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Abstract—We describe light-weight protocols for selective
packet ordering in out-of-order networks that carry memory
traffic. The protocols are designed for heterogeneous high-
performance systems, in particular, accelerated systems with
end-points that have few resources available for interfacing the
network.

The protocols preserve the semantics of a relaxed memory
ordering model as adopted by highly-threaded many-core
processors and accelerators.

The protocols achieve link-rate performance through the
following techniques: (1) Speculative connection setup avoids
round-trip delays found in protocols with little knowledge about
endpoint resources, (2) target-side ordering avoids round-trip
delays found in source-side ordering mechanisms, (3) fine-grained
ordering removes dependencies unwarranted by program code
avoiding cumulative ordering dependencies caused by coarse-
grained ordering, (4) ordering relaxations and optimizations for
producer/consumer communication patterns.

We describe two ordering protocols that provide (1) strict
sequential ordering and (2) relaxed ordering for multi-packet
transfers. The protocols impose no restrictions on routing,
including multipath routing.

Index Terms—protocols, memory interconnects, ordering, out-
of-order networks

I. INTRODUCTION

We consider the problem of providing selective packet
ordering for an interconnection network that carries memory
traffic (loads and stores). We describe ordering protocols that
preserve the semantics of a relaxed memory ordering model
as used in many-core processors. Memory interconnects have
been used, for example, in Cray machines from the T3D [1]
through Cascade [2]. Prior packet ordering solutions include
forcing deterministic routing for ordered packets (employed by
the Cray interconnects and Gen-Z) and using sliding window
protocols (as in TCP).

Our protocols target a small-footprint implementation.
Specifically, we are interested in accelerated systems that
interconnect end nodes that are not equipped with the storage
and compute resources needed to run heavy-weight protocols.
Accelerators such as GPUs are becoming commonplace in
HPC systems [3] and data centers [4], [5]. Other types of
accelerators such as ASICS and FPGAs are also increasingly
deployed in data centers [6], [7]. Enabling accelerators to
communicate with each other directly, without reliance on
CPUs, can significantly mitigate communication overheads
and bottlenecks [8], [9] when scaling out applications.

In this paper, we focus on an out-of-order network
with memory semantics for large-scale accelerated compute
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systems. We argue that the applicability of memory models
and their relaxations has to be expanded such that they cover
not only local memory accesses, but also remote memory
accesses transported over a network. Applications should
specify the ordering rules that apply to the issued memory
operations and the underlying transport protocols should
expose the different ordering modes. This way, by closely
matching application characteristics and hardware capabilities,
optimal performance can be achieved'.

Out-of-order packet delivery is inherent to scalable high-
performance networks that employ advanced techniques such
as multi-path routing and congestion management. Networks
such as Dragonflies, Fat Trees, and Tori rely on adaptive,
multi-path routing to balance network load and reduce average
forwarding latency. This may lead to packet reordering. It is
important to note that adaptive routing is not only critical
for low-diameter networks such as Dragonflies but for a
wide array of network topologies. In a fat tree topology,
for example, there is a choice of links between switches.
Furthermore, routing choices even exist at the link level if
a subset of lanes can be selected for forwarding packets.

Network congestion management can also lead to reorder-
ing. Protocols such as the Last-Hop Reservation Protocol
(LHRP) [10] will discard packets to relieve congestion and
reschedule their transfer for a later time, thereby delivering
packets in an order that is different from the original injection
order.

Many considerations influence the design of an ordering
mechanism including the frequency of out-of-order packets,
throughput and latency goals for ordered traffic, as well
as targeted implementation costs. Simple, often-implemented
mechanisms include source-side ordering and deterministic
routing. Source-side ordering is typically done by serializing
packet transfers in that the source waits for a request packet
to be acknowledged before the next request packet is injected
into the network. This approach limits the transfer rate to at
most one packet every network round-trip time (RTT). Another
technique often employed restricts ordered streams to a single
deterministic path between source and target. Though different
streams can still be routed over multiple paths, deterministic
routing can have significant performance impacts, in particular,
since networks often lack the ability to provide fine-grained

U1t is beyond the scope of this paper to discuss APIs that closely match
the capabilities of the presented protocols.



ordering and, with it, are unable to exploit the available path
diversity.

Typical use cases that require ordered packet delivery are:
(1) Sequential consistency per memory location (SC-LOC), (2)
producer/consumer communication patterns including remote
queues and Halo exchanges where some independent data
transfers are followed by a synchronization operation that
indicates the availability of the data, (3) ordered I/O transfers.

II. USE CASES

Network ordering mechanisms have to be designed with an
eye on the endpoints’ memory models, their coherence and
consistency rules, and the resulting communication patterns.
Coherence and consistency models specify the rules that
apply to ordering memory operations, both in relation to the
processes issuing the operations and the memory locations
the operations are accessing. A comprehensive overview of
coherence and consistency models with all their intricate
nuances is beyond the scope of this paper [11].

Compute systems and, in particular, accelerators such
as GPUs are becoming massively parallel with tens of
thousands of threads operating in parallel. To exploit the
available computational parallelism, ordering relaxations have
been introduced to memory models. To optimize overall
performance when executing distributed parallel applications,
it is critical to be able to pass on ordering relaxations from
the endpoint to the underlying network and to perform the,
hopefully few, ordered operations at wire speed.

We briefly describe the typical use cases that guided us
when devising the ordering protocols.

