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Abstract—An artificial intelligence system called MENNDL,
which used 25,200 NVIDIA Volta GPUs on Oak Ridge National
Laboratory’s Summit machine, automatically designed an op-
timal deep learning network in order to extract structural in-
formation from raw atomic-resolution microscopy data. In a few
hours, MENNDL creates and evaluates millions of networks using
a scalable, parallel, asynchronous genetic algorithm augmented
with a support vector machine to automatically find a superior
deep learning network topology and hyper-parameter set than a
human expert can find in months. For the application of electron
microscopy, the system furthers the goal of improving our
understanding of the electron-beam-matter interactions and real-
time image-based feedback, which enables a huge step beyond
human capacity towards nanofabricating materials automatically.
MENNDL has been scaled to the 4,200 available nodes of Summit
achieving a measured 152.5 PFlops, with an estimated sustained
performance of 167 PFlops when the entire machine is available.

Index Terms—machine learning, evolutionary computation,
high performance computing

I. JUSTIFICATION FOR ACM GORDON BELL PRIZE

167-PFlops projected on Summit with 152.5-PFlops mea-
sured on available 4,200 nodes to highlight structural defects in
raw microscopy data using an asynchronous genetic algorithm
to find the optimal deep learning network topology and hy-
perparameters. First known approach toward automated iden-
tification of atomic-scale structural irregularities in dynamic
electron microscopy data.

II. PERFORMANCE ATTRIBUTES

Performance
Attributes Content

Category of achievement
Peak performance -

152.5-PFlops measured,
167-PFlops projected

Type of method used N/A (Deep Learning)
Results reported on basis of Whole application including I/O

Precision reported Mixed single-half

System scale Measured on 4,200 available
nodes out of 4,600

Measurement mechanisms FLOP count
Number of networks evaluated Approximately 525,000 / hour
Training repetitions (forwards

and backwards passes
in a network)

424 million / second

Scanning Transmission
Electron Microscopy (STEM)

image analysis

First automated raw image-based
atomic defect analysis

III. OVERVIEW OF THE PROBLEM

The ability to control matter at the atomic scale holds great
promise for future breakthroughs in virtually every area of
our lives [1]. Recently, it has been realized that scanning
transmission electron microscopy (STEM) allows not only vi-
sualizing materials structure at the atomic scale, but that it also
can be used for atomic-level modification of matter [2]–[5].
This breakthrough emerged on top of other STEM-enabled
breakthroughs in the last several years, including the capability
to map structural distortions underpinning ferroic and quantum
physics, map chemical reactions atom by atom, and explore
internal electric fields at the atomic level. However, given tens
of thousands of STEM platforms worldwide, each producing
hundreds of images per microscope per day and often terabytes
of ptychographic experimental data, the analysis becomes the
issue due to the sheer volume of images. Consequently, real-
time data analytics of these images is particularly important
in the context of the electron beam manipulation of individual
atoms, where real-time image-based feedback is a necessary
condition to enable atom by atom fabrication, which is the
ultimate goal of nanotechnology [6].

The main bottleneck to achieving this goal is that despite
large volumes of images routinely generated in STEM exper-
iments worldwide (datasets in gigabyte to terabyte range per
single experiment), presently there are no image analytics tools
for rapid and automated extraction of structural information
from raw experimental images that are characterized by high
levels of noise, missing structural elements, etc. Indeed, most
of the methods available to date for analysis of atomically
resolved data are slow, inefficient, require frequent manual
inputs (sometimes for each individual image), and are not well
generalizable between different materials and experimental
setups. Consequently, less than one percent of data is analyzed,
with selection driven by operator choice (“best” image from
the stack), which also drives the experimental planning and
microscope design. Utilization of deep learning, which has
proven to be one of the most successful machine learning
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methods for image analysis, offers a path to overcome these
limitations. Unlike previous approaches to image processing
and computer vision, deep learning does not rely on hand-
engineered features; instead, it learns the features needed
for the image processing task from the data. The unique
aspect of data in high resolution electron microscopy is the
presence of well-defined ground truth, i.e., atomic positions (at
least, prior to some dramatic structural transformations), and
reasonably well understood physics of the imaging process,
which allows creation of a training set with problem-specific
physical constraints.

Applying deep learning presents a new problem: defining
an optimal network topology and hyperparameters associated
with the corresponding deep learning network, such as the
number of layers, the type of each layer, and the corresponding
parameters for each layer type as described in [7]. It has
been shown that customizing a network’s hyperparameters
and topology to match the dataset can result in networks
with significantly higher accuracy [8], [9]. A typical approach
when applying deep learning to a new scientific dataset is
to use some other deep learning network “off-the-shelf” and
then perhaps hand-tune some of the hyperparameters to be
more well-suited to the new dataset while leaving the network
topology fixed. For non-deep learning experts, it is often not
clear how to update the hyperparameters effectively to improve
network performance. Evaluating a particular set of hyperpa-
rameters on a dataset is computationally intensive; specifically,
it requires training a network with those hyperparameters to
see how well it performs the task. Then, this computationally
intensive task must be repeated for each hyperparameter set to
be evaluated. Hypothetically, consider a simple deep learning
network with a fixed topology (i.e., number of layers, layer
types, order of layers) consisting of 5 convolution layers, each
of which require at least two hyperparameters, for a total of
10 hyperparameter values needed to be defined. If we assume
that each hyperparameter could take on a value ranging from
1 to 100, then there are 10010 (1E20) candidate networks.
To complicate matters, our hypothetical network has several
additional hyperparameters that would need to be defined.
Furthermore, if the topology (i.e., number of layers, layer
types) is to be changed as well, then the search space grows
exponentially large. Requiring domain scientists to create an
optimal deep learning network for their particular data will
most likely produce unsuccessful results, since even deep
learning experts rely primarily on intuition and trial-and-error
experimentation in determining an appropriate network.

