload features, concurrency, CPU frequency scaling and
the observed system response. We use the definitions in Table I
to express these relationships as shown in Equations 1 and 2.

TABLE I
PARAMETERS USED IN THE MODELS
Parameter Description
Wp, Workload or application to be evaluated
Sm System or architecture to be evaluated

E(’u)’,“ Sm)7 671
P(w'ru Sm)vp,u

Energy efficiency of workload n on system m
Performance of workload n on system m

ni Count of homogeneous nodes to be evaluated

cj Count of cores or threads to be evaluated

fr CPU frequency or DVFS setting to be evaluated
bs(z) Transform to generate B-spline bases for parameter x

Fe(ni,cj, fr)
Fp(ni7cj’fk)

Energy efficiency function of nodes, cores, frequency
Performance function of nodes, cores, frequency

er Total energy required to execute workload

tr Total time required to execute workload
E(wnasm) :FE(nivcjvfk) (D
P(wnasm) :Fp<niacjvfk) (2)

B. Model Formulation

To formulate the multiple regression models we first analyze
the responses of a set of representative software kernels,
using node count, core count, and CPU frequency setting
as the model inputs. The observed curvilinear performance
and energy efficiency responses mean the models require
polynomial terms.

The inflexibility of polynomials [32] can dramatically im-
pact basic polynomial fit. It may result in undesirable os-
cillations in the predicted response, or an overall response
shape that is unduly affected by a small subset of samples.
To minimize the impact of this inflexibility, we begin with
a B-spline piecewise polynomial model using ordinary least
squares regression. We find that splines consistently outper-
form basic polynomials in our experiments.

Spline functions are used to fit a smooth curve along a series
of points, or knots. We construct the curve that joins each pair
of points, or spline, piece-wise from polynomial functions. A
B-spline, or basis spline function, improves the continuity at
the knots, which may otherwise affect model continuity.

We have several configuration options to tune the accuracy
and efficiency of the models. We consider options that in-
clude polynomial degree and degrees of freedom for splines.
Increasing these model parameters allows the spline to fit more
complex curves. We also consider interactions between terms,
linear and non-linear terms, transforms to reduce effects of
data distribution skew, and sampling method.

To guide model tuning, we observe the level of variability
that each predictor drives in the response and we use knowl-
edge of expected interactions between predictors. For example,
increasing core counts drive resource contention that produces
non-linear responses. Increasing CPU frequencies typically
drive linear responses until core contention within the node
starts to dominate. Such observations lead us to the following
model settings and simplifications:

o B-spline degrees of freedom is three;

« Node and core count are quadratic polynomial terms;
o CPU frequency is a linear term;

¢ Node and core count have an interaction term;

o Core count and frequency have an interaction term;

o Frequency and node count have no interaction term;
o Natural logarithm transform of response.

To evaluate model settings experimentally, we use an iter-
ative approach that assesses the data distribution and correla-
tion, the model fit, and the coefficient magnitudes. For exam-
ple, we experimentally compare model fit with CPU frequency
as a polynomial or linear term and find the linear term option
provides a slight improvement in average RMS error across
our study test cases (2.3%). We also experimentally determine
the optimal polynomial term order and B-spline degrees of
freedom at the transition point between model underfit and
overfit. For example, the near zero coefficient for the core
count and frequency interaction term confirms that we can
remove it from the model with little impact.

As a result, our statistical models for energy efficiency
and performance of a parallel application that runs on a
homogeneous HPC cluster use Equations 3 and 4.

loge(en) ~ bs(n;) + bs(cj) + fi + bs(c;) : fu

+ bs(n;) : bs(cy) ®)

loge(pu) ~ bs(n;) + bs(c;) + fr + bs(cj) : fu @
+bs(n;) : bs(cj)
These equations are based on Wilkinson notation [33],
which is accepted by regression analysis tools such as MAT-
LAB, or R and Python programming libraries. The operators
used are ‘~’ meaning is modeled by, ‘+’ to add a term to the
model, and :’ to include interactions between terms.
In addition to energy efficiency and performance rates, the
models can support cumulative responses such as total energy
and total time based on Equations 5 and 6.

loge(er) ~ bs(n;) + bs(c;) + fi +bs(c;) : fi

+ bs(n;) : bs(cy) ©)

loge(tr) ~ bs(n;) + bs(cj) + fr + bs(cj) : fu ©
+bs(n;) : bs(c;)

We apply the natural exponential to model predictions to
reverse the logarithm transformation.

Equation 7 shows the right-hand side expansion for Equa-
tions 3 to 6. Each model has 20 predictor terms (1 intercept, 1
linear term, 2 x 3 spline B-spline terms, 1 x 3 spline B-spline
x 3 spline B-spline interaction term, 1 x 3 spline B-spline
x 1 linear term). We collect predictor and response training
data then use least squares regression to determine the term
coefficients, By to Bi9.

Bo + b1 - fr

+ B2 - bs1(ni) + B3 - bsa(ng) + By - bsz(n;)

+ Bs - bs1(cj) + Bo - bsa(cj) + Br - bss(c))

+ Bs - bs1(n;) - bsi(cj) + Bo - bsa(n;) - bsi(cy)

+ B1o - bss(ng) - bs1(cj) + Br1 - bs1(n;) - bsa(c;))
+ B2 - bsa(n;) - bsa(cj) + Big - bss(n,) - bsa(cj)

+ fia - bs1(ng) - bss(cj) + Bis - bsa(ng) - bss(c;)

+ B16 - bsz(ni) - bsz(c))

+ Bi7 - bsi(cj) - fx + Bis - bsa(cj) - fr

+ Bro - bsz(cj) - fx

C. Model Evaluation

To evaluate the model, we use correlation analysis, k-fold
cross validation, and RMS error and R? statistics. We derive
these quantities from many measurement samples in order to
provide a statistically significant validation of model accuracy.
Our results in Sections V, VI and VII demonstrate that a
small sample of measured data is sufficient to fit system- and
workload-specific coefficients for the models.

Spearman’s rank correlation coefficient, p, is a non-
parametric measure of the correlation between predictors and
responses. Values near zero indicate weak correlation. We use
this statistic to validate hypotheses when we select predictors.

The R? statistic measures how well a model fits training
data. R? values near 100% indicate better fit. RMS error is
the standard deviation of the prediction error, or regression
residuals. It measures how closely observed data fits data
forecasts that the model generates. RMS error values near zero
indicate a close fit between model forecasts and observed data.