Sequential Consistency per Memory Location (SC-LOC):
Highly-threaded many-core processors such as GPUs adopt
a relaxed memory model to improve parallelism and, with
it, overall performance. Their programming models and
compilers typically assume at least sequential consistency
per memory location (SC-LOC), that is, strict ordering for
operations that access the same memory location.

Producer/Consumer Communication: Parallel applica-
tions often exhibit producer/consumer communication pat-
terns. A prominent example is a remote queue with an
endpoint enqueuing data (i.e., producing data) by writing
into remote memory and another endpoint dequeuing data
(i.e., consuming data) by reading from local memory?.
Synchronization between producer and consumer is typically
done with the help of a flag that indicates the availability of the
associated queue entry. This communication pattern does not
require strict ordering for all operations: the synchronization
operation has to be ordered relative to the data writes; the data
writes, however, can occur in any order. In the following, we
will describe a protocol optimized for this use case.

Ordered 10: Another important use case is 1/O traffic.
Some I/O standards and, in particular, some legacy I/O
interfaces impose strict ordering requirements. An example

2 Alternatively, the queue is located in memory local to the producer and
remote to the consumer.

is certain classes of PCle traffic that require in-order delivery.
Networks often bridge I/O traffic and thus have to match the
corresponding ordering guarantees.

Also, we find I/O interfaces that assume ordered accesses to
memory locations or registers that are not explicitly addressed.
For example, a FIFO memory might “hide” behind a single
address. Similarly, a command “port” might pose as a portal
to several hidden registers that cannot be individually accessed
but rather have to be written by several sequential writes to
the same address.

III. PROTOCOL DESCRIPTION

Before we describe the protocols in detail, we outline the
techniques that we applied to accelerating ordering and the
assumptions that underlie the design of the protocols.

A. Acceleration Techniques

To achieve wire-speed operation, our protocols employ
several techniques that accelerate packet ordering. In the
following, we introduce these techniques as they play an
integral part in the design of the protocol.

Target-Side Ordering: Ordering can be enforced at the
source or at the target. Our protocol orders packets at the target
(with the help of a reorder buffer) allowing for overlapped
packet transfers at the full link rate. The alternative is to order
packets at the source by serializing packet transfers in that
one packet at a time is transferred. Source-side ordering is
often employed in the absence of ordering hardware by having
software serialize packet transmission. When software assists
ordering, overheads will likely greatly exceed network delays.
Throughput of source-side ordering is less than 1/RTT.

Fig. 1 illustrates the two choices. Ordering at the source (a)
serializes transfers in that request R, can only be sent after
acknowledgment A, ; was received. The example shows three
requests that need to be delivered in the order Ry, Rj, Ry.
Ordering at the target (b) allows for overlapping transfers.

Fine-Grained Ordering: Our protocol allows for fine-
grained ordered packet streams that can be independently
scheduled. By isolating ordering domains and individually
mapping them to separate ordered streams, unnecessary
ordering dependencies are avoided. This is illustrated in Fig.
2. The sequence diagrams show two ordered packet sequences
(green/solid and red/dashed) where the only requirements are
that R, must follow Ry (green/solid) and R3 must follow R;
(red/dashed). With coarse-grained ordering (a), where packets
are transferred as part of a single ordered stream, unnecessary
dependencies are created (R, waiting for R;). With fine-
grained ordering (b), only real dependencies cause delays (Rj3
waiting for Ry).

Target-Side Synchronization: Many producer/consumer
communication patterns use release semantics in that a
synchronization operation follows several data transfers (as
discussed in Section II). Noticing that the data transfers can
be unordered and that the only ordering requirement is that the
synchronization operation is executed after all data transfers
have finished, our protocol places accounting logic at the
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target to hold back the synchronization operation until all
associated data operations have become visible. An alternative
employed by some interconnects is to use a flush operation
to bring outstanding data transfers to a conclusion before the
synchronization operation is injected.

Fig. 3 illustrates source-side and target-side synchronization.
The sequence diagrams show a packet stream consisting of
three data transfers Dy, Dy, D, followed by a synchronization
operation S. While Dy » can be delivered in any order, S must
be delivered only after Dy _, have become visible. With source-
side synchronization, the source releases S after flushing the
data transfers Dy, (a). With target-side synchronization, S
is held at the target and released immediately after all data
transfers Dy » have been accounted for (b).

B. Design Assumptions

We have designed two separate protocols that we refer
to as ordered transfers and synchronized transfers. While
ordered transfers impose strict sequential ordering on packet
delivery, synchronized transfers are intended for multi-data
packet transfers that are followed by a synchronization
operation where the only ordering requirement is that the
synchronization operation is delivered after the transfer of the
data packets has completed, allowing the delivery of the data
packets to be unordered.

The design of the protocols is based on the following
assumptions.

Load/Store Model: The network implements a load/store
model where remote memory can be accessed like local
memory with the same load/store semantics. Network packets
thus transport memory operations. Ordering requirements
apply similarly to memory accesses locally and remotely.

No Response Ordering: Ordering is concerned with
ordering packets delivered to the target endpoint only. No
ordering has to be applied to response packets returned to the
source as we assume that the source already has mechanisms
in place to reorder responses if needed?.

3Processors are equipped with logic to deal with replies from the memory
subsystem and can reuse this logic for out-of-order replies received over the
network. Typically, the source keeps track of outstanding requests with the
help of unique tags associated with the requests and corresponding replies.
The tags are used to match replies with requests and are further used to order
replies if needed.

Source

2

Fig. 2: Coarse-grained (a) vs. Fine-grained

Ordering Target Source Target Source Ordering Target
R, 0,
s 0 5 o
4 3
\ Aoy Start | O, | B
Ry - Flush %
£ s
po R N
1
y
14 » E s
A%
A
B End [~ ] _
Flush
=3
W s
(b) (a) (b)

Fig. 3: Source-Side (a) vs. Target-Side
Synchronization (b).

Unreliable Transport Layer: No reliable transport service
is provided. Thus, ordering has to be capable of recovering
from packet loss.

Though unordered data transfers are not the topic of this
paper, a corresponding transfer protocol, similarly, has to
provide end-to-end reliability, for example, with a simple
request/acknowledge protocol.

Fixed Packet Lifetime and Failure Model: Packets in the
network have a maximum lifetime. If a packet is not ejected to
an endpoint within its lifetime, it is lost and will never emerge
from the network. Packet lifetime is enforced by a maximum
hop count and a maximum switch and link-traversal time. We
assume a non-byzantine failure model where packets in the
network can be lost but never duplicated.

C. Protocol Highlights

Our protocols are characterized by the following major
features:

Slow and Fast Modes: The ordered transfer protocol
supports both source-side ordering and target-side ordering
as introduced in Section III-A. Given the performance
characteristics of the two modes, we refer to the former as
slow mode and the latter as fast mode. There are two use
cases for slow mode. Firstly, ordered sequences of packets
injected by the source at a low rate can be transmitted in slow
mode thereby avoiding the allocation of connection resources
needed by fast mode. Secondly, when connection resources
are exhausted, the protocol falls back to slow mode so that
progress can still be made.

Light-Weight Connections: Connections are light-weight
in that they are quickly set up and remain active only as long as
there are outstanding requests. Connections are speculatively
set up in that the source begins to burst packets into the
network as soon as they become available assuming that
connection state can be allocated at the target*. No explicit
handshake between source and target is needed to set up a
connection so that packets can be forwarded from the source
to the target without delay.

Connections are typically short-lived and torn down as soon
as there are no more outstanding requests. By only having

4Connection resources are required at both the source and the target.



active connections for packets that are in flight, resource needs
depend on the bandwidth-delay product of the network only
and are independent of the number of endpoints. This is an
important feature as it provides for a scalable design.

Small Reorder Buffers: A small reorder buffer suffices
that is capable of absorbing a network skew worth of
traffic. The buffer capacity neither depends on the number of
network nodes nor the number of connections allowing for a
scalable design. Modest requirements are particularly critical
when targeting resource-constrained NIC implementations for
coprocessors and accelerators.

No Timeouts: In the absence of errors, our protocols do
not rely on any timeouts or network delays>®. Specifically,
connections are explicitly closed to make resources available
as soon as they are no longer needed. An explicit handshake
is used to deallocate resources at the source and the target
to avoid lengthy timeouts that prevent resources from being
freed.

Exactly-Once Delivery: Packet duplicates can be created
as the result of packet retransmissions. Duplicates can lead
to faulty program behavior if packets deliver non-idempotent
operations such as atomic operations or synchronization
operations. Thus, an option is needed to detect duplicates’.
We call this option exactly-once delivery. To determine that a
packet is a duplicate, state is needed that registers the original
copy of the packet. We leverage connections for this purpose.
In addition, a resource in the form of replay buffers is needed
to replay responses when a duplicate request is detected.

TABLE I: Nomenclature for Sequence Diagrams

Packet types (the packets in the sequence diagrams are labeled
with indices to help the reader follow the flow of packets):

o REQ: Request packet.

o ACK: Acknowledgment packet. Acknowledges receipt of
REQ.

o NACK: Negative acknowledgment packet. Indicates that
REQ was rejected and instructs the source to retransmit the
corresponding REQ.

o FIN: Finalize packet. Instructs the target to close the
connection.

o FIN-ACK: Finalize acknowledgment packet. Signals to the
source that the target has closed the connection.

Packet flags:

o SYN: Synchronize sequence number counter. Indicates to the
target that the value of the SEQ field contained in the packet
is to be used as the starting sequence number.

o EOD: Exactly-once delivery.

o CON: Connection has been established.

Other packet parameters:

o CID: Connection identifier.

e SEQ: Sequence number.

o CNT: Count of all request packets in a synchronized transfer.

STimeouts are used for detecting erroneous or lost packets.

SWe assume that packets “dropped” by congestion management are
NACKed and thus do not time out.

"We consider duplicate packets received by the target only as duplicate
packets received by the source do not lead to faulty program behavior.

D. Ordered Transfer Protocol

The ordered transfer protocol is intended for use cases such
as SC-LOC and ordered 10 transfers.

We use sequence diagrams to describe the protocols®.
Table I provides the nomenclature used in the diagrams.

1) Ordered Transfer, Slow Mode: Slow-mode ordered
transfers serialize transfers in that there can be only one
outstanding REQ packet and a REQ packet can only be sent
after the ACK for the previous REQ was received. We call
the resulting packet exchanges one-at-a-time transfers. Fig. 4
shows an example. The first transfer completes successfully
when the source receives ACK; in return for REQ;. The
second transfer, however, does not complete as ACKj is lost.
After REQ, times out, it is resent, and when it arrives at
the target it is again forwarded to the target memory. Note
that REQ, is delivered to the target memory twice. This is
acceptable as exactly-once delivery was not specified. This
time, ACK, arrives back at the source and completes the
transfer.

Target
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Memory

Sender

REQ,

ACKy

REQ,

ACK2

N0 sawn 23y

REQ,

ACKz

Fig. 4: Ordered Transfer, Slow Mode

2) Ordered Transfer, Fast Mode: Fast-mode ordered
transfers overlap packet transmission. Both the source and
target use connections to keep track of (multiple) outstanding
REQs and to establish order when packets arrive out-of-order.