The k-fold cross validation method partitions the data set
into k equal-size subsets. k — 1 subsets serve as model training
data and the remaining subset is the model test data. We repeat
the process k times to test model accuracy across the full data
set. We use 3-fold cross validation to confirm that the model
does not overfit a subset of the data.

D. Pareto Front Evaluation

We calculate RMS error between our observed and predicted
Pareto fronts, but also use further, specific techniques to assess
the accuracy of the predicted fronts. We assess Pareto front
accuracy using the following metrics:

e Overlapping point count, i.e., the count of points that

occur in both observed and predicted fronts;

« Non-overlapping point count on observed front, grouped

by distance to nearest neighbor on predicted front;

« Non-overlapping point count on predicted front, grouped

by distance to nearest neighbor on observed front;

o Predicted and observed minimums and maximums for

each objective (energy efficiency or performance);

o Predicted and observed trade-off ranges for each objec-

tive compared to their values when threads and CPU
frequency are at the maximum settings.

x 108

3.6
| (3)
3.4
N ofad . 7
v = .1 " e
2 ‘.0 (2)
£30- 3
2 e
S REEER
2.6 P R €
24 — . . |
170 180 190 200 210 220
MFlops/J

Fig. 1. Pareto Trade-off Zone Construction Steps

We measure the distance to the nearest neighbor as a
percentage of the search space dimension. For example, our
thread count per node dimension has 11 increments from 4
to 44 in steps of 4. The distance from 36 to 40 would be
1/11 = 9%, and 36 to 44 would be 2/11 = 18%. This choice
normalizes across dimensions.

E. Measurement and Modeling Error

Performance and power measurements exhibit experimental
error and noise due to the non-deterministic nature of systems.
These measurement errors, which are often normally dis-
tributed, result from a range of random factors. Normality tests
can validate that our power and performance measurements
are normally distributed. We use the Q-Q (quantile-quantile)
plot to compare our measured data distribution visually with
the standard normal distribution. We use the -distribution to
analyze measurement confidence intervals. The log. transform
that our models use mitigates normal distribution deviations.

Model forecasts exhibit prediction error. Thus, we must
allow for both measurement and prediction errors when we
identify trade-off options between performance and energy
efficiency. Valid trade-off options within error limits lie in a
zone close to the Pareto front, rather than only lying directly
on it. We introduce the concept of a trade-off zone that
includes all values near the Pareto front that are not statistically
distinguishable from those on the front.

Figure 1 shows our steps to construct the trade-off zone:

1) Plot the data set against the trade-off parameters (energy

efficiency and performance in our case);

2) Plot the Pareto front along the Pareto-optimal points;

3) Extend the Pareto front outer limits horizontally and

vertically to encompass all points that are off the front
but are within the error limits for the respective axes
(we also use this curve to calculate the RMS error of
the predicted Pareto front compared to the observed one,
after interpolating each curve to the same line-space);

4) Scale and translate the Pareto front by the axes error

limits to set the inner limits of the trade-off zone;

5) Close the two curves, which creates a polygon that

represents the trade-off zone.

The trade-off zone polygon encloses the set of points that
may be Pareto optimal when we compensate for the error

TABLE 11
SYSTEM SPECIFICATION

TABLE III
EXPERIMENTAL PARAMETERS

limits of each axis. These points provide the trade-off options
for energy efficiency and performance. Since measured and
predicted error limits may differ, we set error limits individu-
ally for the measured and predicted Pareto fronts.

Our models only use measured data for the response
variable, which provides two important benefits. First, our
fitted model coefficients are not biased by random error in
the response measurements [34]. This means our regression
estimates tend to average values of the training data, plus or
minus measurement error. Second, our model can be used
to make predictions for unseen predictor data, so we can
practically explore a large parameter space with a small
number of training measurements.

We can control our measurement error levels to around 5%
by ensuring that overall execution time is large compared
to program initialization and shutdown time and that exe-
cution time is large compared to the temporal resolution of
system power counters. In less controlled environments with
larger measurement error, the size of the trade-off zone will
increase as more data points fall within the error limits. A
full experimentally measured sweep of the search space will
be similarly impacted by increased measurement error. We
use estimated measurement error and model error to assess
the level of alignment or overlap between the observed and
predicted trade-off zones.

IV. STUDY OVERVIEW

This section provides a summary of the platform, parameters
and phases of our experimental study.

A. Platform

We conduct experiments on a Cray XC system equipped as
Table IT shows. Our runs use up to 86, exclusively allocated
44-core nodes, or 3,784 cores in total. We use the Python
programming platform [35] for correlation analysis, fitting
model coefficients, evaluating the responses, and plotting the
results [36], [37], [38], [39]. The Nimrod toolkit [40] is used
to orchestrate experiment tasks.

B. Power Measurement

The Cray XC system has node-level sensors to measure
temperature, current, and voltage. Cray power management
counters (pm_counters) provide real-time power and energy
measurements, which are updated at a frequency of 10

Component Specification Parameter Configuration
CPU model Intel Xeon CPU E5-2699 v4 Compute Nodes 20, 42, 64 and 86
(Broadwell) MPI Ranks Per Node 2
CPU clock 22 GHz OpenMP Threads per Rank 2 to 22 incrementing by 2
Sockets (NUMA Nodes) 2 per compute node OpenMP Threads per Core 1
Cores 22 per socket CPU Frequency 1.2 to 2.2 GHz incrementing by 0.1
Last Level Cache (LLC) 55 MB per socket Total CPU Cores 3,784
Main memory (DRAM) 64 GB per socket
Memory bandwidth 76.8 GB/s max

Hz. CrayPAT [41] is a performance analysis tool that uses
performance counters, including pm_counters and hardware
performance counters (HWPC), to evaluate program behavior.
It instruments the program, collects the specified counters at
runtime, and reports the collected counters. Cray pm_counters
can also be read directly from the Linux sysfs folder,
/sys/cray/pm_counters, as a program launches and terminates.
We monitor energy and power consumption for all nodes with
pm_counters. To assess energy efficiency, we use operations
per Joule (for example, Flops/J, Bytes/J, Updates/J).

C. Study Parameters

Table III lists configuration parameters and associated
ranges that we use in our study. These parameters generate
a full factorial design with 484 combinations.

D. Experiments
We conduct our study experiments in two main phases:

1) Model design and evaluation using kernels;

2) Model evaluation using applications.