Fig. 5 shows an example of a sequence of three request
packets REQ; 3 transmitted as a fast ordered transfer. The
source begins with sending a sequence of three REQ packets.
The first REQ packet of a sequence includes the SYN flag to
inform the target of the start of a new sequence. Each REQ
packet contains the connection identifier (CID) and a sequence
number (SEQ). Since CID is unique only at the source and
not at the target, the target uses the tuple {source endpoint
D%, CID} as a unique identifier of the connection and the
associated state.

Transmission begins with the source sending a burst of REQ
packets. Packets arrive out of order in that REQ; takes a
longer path and arrives after REQ, and REQs;. This is a typical
scenario that occurs when packets are adaptively routed. REQ,
arrives first and causes the target to open a connection as no

8Due to space constraints the description of the protocols can only cover
regular operation and is omitting many possible corner cases.

9The sequence diagrams do not show the source and target endpoint IDs
which are specified in every packet.
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Fig. 5: Ordered Transfer, Fast Mode

connection is yet in place — as the example shows, the first
REQ received opens a new connection, whether it has the
SYN flag set or not. Since REQ, and REQ; are received out
of order, they are kept in the reorder buffer until REQ; is
received. When REQ); finally arrives at the target, it is directly
forwarded to the target memory. The arrival of REQ, further
unblocks the delivery of REQ, and REQ3. Once the operations
of the REQ packets have been reflected in the target memory,
the corresponding ACK packets are returned.

Once all outstanding request packets have been acknowl-
edged, the connection is explicitly closed with a FIN/FIN-ACK
exchange. Note that ACKs can be reordered when they arrive
at the source as is shown in Fig. 5. It is, therefore, not sufficient
to wait for the ACK acknowledging the last sent REQ to
determine when the FIN can be sent. Rather, the source needs
to pair every outstanding REQ with the corresponding ACK
before the connection can be closed.

The purpose of the FIN/FIN-ACK exchange is to explicitly
close the connection and free the associated state at both the
source and target so that it can be reused for another transfer.
Note that the FIN/FIN-ACK exchange is only initiated after
it is guaranteed that no data REQ or ACK packet is left in
the network. Thus, the target can safely close the connection
upon receipt of FIN. Connection closure completes with the
source receiving FIN-ACK and removing its connection state
(including freeing the connection ID). Note that optimizing the
protocol by merging FIN with the last data REQ is not feasible
as connection state is removed that might be needed to detect
a duplicate packet. Also, note that replacing the FIN/FIN-
ACK exchange with a timeout that triggers connection closure
is inefficient in that connection state remains tied up longer.
We consider connection state a critical resource that indirectly
determines the number of outstanding REQs.

Though not a requirement, if the target returns the ACKs
in order, ACKs can also function as fences. For example,
when the source receives ACKj3 in the scenario of Fig. 5, it is
guaranteed that REQ;, REQ,, and REQ; have become visible
in the target memory!°.

10We assume that memory operations become visible in the same order
the corresponding packets are received by the memory subsystem. We broadly
use the term farget memory to refer to the target memory subsystem.
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Fig. 6: Exactly-Once Delivery

3) Exactly-Once Delivery: Fig. 6 shows the transfer of
three ordered requests REQ,3 requiring exactly-once delivery
(as indicated by the EOD flag). The sequence diagram begins
with the transfer of the three REQs from the sender to the
receiver and ultimately to the target. Upon receipt, the target
executes the operations contained in the REQs, stores the
results in replay buffers and returns the results in ACK,_3. To
demonstrate how the replay buffers come into play, ACK, is
lost in the example. As a result, a timeout causes the sender to
resend REQ,. The receiver recognizes REQ, as a duplicate and
regenerates ACK, by replaying the result by retrieving it from
the replay buffer. A duplicate REQ must not be forwarded to
the target as it contains a non-idempotent operation whose re-
execution could generate a result different from the original
one.

When the sender receives ACK,, all REQs have been
acknowledged and the connection can be torn down by
initiating a FIN/FIN-ACK exchange.

Similar to the reorder buffer, the replay buffer is a resource
that requires allocation and deallocation. When a REQ is
forwarded to the target, a replay buffer needs to be allocated.
And once it is guaranteed that a REQ cannot be resent, the
replay buffer holding the corresponding ACK can be freed.
In the discussed example, ACK; can be removed from the
replay buffer when REQ, with the SYN flag set is received and
ACK, and ACKj can be removed when FIN is received. Due
to space constraints, we cannot provide more details on the
management of the replay buffer including details on handling
resource exhaustion.

E. Synchronized Transfer Protocol

A synchronized transfer corresponds to a multi-data packet
transfer followed by a synchronization operation as found
in producer/consumer communication patterns. While data
packets can be delivered in any order, the packet with the
synchronization operation must only be delivered after all data
packets were delivered.

An example of a synchronized transfer is given in Fig. 7.
The first three requests REQ;, REQ,, and REQj; constitute the
multi-data packet transfer while the last request REQ,4 contains



the synchronization operation'!. Since the synchronization
operation is a non-idempotent operation, the EOD flag is set.
As shown in the example, the packets transporting the data
can be directly forwarded into target memory upon arrival,
even if they arrive out of order. Since the synchronization
operation contained in REQs must not be executed before
the transfer of the data packet completes, it is held back in
the reorder buffer. The receiver counts the ACKs returned
from the target memory (or target memories) to determine
that the data packet transfers have completed. The number
of ACKs to be accounted for is given by the count CNT
provided in the REQ containing the synchronization operation
(REQq in the discussed example). In the given example, the
receiver determines that the transfers of the data packets and
the synchronization operation are complete after it has counted
four ACKs. At this time REQy (containing the synchronization
operation) can be forwarded to the target memory. Once
all REQs have been acknowledged, the connection is torn
down by a FIN/FIN-ACK exchange. Note that ACKs can be
reordered and that it is not sufficient to initiate the FIN/FIN-
ACK exchange when ACKy is received. Rather, all ACKs have
to be accounted for before the connection is closed.
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Fig. 7: Synchronized Transfer

IV. EVALUATION

We have evaluated the ordering protocols using Bksim, a
successor of the cycle-accurate network simulator Booksim
[12]. We use the Dragonfly topology for our simulation runs.
We chose this topology over other topologies such as Fat Trees
as packet latencies are more skewed and out-of-order delivery
is more frequent thus putting stress on the ordering protocol.

We use a 1,056-node Dragonfly network with full bisection
bandwidth. The network consists of 33 groups of eight 15-
port routers. A router is connected to four endpoints, to seven
other routers via local channels and to four groups via global
channels. The local channels have a latency of 40 ns and
the global channels have a latency of 500 ns - the simulated

"Not shown is the packet header field that specifies whether the REQ
belongs to an ordered transfer or a synchronized transfer.

channel latencies model short intra-cabinet local links and long
inter-cabinet links, respectively. No other latencies such as
serialization or deserialization delays are explicitly modeled
assuming that they are subsumed in the channel latencies. The
bandwidth of the channels is 1 flit/ns.

Given the sparse global connectivity, Dragonfly networks
rely on adaptive routing to maximize available bandwidth
and avoid congestion. Our simulation model implements the
progressive adaptive routing algorithm PAR6/2 [13] and uses
six virtual channels to prevent routing deadlock.

If not specified otherwise, reported latency and throughput
numbers are steady-state mean (average) values. The bar charts
also show the population standard deviation.

A. Source-Side vs. Target-Side Ordering

Our first experiment compares source-side and target-side
ordering. We look at three transfer modes:

e No Ordering: Packets are delivered in the order they
arrive. No ordering is applied and, thus, no ordering
overhead is incurred. This mode represents the best-case
performance scenario.

o Source-Side Ordering (Ordered Transfer, Slow Mode):
Packets are serialized at the source. We only consider
network delays and ignore any delays in the endpoints.
That is, no delays occur when the target returns an ACK
in response to a REQ or when the source injects the next
REQ after it received an ACK for a previous REQ. We
use the ordered transfer protocol in slow mode to simulate
source-side ordering.

o Target-Side Ordering (Ordered Transfer, Fast Mode):
Packet transmission is overlapped in that REQs are
injected into the network as quickly as possible after they
have become available in the source endpoint. Ordering is
performed at the target with the help of a reorder buffer.
We use the ordered transfer protocol in fast mode to
simulate target-side ordering.

In our experiment, there is a single source with a single rank
sending flows of packets to a destination in another group at
the maximum accepted injection rate. There are 32 possible
destinations, all located in the same group. The selection of a
stream’s destination is uniform random.

Fig. 8(a) shows the maximum accepted load as a function
of packet length for each transfer mode. Two observations
can be made. First, no ordering and target-side ordering
achieve similar throughput which is close to the maximum link
throughput. The graphs thus validate that our protocol provides
ordering with negligible processing overhead. It can further be
seen that packet length does not impact performance. Second,
as expected, source-side ordering limits transfer rates to a
small fraction of the available link bandwidth.

In the next experiment shown in Fig. 8(b), we determine the
latency for a single ordered stream. The setup is the same as in
Fig. 8(a). As we want to characterize the latencies inherent to
the examined transfer modes, there is no other traffic present
in the network that could cause congestion. Latencies are
determined as the time interval between the injection of the
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first packet at the source and the delivery of the last packet at
the target.

As expected source-side ordering exhibits by far the largest
latencies as a result of serializing packet transmission. Packets
can at best be injected every network RTT. Total latency thus
increases linearly with stream length. No ordering and target-
side ordering show similar latencies demonstrating again that
ordering can be accomplished with little latency overhead.
These results are not surprising, they simply validate that fast
mode provides wire-speed performance.

In both experiments, we find that about one third of the
packets in fast mode arrive out of order. Though there is no
congestion in the network, the high load leads to buffer levels
in the network switches reaching the threshold that causes
packets to be adaptively routed.

B. Ordering Granularity

In the next experiment, we examine the impact of ordering
granularity on performance and resource usage. In this section,
we consider target-side ordering only as provided by the
ordered transfer protocol in fast mode. The setup uses 16
source endpoints located in one group simultaneously injecting
ordered streams to 16 destination endpoints located in another
group in a 1:1 mapping. Each source injects a total of 128
packets evenly divided into a number of streams with the same
destination.

The results are shown in Fig. 9. The bar chart on the
left shows the total latency for all 128 packets injected by
a source. Total latency is determined as the interval between
the very first request packet injected at the source and the
very last request packet received at the destination. The bar
chart on the right shows the mean latencies of the request
packets. The number of out-of-order packets varied from
31% (16 packets/streams) to 67% (128 packets/stream) - the
percentages are vastly different as a packet routed over a
longer path has the potential to hold up more packets in the
reorder buffer for longer streams. Latencies are pretty much
the same for all four scenarios. These results do not confirm
our expectation that finer granularity reduces dependencies
and, with it, latencies. More specifically, we expected to see
shorter latencies for shorter streams. Our explanation is that
latency penalties created by additional dependencies as shown
in Fig. 2 are negligible relative to network latencies.