The kernels and applications all use the hybrid MPI/
OpenMP programming model. We configure experiment jobs
to allocate one MPI Rank per CPU socket and one OpenMP
thread per CPU core. We distribute OpenMP threads uniformly
across the available sockets and nodes using the Scatter thread
placement policy. For each experiment we collect the full 484
sample combinations as listed in Table III, making 2,420 tests
in total for three kernels and two applications.

V. KERNELS STUDY

This section demonstrates that we can accurately predict
Pareto-optimal energy and performance trade-off options with
low cost for several scientific kernels that focus on specific
computational idioms. We choose the Parallel Research Ker-
nels (PRK) [42], a collection of programs that cover common
patterns of communication, computation, and synchronization
encountered in parallel HPC applications. The PRK come with
performance metric reporting, which allows us to focus on
power consumption attributes to identify energy optimization
opportunities. Out of the available hybrid MPI/OpenMP ker-
nels in PRK, we focus on the following three kernels:

1) Stencil: a kernel that performs data-parallel stencil op-
eration to a two-dimensional array;

2) Transpose: a kernel that stresses communication and
memory bandwidth;

Uniform

4 12 20 28 36 44 4
Threads

12 20 28 36 44 4
Threads

12 20 28 36 44
Threads

Fig. 2. Uniform, Random, and Latin Hypercube Sampling

x10*
367 —k 1.6GHz A
344 -®- 22GHz
i\
3.2
i ~
3.0 1
2.8 1
12 20 28 36 44

Threads

Fig. 3. Stencil Experimental Measurement Error

3) Nstream: an embarrassingly parallel kernel that com-
putes memory bandwidth.

A. Stencil Kernel

The model response terms for stencil are energy efficiency
in MFlops/J and performance in MFlops/s. We use stencil
radius of 2, grid size of 400k, and set iterations to ensure that
run time is at least 10 times the measurement sample rate.

We evaluate several methods to generate model training
data including uniform sampling, random sampling, and latin
hypercube sampling [43]. Figure 2 shows our 11 core count
x 11 frequency search space with uniform or non-random
samples, random samples, and latin hypercube samples which
have a randomly selected sample from each row and column.

We evaluate each sampling method using RMS error and R?
statistics, as described in Section III-C. We achieve the best
fit with the fewest observations across our test cases using
uniform sampling. Our method requires 12 samples or 10%
of the search space for model training (4 core count x 3
frequency samples). Our core count and frequency samples
from Figure 2 are 8, 20, 32, and 44 cores, and 1.2, 1.8, and 2.2
GHz respectively. We also evaluate the model at node counts
of 20, 42, 64 and 86, for a total data set size of 484 samples.

Figure 3 includes error bars for the 95% ¢-distribution confi-
dence interval for the mean of five samples. The measurement
error margins are about 5% for our experiments. We expect
that setting up a tool using our model will include a calibration
step that calculates measurement confidence intervals for each
response variable. This strategy eliminates sample repetitions
for each training sample to calculate their confidence intervals.
Instead, we alert the user if the statistical significance of the
regression results is not within set limits.

35X 10 Observed
’ 44
3.01 L) ;I
25 GE s 2
2 oq %
£ 204 Jet g
= 2 20 &=
1.5 N
S 12
1.0 1 /
05 * . . . | | 4
50 75 100 125 150 175 200 225
MFlops/J
15 X 106 Predicted
: 44
3.01
2.5 S ¥ d
3 o o 28 &
£2.0- o 5
s o 20 &
1.51 ¢
O
Jo%e 12
1.0
L)
0.5 4

50 75 100 125 150 175 200 225
MFlops/J

Fig. 4. Stencil Pareto Front — Observed and Predicted

Figure 4 shows the experimentally observed and model
predicted Pareto fronts for stencil on 64 nodes. Points off the
front are not Pareto optimal as points on the front always
provide an improvement in one parameter with less impact on
the other. We scale the trade-off zone along the measured and
predicted Pareto fronts for a 5% error margin.

The interaction between thread count and frequency deter-
mines the shape of the Pareto front. Figure 4 shows that data
points are grouped by thread count, and rotate as we vary
frequency. This rotation defines the shape of the Pareto front,
which sets the energy versus performance trade-off ranges.

Table IV shows the RMS Error between the full 121 ob-
served and predicted values is 4.8% for energy efficiency and
4.8% for performance. The RMS Error for the Pareto front is
5.1% for energy efficiency and 11.4% for performance, which
we calculate as described in Step 3) in Section III-E. The
Pareto Front section in Table IV shows similar observed and
predicted Pareto point counts, with all non-overlapping points
except one within 9% or one search step of an overlapping
point (4 threads or 0.1 GHz).

Table IV also shows Baseline performance and energy
efficiency at maximum cores and threads, and their minima
and maxima along the Pareto front, P,,;, and P, 4.

The observed and predicted energy efficiency gains are simi-
lar (around 40%). The performance gain approaches 20%. The
observed and model predicted Pareto fronts provide consistent
views that core and frequency tuning can provide a 40% gain
in energy efficiency with minimal impact on performance.

The surfaces in Figure 5 and 6 represent observed and
predicted energy efficiency and performance across the CPU
frequency and thread count search space. We plot Pareto points

TABLE IV
STENCIL RESULTS SUMMARY

Model Training Energy Performance
Observations R? | RMS Error R? | RMS Error
12 0.993 4.8 | 0997 4.8
Pareto Front Points | 0% | 9% 18% | 27% | 36%
Observed (5% error) 31 29 2 0 0 0
Forecast (5% error) 39 29 9 1 0 0
Energy (Flops/J) Baseline | Pin | Pmax % Range
Observed 149M 183M 215M | 229 to 44.7
Forecast 149M 185M 205M | 244 to 379
Percent error 0.0 1.2 -4.7
Performance (Flops/s) Baseline | P,in | Pmax % Range
Observed 2.83T 2.88T 3.35T 1.5 to 18.2
Forecast 2.84T 2.70T 335T | -52t0 179
Percent error 0.4 -6.3 0.1
Observed
L] ..
° A .’
1..9,|2:g215§/1)

¢/sdoldIN

4 12 g
28
Threads

Predicted
Max (1.2,28,205M)
|

g/sdolAN
@
S

4 12 20

28 2.2
Threads 36 44

Fig. 5. Stencil Energy Efficiency — Observed and Predicted

on these surfaces to show their context in the search space.
Figure 6 shows that performance increases and then levels
off as frequency and core count increase. The leveling-off
marks the start of the trade-off zone, where energy efficiency
starts to drop significantly, as Figure 5 shows, due to resource
contention. This divergence between energy efficiency and
performance means that tuning can increase energy efficiency
significantly over a strategy that only minimizes run time.