5000
4000

3000 1 Stream (128 Pkts/Str)
2 Streams (64 Pkts/Str)
B4 Streams (32 Pkts/Str)
2000 8 Streams (16 Pkts/Str)

- [i
0

Total Latency Request Latency

Latency [ns]

Fig. 9: Ordering Granularity: Shown is the total latency for all packets
transferred between a source and destination as well as latencies for
individual request packets for different stream lengths (smaller values
are better). The number of transmitted packets is varied from 16 to
128 and the number of corresponding streams is varied from eight
to one. Packets have a fixed length of 16 flits.

C. Source-Side vs. Target-Side Synchronization

Next, we want to compare source-side and target-side
synchronization as needed by the type of producer/consumer
communication patterns described in Sections II. We con-
ducted an experiment that determines the latency for a single
stream of packets transferred from one Dragonfly group to
another one with the following three transfer modes:

e Source-Side Synchronization: Data packets are delivered
unordered. A flush operation is executed after all data
packets have been injected and before the synchronization
operation is injected. This guarantees that the synchro-
nization operation is ordered with respect to the data
packets.

o Target-Side Synchronization (Synchronized Transfer):
This mode uses the synchronized transfer protocol that
guarantees that the synchronization operation is held
in a target-side buffer until all data packets have been
delivered.

o Target-Side Ordering (Ordered Transfer, Fast Mode): All
packets including data operations and synchronization
operations are delivered in order. This mode uses the
ordered transfer protocol.
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Fig. 10: Source-Side Synchronization vs. Target-Side Synchroniza-
tion: Three transfer modes are considered: source-side synchroniza-
tion, target-side synchronization, and target-side ordering. The graph
shows the latency for a stream of packets (determined as the interval
between the injection of the first data packet at the source and
the delivery of the synchronization operation at the target). Stream
lengths are varied from 10 to 40 packets with each packet having a
fixed length of 16 flits.

The graph in Fig. 10 shows the stream latencies for the
three modes and different stream lengths. As expected, source-
side synchronization incurs higher latencies than the other
two modes using target-side synchronization and target-side
ordering, respectively. The higher latencies for source-side
synchronization are caused by the flush operation that requires
the source to account for the receipt of all ACKs in response
to the injected REQs before the synchronization operation can
be sent. Compared with target-side synchronization, this adds
at least a full RTT (half a RTT to receive the last ACK
and another half of a RTT to deliver the synchronization
operation).

The experiment also considers target-side ordering as strict
ordering implicitly provides synchronization. This mode offers
stricter ordering than required as it orders all packets including
data packets. In the experiment, about one third of all packets
received are delivered out of order. By including this mode,
we can show that target-side synchronization offers the same
performance as target-side ordering though at much lower cost.

D. Reorder Buffer

Our final experiments examine the reorder buffer. More
specifically, we determine the resource needs at the receiver in
terms of reorder buffer capacity and number of connections.

Our protocol requires a relatively small reorder buffer large
enough to absorb packets from the network for a duration that
is equivalent to the network skew. Network skew refers to the
difference in end-to-end packet latencies. Latency differences
are mainly caused by adaptive routing. For the considered
Dragonfly topology and adaptive routing strategy, direct and
indirect routes differ by a traversal through an intermediate
group. Thus, for our simulations, we assumed a skew of 50
packets to cover the latency of the extra global channel (500 ns
or 30 packets) and some switch buffer latency (20 packets)'2.

12We are not considering additional delays caused by network congestion
when sizing the reorder buffer as we assume that congestion management and
admission control will largely avoid oversubscription and make congestion the
exception.

To provide O(1) access times when writing and reading the
reorder buffer, we propose to implement the reorder buffer as
a ring buffer indexed by the output of a hash table whose
key is given by the tuple {source device id, CID, SEQ}. This
organization allows for checking the presence of the next in-
order packet when a packet arrives in a fixed amount of time.
Hash table collisions can be mitigated by the addition of a
small associative cache and the remaining collisions can be
treated as reorder buffer overflow.

The setup for the first experiment has two sets of senders in
one Dragonfly group with each set injecting ordered streams
destined for a receiver in another Dragonfly group. Both sets
of senders use the same global channel for minimal routes.
Hence, there is pressure on the corresponding output queue of
the switch feeding the minimal global channel forcing packets
to be adaptively routed and possibly arrive out of order. This
way, we avoid endpoint congestion as well as oversubscription
of any network resources as our simulation model does
not implement any congestion management beyond adaptive
routing. The first experiments assume that the sender as well
as the receiver never run out of connections.

Fig. 11(a) illustrates reorder buffer occupancy over the
course of the simulation run for different numbers of streams
and different stream lengths. We observe that the number of
used reorder buffer elements overall is relatively small and
does not significantly change as the number of streams and
the stream lengths are varied. The graphs confirm that buffer
occupancy and buffer capacity do not depend on the number
of active streams. Despite the low occupancy levels, there
is a significant fraction of packets that arrives out of order.
For four streams, we determined that about one third of the
packets are inserted into the reorder buffer and for 16 streams
about one quarter. We notice that there is not necessarily a
correlation between buffer occupancy and the number of out-
of-order packets.