B. Transpose Kernel

The transpose model response terms are energy efficiency
in MB/J and performance in MB/s. We use a 200k transpose
matrix order, disable blocking/tiling, and set iterations to
ensure run time is at least 10 times the measurement sample

Observed

s /sdo [:1]/\190‘ x

4 12 20
28
Threads

Predicted

X
2

2 1.2
e 1.4
7 1.6

4 1.8 GHz

4 12 20

28 2.2
Threads 36 44

Fig. 6. Stencil Performance — Observed and Predicted

5 Observed
35 x 10
W 44
3.0 ° .
? 0 36
2.5 bt
° . 3 28 4
2 2.0 j 3
= o 208
1.5 .
_/ 12
1.0 4 -
0.5 : : ; ; 4
10 15 20 25 30 35
MB/J
5 Predicted
35 x 10
44
3.0 1 LTS
%e, 36
251 “eoes,
© 283
A 2.0 1 \ 2]
= 20 E
1.5
12
1.0 1
0.5 | . | . 4
10 15 20 25 30 35

MB/J

Fig. 7. Transpose Pareto Front — Observed and Predicted

rate. Figure 7 shows the experimentally observed and model
predicted Pareto fronts for 64 nodes.

Table V shows the RMS Error between the full 121 observed
and predicted values is 6.6% for energy efficiency and 4.5%
for performance. The RMS Error for just the Pareto front is
4.4% for energy efficiency and 2.2% for performance. The

Observed

TABLE V
TRANSPOSE RESULTS SUMMARY

Model Training Energy Performance
Observations R? | RMS Error R? | RMS Error
12 0.919 6.6 | 0.999 4.5
Pareto Front Points | 0% | 9% 18% | 27% | 36%
Observed (5% error) 59 55 4 0 0 0
Forecast (5% error) 64 55 7 2 0 0
Energy (B/J)) Baseline | Pin | Pmax % Range
Observed 229M | 229M | 32.6M 0.0 to 42.3
Forecast 23.5M | 23.5M 32.7M 0.0 to 39.3
Percent error 2.6 2.6 0.4

Performance (B/s) Baseline | Pin | Pmax % Range
Observed 340G 275G 340G | -19.0 to 0.0
Forecast 340G 266G 340G | -21.6 to 0.0
Percent error -0.1 -3.4 -0.1

Pareto Front section shows similar observed and predicted
Pareto point counts, with most of the non-overlapping points
within 9% or one search step of an overlapping point.

The observed and predicted energy efficiency gain are simi-
lar (around 40%). The gain requires a trade-off in performance
of 20%. The observed and model predicted Pareto fronts agree
that core and frequency tuning can increase energy efficiency
by up to 40% in exchange for up to 20% performance loss.

C. Nstream Kernel

As with transpose, the nstream model responses are effi-
ciency in MB/J and performance in MB/s. We use a vector
length of 40G. We construct the experimentally observed and
model predicted Pareto fronts for 64 nodes.

The RMS Error between observed and predicted values
for nstream is 8.5% for energy efficiency and 7.5% for
performance. The RMS Error for the Pareto front is 6.4% for
energy efficiency and 2.3% for performance. The observed
and predicted Pareto point counts are again similar, with all
non-overlapping points within 9%.

The observed and model predicted Pareto fronts provide
consistent views that core and frequency tuning can increase
energy efficiency up to 40% with little performance impact.

VI. APPLICATIONS STUDY

This section demonstrates that we can accurately predict
Pareto-optimal energy and performance trade-off options with
low cost for more complex workloads. We apply our energy
modeling method to AMG, a parallel algebraic multigrid
solver for linear systems [44], and to LAMMPS, a classical
molecular dynamics simulator [45].

A. AMG Application Study

AMG, parallelized using hybrid MPI/OpenMP, is well-
known for its demands on main memory bandwidth. We study
AMG because it contains microkernels that resemble the PRK
kernels that we studied in Section V. First, AMG performs
compressed sparse row (CSR) matrix vector multiplication.

200
160
60
120 AN
o o
80 4 . ® 2o o -
.. . L
@ 2; 48 E
40 c"".;". .
£ L
M:l 40
0.4 0.8 1.2 1.6 2.0
J x10°
200 Predicted
160
120 A . 60
o... .o...
\d 0
80 o O 7
<8° J‘ 5}
@ ..\' o 48 E
.. ()
40 1
40
0.4 0.8 1.2 1.6 2.0
J x10°

Fig. 8. AMG Pareto Front for 40, 48 and 60 Nodes — Observed and Predicted

Second, in optimizing the coarsening process, matrix trans-
pose is essential. Finally, as the core of AMG, the algebraic
multigrid mesh relaxation process uses a 27-point stencil.

The AMG model responses are cumulative functions rather
than rate functions as with the PRK kernels, so we use model
Equations 5 and 6. We measure AMG solve time in seconds
as the performance metric, and adopt total energy in Joules as
a cumulative metric for energy use. AMG also differs from the
PRK kernels in that the problem size scales as the processor
topology scales (i.e., weak scaling). These differences help
further validate the generality of our method.

Our node count, MPI rank, and OpenMPI thread count set-
ting also must fit within AMG processor topology restrictions.
Thus, we use 20, 40, 60, and 80 nodes to retain the same rank
and thread count settings that we used for the PRK. We use
AMG problem size per processor of 256, which results in wall
clock times of at least 30 seconds for each measurement.

1) Single Node Count Predictions: The model performs at
a similar level for AMG on 60 nodes, as we saw with the
kernels in Section V. In summary, the RMS error between the
observed and predicted values is 6.6% for energy efficiency
and 8.8% for performance. The RMS error for the Pareto front
is 5.9% for energy usage and 7.1% for performance. The
observed and predicted energy usage reductions are similar
(around 15%) and incur about a 20% performance drop. The
observed and model predicted Pareto fronts provide consistent
views that core and frequency tuning can reduce energy usage
up to 15% but at up to 20% performance loss.

2) Multiple Node Count Predictions: Our models can pre-
dict trade-off options for node counts for which we do not have
training data. Figure 8 shows the experimentally observed and

900

Observed

TABLE VI

AMG RESULTS SUMMARY FOR 48 NODES
Model Training Energy Performance
Observations R? | RMS Error R? | RMS Error
48 0.997 7.6 | 0.992 9.2
Pareto Front Points | 0% | 9% 18% | 27% | 36%
Observed (5% error) 51 39 10 2 0 0
Forecast (5% error) 49 39 8 1 1 0
Energy (J) Baseline | Poin | Pmax % Range
Observed 626k 626k 505k | 0.0 to -19.3
Forecast 609k 609k 524k | 0.0 to -13.8
Percent error -2.8 -2.8 3.8
Performance (s) Baseline | Pin | Pmax % Range
Observed 26.0 29.2 249 | 12.1 to -4.3
Forecast 26.0 30.3 249 | 16.5t0 -4.4
Percent error -0.1 3.9 -0.2

model predicted Pareto fronts for AMG for 48 nodes (thick
outline), and across 40, 48 and 60 nodes (thin outline). The
fronts appear at the lower left of the data set as our objective
is now to minimize solve time and energy use.

The model training data now includes measurements across
multiple node counts in the search space. Our previous ex-
amples use 12 samples at the required node count. We now
use 12 samples at 20, 40, 60, and 80 nodes, or 48 samples in
total. The extra samples significantly expand the search space
coverage of the model. We can now make trade-off predictions
at intervening node counts with similar accuracy.

We use sample time-stamps to determine that it takes 12
hours and 54 minutes to collect the required 484 AMG test
samples, which corresponds to a mean time to collect each
sample of 1 minute and 35 seconds. Using the same approach,
the time to collect our 48 training samples is 1 hour and 14
minutes, or 9.6% of the time to collect the full 484 samples.

We can also speed up the process by collecting sample data
in parallel. For example, our 86 node cluster allows us to
allocate 20 and 40 node runs in parallel.

Table VI shows the RMS Error between the full 121
observed and predicted values is 7.6% for energy efficiency
and 9.2% for performance. The RMS Error for just the Pareto
front is 4.3% for energy efficiency and 7.5% for performance.

B. LAMMPS Application Study

This section presents energy and performance trade-off
findings for LAMMPS (Large-scale Atomic/Molecular Mas-
sively Parallel Simulator). LAMMPS is a full-scale scientific
application that is parallelizable using hybrid MPI/OpenMP.

As with AMG, the LAMMPS model responses are energy
use in Joules and performance in seconds. We use the Lennard-
Jones LAMMPS Benckmark which simulates an atomic fluid
with Lennard-Jones potential. We configure this benchmark
for 32,000,000 atoms and 6,000 timesteps on 80 nodes.

Figure 9 shows LAMMPS’s experimentally observed and
model predicted Pareto fronts for 80 nodes. Table VII shows
that the RMS error between the observed and predicted values

. 44
720 4 O :
540 FLe 36
. .
- L]
3601 bt %4
% o :.. E
o ° ° 20 =
180 ef *
F:ﬁ 3 12
4
2.8 42 5.6 7.0
J x 100
900 Predicted
44
720 4
..
540 1 o 36
.. ...
L)
360 S 28 3
@ .°. o°. §
)
S8 20 &
180 4 f s
d 12
4
2.8 42 5.6 7.0
J x 100

Fig. 9. LAMMPS Pareto Front — Observed and Predicted

TABLE VII
LAMMPS RESULTS SUMMARY

Model Training Energy Performance
Observations R? | RMS Error R2 | RMS Error
12 0.922 14.3 | 0.999 15.4
Pareto Front Points | 0% | 9% | 18% | 27% | 36%
Observed (5% error) 27 20 5 2 0 0
Forecast (5% error) 24 20 0 0 0
Energy (J) Baseline | Prin | Pmax % Range
Observed 2.66M | 2.66M 1.80M 0.0 to -32.4
Forecast 2.58M | 241IM 1.92M | -6.5t0 -25.3
Percent error -3.2 9.5 7.0

Performance (s) Baseline Pmin Pmax % Range
Observed 117 150 112 27.7 to -4.1
Forecast 118 151 112 28.2t0-5.3
Percent error 0.6 1.1 -0.7

is 14.3% for energy use and 15.4% for performance. This
error mostly occurs at low thread counts, far from the Pareto
front. If we exclude thread counts of four from the RMS
error calculation, it drops to 7.1% for energy and 2.8% for
performance. The RMS error for the Pareto front is 7.7% for
energy use and 8.3% for performance.

The observed and model predicted Pareto fronts show that
core and frequency tuning can increase energy efficiency up
to 30% but at up to 30% performance loss.

C. Observations

Our results show that the models also perform well on the
AMG and LAMMPS applications, which introduce a range of

new dimensions. However, several new challenges are apparent
when we model complex workloads.

First, complex applications typically require many system
resources, so the cost of obtaining training samples must be
amortized over many live runs of an application. We minimize
the required payback period by only needing training data
for a small fraction of the search space, but our approach is
only useful if payback can be achieved. In practice, production
applications are run many times with the same data dimensions
and can accrue benefits that offset training costs. A weather
model that runs daily is a good example. We are also currently
researching the practicality of further reducing training costs
by using reduced application iteration/time-step configurations
for training compared to live runs.

Second, complex interactions between applications and sys-
tems may lead to irregular energy or performance response
curves, particularly when there is a mismatch between applica-
tion data/processing dimensions and system topology. Irregular
response curves have an impact on the statistical significance
of the regression results, so we can alert users that further
analysis is needed when the results are not within limits.

VII. 3-FoLD CROSS VALIDATION

We use cross validation to show that our models do not
overfit a subset of the data. With 3-fold cross validation, we
randomly partition the data set into three equal sized subsets.
Two subsets are used as model training data with the remaining
subset used as model test data. We repeat the process three
times to test model accuracy across the full data set.

Table VIII shows cross validation results for our energy
efficiency models for the study kernels/applications. The data
sets for each kernel have 484 samples, so the three folds
consist of two folds with 161 samples and one with 162
samples. We show the percentage of predicted values from
each fold that are below 20%, 10% and 5% and the RMS Error
for the fold. The relatively even RMS Error results across the
folds demonstrates that our energy efficiency models are not
overfitting any subset of the data.

Table IX shows the results for our performance models
using the same data sets. The consistent RMS Error results
across the folds show that our performance models are also
not overfitting any subset of the data.