As mentioned, the setup for this experiment did not limit
the number of available connections. We would thus expect the
number of active receiver connections to match the number of
simultaneously injected streams. As shown in Fig. 11(b), we
observe slightly higher numbers of active receiver connections.
Though each sender injects only one stream at the time,
reordered packets can cause sequentially injected streams to
overlap at the receiver and require two active connections
during this transition period.

To apply more pressure to the reorder buffer and force
higher occupancy levels, we rerun the previous experiment
with two sources injecting the ordered streams as bursts of
back-to-back packets. This way, the receiver receives packets
at the full link rate during short periods of time - the load per
destination is still an average of 0.35 of the full link capacity
(0.7 combined as in the previous experiment) to avoid endpoint
congestion. We further decreased the likelihood of adaptively
routed packets'®. With this experiment, occupancy levels now

13 Against our initial intuition, fewer adaptively routed packets lead to
higher reorder buffer usage as occasional out-of-order packets potentially hold
up more packets in the reorder buffer than more frequent out-of-order packets.
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Fig. 11: Resource Usage for Receiver with Unlimited Number of Connections: 4 and 16 sources send one ordered stream each to two
destinations (graphs show reorder buffer occupancy for one destination). The sources are located in one Dragonfly group and the destinations
are located in another group. Streams have a fixed length of 32 and 128 packets, respectively. Packets have a fixed length of 16 flits. The
combined traffic load is 0.7 of the full link capacity. The reorder buffer has a capacity of 50 packets. Packet distribution is uniform random
(UR) in (a) and (b) with graphs (a) showing reorder buffer occupancy and graphs (b) the number of active receiver connections over time.
Graphs (c) show reorder buffer usage for bursty packet injection. The dotted lines are trend lines (calculated as conditional mean).
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only two connections available. Graphs (c) show reorder buffer usage when the number of outstanding packets is limited to 25 packets per
stream. The dotted lines are trend lines (calculated as conditional mean).

reach about half of the reorder buffer capacity (Fig. 11(c)).

The final experiment limits the number of receiver
connections to two to demonstrate protocol operation when
resources are scarce. Otherwise, the setup is identical to the
previous experiment. Results are shown in Fig. 12. We now
observe large fluctuations in buffer occupancy. Occasionally,
the buffer fills up and packets are dropped - about 5% of the
packets are dropped for the scenario with four streams and a
stream length of 128 packets. This happens when a receiver
connection becomes available only after the first packets of a
stream have arrived. In this scenario, later packets are streamed
into the reorder buffer in fast mode while earlier packets
are delivered in slow modes. This can last for several RTTs
filling up the reorder buffer quickly. Several solutions can
be considered to limit the number of packets going into the
reorder buffer. Fig. 12(c) demonstrates a simple solution that
limits the number of outstanding request packets per sender
connection to half the reorder buffer size!*:!5.

4Future work needs to investigate such techniques in more detail.
15Limiting a connection’s use of the reorder buffer capacity is also needed
to contain similar effects caused by the loss of an erroneous packet.

V. RELATED WORK

Though other protocols can deal with packet reordering,
their use cases are quite different from the memory-semantic
data center interconnect assumed here. TCP illustrates this
well. It is optimized for wide area networks with long control
loops and endpoints whose characteristics including available
resources are often unknown. Since TCP has little knowledge
about endpoint resources, techniques such as speculative
connection set up or injecting packets into the network at
the maximum possible rate right away when a connection
is opened, are not feasible as they could easily lead to
resource oversubscription. Further, TCP is not optimized for
multipathing as it attributes out-of-order packets to congestion.
When reordering is caused by multipathing, TCP performs
poorly as it attributes segment timeouts to congestion rather
than multipathing and, in response, decreases the number
of segments that can be outstanding at the sender [14]. If
timeouts are caused by multipathing, this behavior, however,
is counterproductive. Recognizing that different signaling
mechanisms are needed to disambiguate delayed packet
delivery caused by congestion and multipathing, protocol
extensions such as Multipath TCP [15] have been proposed.



Other HPC interconnects enable adaptive routing for
unordered packet streams only and restrict ordered packet
streams to deterministic routes. For example, Cray Aries [2]
provides ordered delivery for request packets that access the
same address (SC-LOC) by using deterministic routing. In a
similar way, if ordering is required in the Blue Gene/L torus
network [16], packets are either deterministically routed, or
adaptively routed and ordered by software in the endpoint [17].

Exposing different transfer and ordering modes at the
API allows applications and communication libraries to
better utilize available network resources. For example, the
Blue Gene/L torus network [16] offers both adaptive and
deterministic routing, and the Cray Gemini [18] and Aries
networks [2] expose both relaxed and strict ordering at the
network APL In [19], the performance of one-sided and two-
sided communication is evaluated with respect to the different
transfer modes offered by the CRAY Gemini interconnect.
Significant performance improvements are reported for relaxed
ordering over strict ordering. The authors conclude that out-
of-order message delivery has to be exposed at the application
level to optimize system performance.

Gen-Z [20] is a newly emerging general-purpose intercon-
nect that also adheres to memory semantics and adopts relaxed
ordering. Gen-Z implements an unordered interconnect that
supports multipathing. In-order delivery is provided through
so-called strong order domains, that restrict traffic to single
pathing.