VIII. CONCLUSION

We developed a methodology to predict optimal perfor-
mance and energy efficiency settings for parallel kernels and
extended our approach to more complex application work-
loads. To evaluate our technique, we defined the novel concept
of a trade-off zone for Pareto optimal fronts that captures the
impact of measurement or modeling error. Statistical analysis
of our model shows good overall fit between predicted and
measured values. We showed that our model can accurately
identify trade-offs between performance and energy. Our ap-
proach requires measurement samples for a small fraction of
the search space, that can be run in parallel when sufficient
resources are available. In the future, we will use our model

TABLE VIII
3-FOLD CROSS VALIDATION SUMMARY — ENERGY EFFICIENCY MODELS

Kernel Fold 20 % 10% 5% | RMS Error %
Stencil 1 100.0 98.1 | 87.0 3.9
2 | 100.0 98.8 | 91.3 4.1
3 | 100.0 97.5 | 85.1 33
Transpose 1 | 100.0 90.7 | 81.5 5.1
2 | 100.0 96.9 | 87.0 54
3 | 100.0 913 | 845 4.8
Nstream 1 100.0 92.6 | 67.3 5.7
2 | 100.0 98.1 | 78.9 6.4
3 | 100.0 90.7 | 69.6 5.6
AMG 1 | 100.0 | 100.0 | 95.1 3.6
2 | 100.0 944 | 82.6 4.6
3 | 100.0 98.1 | 91.3 5.8
LAMMPS 1 | 100.0 90.1 | 784 7.9
2 | 100.0 78.9 | 652 9.5
3 | 100.0 95.0 | 82.0 10.6

TABLE IX

3-FoLD CROSS VALIDATION SUMMARY — PERFORMANCE MODELS

Kernel Fold 20% 10% 5% | RMS Error %
Stencil 1 100.0 944 | 79.0 4.5
2 | 100.0 97.5 | 83.9 5.2
3 | 100.0 91.3 | 814 3.9
Transpose 1 100.0 994 | 883 3.6
2 | 100.0 98.8 | 87.0 3.9
3 | 100.0 95.7 | 832 3.7
Nstream 1 100.0 90.7 | 66.0 5.6
2 | 100.0 944 | 77.6 6.9
3 | 100.0 894 | 68.9 5.7
AMG 1 100.0 98.8 | 93.2 6.1
2 | 100.0 93.8 | 83.9 6.5
3 | 100.0 96.3 | 88.2 7.9
LAMMPS 1 100.0 864 | 77.8 8.0
2 | 100.0 87.0 | 70.8 8.1
3 | 100.0 96.9 | 87.6 8.7

to tune applications automatically according to a specified
performance and energy efficiency trade-off policy. Our work
will lead to a practical tool that allows scientists to tune their
energy use and performance.

ACKNOWLEDGMENT

This research was supported by the Australian Research
Council under the Linkage grant scheme (project number
LP150100837), and was supported by Cray Inc. This article
has been authored by Lawrence Livermore National Security,
LLC under Contract DE-AC52-07NA27344 with the U.S.
Department of Energy. Accordingly, the United States Gov-
ernment retains and the publisher, by accepting the article for
publication, acknowledges that the United States Government
retains, a non-exclusive, paid-up, irrevocable, world-wide li-
cense to publish or reproduce the published form of this article
or to allow others to do so, for United States Government
purposes. Released as LLNL-CONF-755907.

[1]

[2

—

[3

[4]

[5

=

[6

=

[7]

[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

REFERENCES

C. Jin, B. R. de Supinski, D. Abramson, H. Poxon, L. DeRose, M. N.
Dinh, M. Endrei, and E. R. Jessup, “A survey on software methods to
improve the energy efficiency of parallel computing,” The International
Journal of High Performance Computing Applications, vol. 31, no. 6,
pp. 517-549, 2017.

0. Sarood, A. Langer, A. Gupta, and L. Kale, “Maximizing throughput
of overprovisioned HPC data centers under a strict power budget,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE Press, 2014,
Conference Proceedings, pp. 807-818.

P. E. Bailey, A. Marathe, D. K. Lowenthal, B. Rountree, and M. Schulz,
“Finding the limits of power-constrained application performance,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. ACM, 2015, p. 79.

P. Balaprakash, A. Tiwari, and S. M. Wild, “Multi objective optimization
of HPC kernels for performance, power, and energy,” in High Perfor-
mance Computing Systems. Performance Modeling, Benchmarking and
Simulation. Springer, 2013, pp. 239-260.

C. Lively, X. Wu, V. Taylor, S. Moore, H.-C. Chang, C.-Y. Su, and
K. Cameron, “Power-aware predictive models of hybrid (MPI/OpenMP)
scientific applications on multicore systems,” Computer Science-
Research and Development, vol. 27, no. 4, pp. 245-253, 2012.

S. Song, C. Y. Su, R. Ge, A. Vishnu, and K. W. Cameron, “Iso-energy-
efficiency: An approach to power-constrained parallel computation,” in
2011 IEEE International Parallel & Distributed Processing Symposium,
2011, Conference Proceedings, pp. 128—139.

J. Hofmann and D. Fey, “An ECM-based energy-efficiency optimization
approach for bandwidth-limited streaming kernels on recent Intel Xeon
processors,” in Proceedings of the 4th International Workshop on Energy
Efficient Supercomputing. 1EEE Press, 2016, Conference Proceedings,
pp. 31-38.

R. Lavanya, “Energy-time performance of heterogeneous computing
systems: Models and analysis,” Ph.D. dissertation, 2016.

B. Rountree, D. K. Lowenthal, S. Funk, V. W. Freeh, B. R. de Supinski,
and M. Schulz, “Bounding energy consumption in large-scale MPI
programs,” in Proceedings of the 2007 ACM/IEEE conference on Su-
percomputing. ACM, 2007, p. 49.

C.-h. Hsu and W.-c. Feng, “A power-aware run-time system for high-
performance computing,” in Proceedings of the 2005 ACM/IEEE con-
ference on Supercomputing. 1EEE Computer Society, 2005, p. 1.

R. Ge, X. Feng, W.-c. Feng, and K. W. Cameron, “CPU MISER: A
performance-directed, run-time system for power-aware clusters,” in
Parallel Processing, 2007. ICPP 2007. International Conference on.
IEEE, 2007, pp. 18-18.

V. W. Freeh and D. K. Lowenthal, “Using multiple energy gears in
MPI programs on a power-scalable cluster,” in Proceedings of the
tenth ACM SIGPLAN symposium on Principles and practice of parallel
programming. ACM, 2005, pp. 164-173.

M. Curtis-Maury, J. Dzierwa, C. D. Antonopoulos, and D. S. Nikolopou-
los, “Online strategies for high-performance power-aware thread execu-
tion on emerging multiprocessors,” in Parallel and Distributed Process-
ing Symposium, 2006. IPDPS 2006. 20th International. 1EEE, 2006,
pp- 8-pp.

A. Venkatesh, A. Vishnu, K. Hamidouche, N. Tallent, D. Panda, D. Ker-
byson, and A. Hoisie, “A case for application-oblivious energy-efficient
MPI runtime,” in High Performance Computing, Networking, Storage
and Analysis, 2015 SC-International Conference for. 1EEE, 2015, pp.
1-12.

K. Kandalla, E. P. Mancini, S. Sur, and D. K. Panda, “Designing power-
aware collective communication algorithms for InfiniBand clusters,” in
Parallel Processing (ICPP), 2010 39th International Conference on.
IEEE, 2010, pp. 218-227.

M. Y. Lim, V. W. Freeh, and D. K. Lowenthal, “Adaptive, transparent
frequency and voltage scaling of communication phases in MPI pro-
grams,” in SC 2006 conference, proceedings of the ACM/IEEE. 1EEE,
2006, pp. 14-14.

B. Rountree, D. K. Lownenthal, B. R. de Supinski, M. Schulz, V. W.
Freeh, and T. Bletsch, “Adagio: Making DVS practical for complex HPC
applications,” in Proceedings of the 23rd international conference on
Supercomputing. ACM, 2009, pp. 460—469.

V. W. Freeh, N. Kappiah, D. K. Lowenthal, and T. K. Bletsch, “Just-in-
time dynamic voltage scaling: Exploiting inter-node slack to save energy

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

[32]
(33]

[34]

(35]

[36]

(371

[38]

in MPI programs,” Journal of Parallel and Distributed Computing,
vol. 68, no. 9, pp. 1175-1185, 2008.

A. Tiwari, M. A. Laurenzano, L. Carrington, and A. Snavely, “Auto-
tuning for energy usage in scientific applications,” in Euro-Par 2011:
Farallel Processing Workshops. Springer, 2011, Conference Proceed-
ings, pp. 178-187.

J. Li and J. E. Martinez, “Dynamic power-performance adaptation of
parallel computation on chip multiprocessors,” in High-Performance
Computer Architecture, 2006. The Twelfth International Symposium on.
IEEE, 2006, pp. 77-87.

P. Gschwandtner, J. J. Durillo, and T. Fahringer, “Multi-objective auto-
tuning with Insieme: Optimization and trade-off analysis for time, energy
and resource usage,” in Euro-Par 2014 Parallel Processing. Springer,
2014, pp. 87-98.

M. Sourouri, E. B. Raknes, N. Reissmann, J. Langguth, D. Hackenberg,
R. Schoéne, and P. G. Kjeldsberg, “Towards fine-grained dynamic tuning
of HPC applications on modern multi-core architectures,” in Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis. ACM, 2017, p. 41.

S. F. Rahman, J. Guo, and Q. Yi, “Automated empirical tuning of scien-
tific codes for performance and power consumption,” in Proceedings of
the 6th International Conference on High Performance and Embedded
Architectures and Compilers. ACM, 2011, Conference Proceedings,
pp.- 107-116.

J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan-Kelley, J. Bosboom,
U.-M. O’Reilly, and S. Amarasinghe, “OpenTuner: An extensible frame-
work for program autotuning,” in Proceedings of the 23rd international
conference on Parallel architectures and compilation. ~ACM, 2014,
Conference Proceedings, pp. 303-316.

R. Sen and D. A. Wood, “Pareto governors for energy-optimal comput-
ing,” ACM Transactions on Architecture and Code Optimization (TACO),
vol. 14, no. 1, p. 6, 2017.

J. W. Choi, D. Bedard, R. Fowler, and R. Vuduc, “A roofline model of
energy,” in Parallel & Distributed Processing (IPDPS), 2013 IEEE 27th
International Symposium on. 1EEE, 2013, Conference Proceedings, pp.
661-672.

D. H. Woo and H.-H. S. Lee, “Extending Amdahl’s law for energy-
efficient computing in the many-core era,” Computer, vol. 41, no. 12,
2008.

S. Cho and R. G. Melhem, “On the interplay of parallelization, program
performance, and energy consumption,” IEEE Transactions on Parallel
and Distributed Systems, vol. 21, no. 3, pp. 342-353, 2010.

M. Endrei, C. Jin, M. Dinh, D. Abramson, H. Poxon, L. DeRose, and
B. R. de Supinski, “A bottleneck-centric tuning policy for optimizing
energy in parallel programs,” Advances in Parallel Computing, vol. 32,
pp. 265-276, 2018.

B. J. Barnes, B. Rountree, D. K. Lowenthal, J. Reeves, B. de Supinski,
and M. Schulz, “A regression-based approach to scalability prediction,”
in Proceedings of the 22nd annual international conference on Super-
computing. ACM, 2008, pp. 368-377.

B. C. Lee, D. M. Brooks, B. R. de Supinski, M. Schulz, K. Singh,
and S. A. McKee, “Methods of inference and learning for performance
modeling of parallel applications,” in Proceedings of the 12th ACM SIG-
PLAN symposium on Principles and practice of parallel programming.
ACM, 2007, pp. 249-258.

L. Schumaker, Spline functions: Basic theory. Cambridge University
Press, 2007.

G. Wilkinson and C. Rogers, “Symbolic description of factorial models
for analysis of variance,” Applied Statistics, pp. 392-399, 1973.

R. J. Carroll, D. Ruppert, C. M. Crainiceanu, and L. A. Stefanski, Mea-
surement error in nonlinear models: A modern perspective. Chapman
and Hall/CRC, 2006.

Python Software Foundation, “Python language reference, version 2.7,”
http://www.python.org, 2018.

S. Seabold and J. Perktold, “Statsmodels: Econometric and statistical
modeling with Python,” in Proceedings of the 9th Python in Science
Conference, vol. 57. SciPy society Austin, 2010, p. 61.

E. Jones, T. Oliphant, P. Peterson et al., “SciPy: Open source scientific
tools for Python,” 2001-. [Online]. Available: http://www.scipy.org/

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825-2830, 2011.

[39] J. D. Hunter, “Matplotlib: A 2D graphics environment,” Computing in
science & engineering, vol. 9, no. 3, pp. 90-95, 2007.

D. Abramson, R. Sosic, J. Giddy, and B. Hall, “Nimrod: A tool for
performing parametrised simulations using distributed workstations,” in
High Performance Distributed Computing, 1995., Proceedings of the
Fourth IEEE International Symposium on. IEEE, 1995, Conference
Proceedings, pp. 112-121.