To efficiently use networks that offer different ordering
modes, applications need to have awareness of the underlying
transport mechanisms and further need ways to specify
ordering domains and applicable ordering rules. Newer
languages like UPC [21] recognize this. UPC programs let
the programmer specify whether accesses are destined for
private or shared memory and, further, whether data adheres
to either strict or relaxed consistency making it possible for
the compiler and libraries to optimize corresponding data
transfers. UPC provides the kind of primitives needed to
efficiently interface protocols such as ours. For example, the
sequence of UPC operations put_nb, put_nb, ..., syncnb [22]
can be directly mapped to the synchronized transfer protocol
and thus benefit from path diversity and adaptive routing as
well as low latency thanks to target-side synchronization logic.

PGAS programming models and other one-sided commu-
nication models are gaining popularity as they relax ordering
constraints. The case study in [23] shows that decoupling data
transfers and synchronization is a much better fit for unordered
networks. Communication libraries like NVSHMEM also
recognize the need for relaxed ordering in networked GPU
clusters to reduce orchestration between computation and
communication [24].

A semantic gap exists between the relaxed memory models
implemented by many-core processors and (distributed)
programming frameworks that makes it difficult to exploit
available concurrency. The lack of rigorous specifications
[25] often leads to over-constrained assumptions about
the underlying memory model. Furthermore, programming

frameworks as well as network interfaces often provide only
crude ordering mechanisms such as memory barriers. The high
cost of memory barriers is, for example, shown in [26].

VI. CONCLUSION

Many-core processors rely on memory models with relaxed
ordering. With the emergence of network interconnects based
on memory semantics, relaxed memory consistency models
should apply equally to local and remote memories. To
optimally use the memory subsystem, applications specify the
ordering rules that apply to the issued memory operations. A
similar interface between application and the network transport
layer of the network is needed so that the ordering constraints
of the application and the ordering modes supported by the
network can be closely matched.

We have introduced two ordering protocols: The ordered
transfer protocol provides strict packet ordering and the
synchronized transfer protocol offers relaxed ordering for
producer/consumer communication patterns. We further de-
scribed an exactly-once delivery option for removing packet
duplicates. The protocols share a common set of mechanisms
thereby simplifying implementation and verification.

We designed the protocols such that their critical paths
are free from any network traversal times or timeouts. A
speculative connection setup procedure is used that avoids
delays caused by a handshake between source and target prior
to data transmission.

The protocols are light-weight enabling implementations
with a small footprint for nodes as for example found in
accelerated systems. Specifically, resource requirements are
minimized in that connection state depends on the bandwidth-
delay product and reorder buffer sizes are determined by the
network skew.

Experiments confirm that ordering can be achieved at wire
speed. We further showed that minimal ordering logic using
a single reorder buffer suffices for many producer/consumer
communication patterns.

VII. FUTURE WORK

More research into the interplay of ordering and congestion
management is needed. The impact congestion management
techniques have on ordering performance needs to be
characterized and collaborative techniques that minimize the
ordering pressure congestion management adds need to be
explored.
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APPENDIX

A. Abstract

This artifact contains all components of the simulation
environment and the scripts needed to generate the reported
results. The simulator is based on Bksim, an event-driven
architectural simulation library written in C++. Further
provided are the scripts and programs needed to generate the
graphs shown in the paper.

B. Description
1) Check-list (artifact meta information):

Algorithm: Full protocol and network simulation

Program: Bksim code to run simulations, bash scripts (incl.
Python code and R code) to generate graphs

Compilation: GCC 7.10 or higher

Run-time environment: Ubuntu 16.04

Hardware: Any

Output: Simulation log files, statistics, graph plots
Experiment workflow: git clone projects, build environment,
run scripts

Publicly available: Yes

2) How software can be obtained: The simulator code is
found on GitHub. It is provided in three parts: 1) the libbksim
simulation kernel is located in repository NVIDIA/nvr-
libbksim, 2) the accompanying library libnvx in NVIDIA/nvr-
libnvx, and 3) the ordering protocols in NVIDIA/nvr-ord-prot-
scl8.

3) Hardware dependencies: None.

4) Software dependencies:

Autoconf 2.69 or later
Automake 1.15 or later
Bison 3.0.4

Flex 2.6.0

GCC 7.1 or later
libbksim 2.1.4 or later
libtool 2.4.6 or later
libboost 1.58.0 or later
libnvx 1.0 or later
logdxcc 0.10.0 or later
Python 3.5.1

Rstudio 1.1.419



5) Datasets: None.

C. Installation
Clone repositories:

$ git clone https://github.com/NVIDIA/nvr-1libbksim.git

$ git clone https://github.com/NVIDIA/nvr-libnvx.git

$ git clone https://github.com/NVIDIA/nvr-ord-prot—-scl8.git
Follow the instructions in the README file found in project

nvr-ord-prot-sc18.

D. Experiment workflow

Navigate to directory “/nvr-ord-prot-sc18/src and run script
Jsim_scripts/run_sim_all to run simulations and generate
graphs.

“/nvr-ord-prot-sc18/src is the working directory of the
simulator. A simulation is executed by running the executable
bksim. The working directory contains the following subdi-
rectories:

o configs contains Bksim configuration files to specify

network topologies and other simulation parameters.

o logs contains trace files and statistics output files.

o plots contains the graphs.

e python contains programs to pre-process statistics data in

preparation for plotting.

o results contains the files with the raw performance results.

« rstudio contains R code to generate the graphs.

e sim_scripts contains the bash scripts to run the

simulations and generate graphs.

E. Evaluation and expected result

The simulator generates trace files and periodic statistics
reports. The trace level is specified in file log4cxx.conf found
in the simulator’s working directory. Shell scripts, Python
programs and R code are used to extract results and generate
plots.

F. Experiment customization

Scripts and configuration files can be modified to change
the network topology and customize traffic generation.