L. DeRose, B. Homer, D. Johnson, S. Kaufmann, and H. Poxon, “Cray
performance analysis tools,” in Tools for High Performance Computing.
Springer, 2008, pp. 191-199

R. F. Van der Wijngaart and T. G. Mattson, “The Parallel Research
Kernels,” in HPEC, 2014, Conference Proceedings, pp. 1-6.

M. D. McKay, R. J. Beckman, and W. J. Conover, “A comparison of
three methods for selecting values of input variables in the analysis of
output from a computer code,” Technometrics, vol. 42, no. 1, pp. 55-61,
2000

J. Park, M. Smelyanskiy, U. M. Yang, D. Mudigere, and P. Dubey,
“High-performance algebraic multigrid solver optimized for multi-core
based distributed parallel systems,” in SCI5: International Conference
for High Performance Computing, Networking, Storage and Analysis,
Nov 2015, pp. 1-12.

S. Plimpton, “Fast parallel algorithms for short-range molecular dynam-
ics,” Journal of computational physics, vol. 117, no. 1, pp. 1-19, 1995,
website: http://lammps.sandia.gov.

[40]

[41]

[42]

[43]

[44]

[45]

APPENDIX
ARTIFACT DESCRIPTION: ENERGY EFFICIENCY MODELING
OF PARALLEL APPLICATIONS

A. Abstract

This appendix provides instructions for setting up the re-
quired tools, launching experiments, and analyzing the results,
as presented in the paper.

B. Description

1) Check-list (artifact meta information):

o Algorithm: Regression model

e Program: nimrodo, hpcprobe

+ Compilation: Python, gcc

o Transformations: None

o Binary: None

o Data set: YAML

o Run-time environment: CrayPE 2.5

o Hardware: Intel Xeon CPU E5-2699 v4 (Broadwell)
o Output: YAML, Encapsulated PostScript

o Experiment workflow: See section D below.
o Publicly available?: On request

2) How software can be obtained: The source
code and dataset archive is available using DOI
doi.org/10.14264/ugl.2018.463. To request

access, send an email to data@library.uqg.edu.au.
Select the HPC Model dataset.

3) Hardware dependencies: The software has been tested
on Intel Haswell and Broadwell servers running CrayPE
version 2.5.

4) Software dependencies: Build instructions and depen-
dencies are provided in the dataset archive README . md for
each program under the following folders:

e tools/nimrodo
e tools/hpcprobe

Third party source code is available as follows:

« Parallel Research Kernels version 2.17
github.com/ParRes/Kernels

e Algebraic multigrid benchmark commit (09fe8a7
github.com/LLNL/AMG

« LAMMPS version 14 May 2016

lammps.sandia.gov

5) Datasets: All experiment configuration files and YAML
results files are available in the dataset archive under the
following folders:

e exp/scl8/config

e exp/scl8/results

File names include the kernel name and node count. All
model responses and data plots are generated from these data
sets. The full data set includes Stencil node counts of 20, 42,
64, 86, Transpose node counts of 20, 42, 64, 86, Nstream node
counts of 20, 42, 64, 86, AMG node counts of 20, 40, 48, 60,
80, and LAMMPS node counts of 20, 40, 60, 80.

C. Installation

To build and install the required tools and test codes:
1) Extract the dataset archive
2) Build nimrodo as per README . md instructions from the
dataset
3) Build hpcprobe tools as per README . md instructions
from the dataset
4) Clone the PRK ParRes/Kernels GitHub repository
5) Build the required kernels. We use the MPI/OpenMP
stencil, transpose, and nstream kernels
e Edit Kernels/common/make.defs to suit
your environment. For CrayPE, we set
— MPICC=cc
- CC=cc
— DEFAULT_OPT_FLAGS:=-hpic -dynamic
« Make the required kernels, for example
— cd Kernels/MPIOPENMP/Stencil
- make stencil
« We instrument the kernels with CrayPAT, for exam-
ple
— pat_build -w stencil
The job post processing command option mentioned
in section F can be used to collect power measure-
ments using another mechanism
6) Clone the LLNL/AMG GitHub repository
7) Build AMG
o Edit Makefile.include to suit, we set
- CC = cc
— INCLUDE_CFLAGS =
-02 -DTIMER_USE_MPI
—-DHYPRE_USING_OPENMP -h
omp —-DHYPRE_HOPSCOTCH
—-DHYPRE_USING_PERSISTENT_COMM
-DHYPRE_BIGINT -hpic -dynamic
— INCLUDE_LFLAGS = —-1lm —h omp
e Make and instrument AMG

— make
- pat_build -w test/amg
8) Download LAMMPS
9) Build LAMMPS
o Edit MAKE/Makefile.mpi to suit
e Make and instrument LAMMPS
— make —-3j8 mpi
- pat_build -w lmp_mpi

D. Experiment workflow

We use the following steps to run experiments and analyze

the results for the paper:

1) Create the experiment configuration file. The configu-
ration files for all our experiments are available in the
dataset archive under the exp/sc18/config folder

2) Launch the experiment using the following command

e hpcprobe.py —-i <config file>

3) Analyze the experiment results using the Python API
provided by the hpcmodel and hpcplot modules.

Analysis data and plots are generated from the

summary.yml files output from hpcprobe.py. The
scripts for generating plots and tables in the paper are available
in the dataset archive under the exp/scl8/analysis
folder. The README .md file in this folder provides further
detail.

E. Evaluation and expected result

The paper describes our model evaluation process in detail.

There are several log files to monitor that an experiment is
progressing as expected:

1) log/exp.log for overall experiment logs

2) log/job.out for Nimrod/O logs

3) log/gsub.out for PBS logs

4) log/job-<id>.out for each measurement log

The scripts we used for generating the experimental and
model data in the paper log to standard output. The logging
level can be set via the command line with the ——info or
——debug arguments.

F. Experiment customization
Customization options for the hpcprobe tools include:

o Measurement data parsing using regular expressions de-
fined in the hpcplot.yml file;

o Experiment initialization using configuration files. Con-
figurable options include PBS job submission details,
software module requirements, job post processing com-
mand details, and repeat count for measurement confi-
dence intervals;

o Results analysis using Python scripts with the hpcmodel
and hpcplot modules. The hpcmodel module implements
the regression models in the paper. Plots can be generated
from experiment summary .yml files using the hpcplot
module.