To address this challenge, this work leverages an artifi-
cial intelligence system called Multinode Evolutionary Neural
Networks for Deep Learning (MENNDL) [10], developed to
intelligently optimize both the deep learning network topology
and the corresponding hyperparameters. It effectively par-
allelizes and scales the evaluation of millions of networks
within hours, utilizing the computational power of a GPU-
based HPC system. Consequently, this system creates deep
learning networks that are highly tuned to an application
space and go beyond what a domain expert would conceive as

being optimal. MENNDL reduces human-effort from months
to hours in designing a deep learning network, which en-
ables scientists to move more quickly toward finding new
discoveries within their data. In this particular application,
MENNDL constructs a deep learning network capable of
atomic level mapping of chemical transformation pathways in
solids. The MENNDL designed network outperforms current
state-of-the-art results as well as human expert results. Though
all of Summit’s 4,600 nodes are not currently available, we
demonstrate the scalability of our approach on up to 4,200
nodes and extrapolate out the potential performance on all of
Summit. For 4,200 nodes, we achieve a sustained, measured
performance of 152.5 PFlops with a projected sustained 167
PFlops using 4,600 nodes of Summit.

IV. CURRENT STATE OF THE ART

Our research spans several domains (electron microscopy
data analysis, deep learning, and hyperparameter optimization)
that have not previously been combined into a single task
leveraging HPC. Thus, there is no single point of comparison,
and as such, we report the state-of-the-art for each area of
research.

A. Scanning Transmission Electron Microscopy

Despite large volumes of data generated in dynamic STEM
experiments, including solid-state reactions and phase trans-
formations, presently we do not learn much from this data.
Practically, via manual visual analysis, we can discern global
changes and some qualitative information of atomic dynam-
ics. The vast majority of analysis is manual or qualitative
interpretation. The current state-of-the-art method for the
analysis of individual STEM images relies on singular value
decomposition-based denoising technique and the pattern
matching-based techniques for identifying atoms in the images
[11]. However, due to computational costs and poor generaliz-
ability (it requires a manual input for each separate image) this
approach is practically unsuitable for the automated analysis
of large volumes of high-resolution STEM data. As for the
analysis of individual atomic defects, the current state-of-the-
art in locating defects in each frame of dynamic STEM data
(on periodic lattice structures) is the Fourier-transform-based
image subtraction [12]. Unfortunately, each frame requires
manual fine tuning of threshold values, especially for those
before and after a beginning of nucleation of a new phase,
making it impossible to do real-time data analytics, which is
necessary for the automated manufacturing of nanodevices.
Finally, when it comes to identification (and interpretation) of
subtle atomic defect structures, hand tuning separate frames
from dynamic STEM data inevitably introduces a human
bias in the initial defect identification. Parenthetically, the
microscopy field knows several examples of when hand tuning
parameters in Fourier-based methods on complex structures
resulted in a “discovery” of phases and structures that were
not actually present in the system. Because it requires manual
intervention, less than one percent of experimental data is
ever analyzed. With rapid detectors and storage capacities



capable of collecting million-frame movies, this problem is
particularly acute. We can now collect extreme amounts of data
and chemical reactions in solids, induce and control atomic
motion atom by atom, and learn fundamental physics - but
reliance on human analysis limits progress.

B. Deep Learning on HPC

As deep learning is a computationally complex machine
learning approach, its popularity in the HPC community [13]
continues to rise. Indeed, it is well suited for GPU-based HPC
systems. While considerable work in scaling a single network
across many nodes exists either through data parallelism or
model parallelism, there are practical and algorithmic limits to
what can be achieved using these approaches. While scaling
data parallel approaches across many thousands of GPUs in
order to achieve a high Flops measurement is a simple task,
actually achieving a proportional decrease in time-to-solution
over what can be achieved with tens or hundreds of GPUs
has not been convincingly shown. This is largely due to the
resulting large effective batch sizes (i.e. if the number of nodes
is increased 1000x then the batch size is increased 1000x)
and the effect it has upon convergence. Current work has only
scaled to hundreds of deep learning accelerators [13], [14], and
even then this relies on assumptions about input size and the
networks used that may not hold true generally. Additionally,
many barriers exist in scaling asynchronous gradient descent
methods for decreased time-to-solution [15]. The primary
limitation is the increase in batch size as nodes are added.
The ideal batch size for optimal convergence per training
example is somewhere between 32-512 training examples for
many problems [16]. If we allow the batch size to grow
during training, the batch size can increase to 64,000 for
some problems during the final stages of training while still
providing a decrease in time-to-solution, as shown in [14].
However, these batch sizes are only realized during the final
stage of training. Even assuming an effective batch size of
64,000 is feasible for a particular problem during the final
stages of training, that would only represent a batch size of
less than 3 per GPU on Summit’s 27,600 GPUs. This batch
size is too small to maximize usage on each GPU.

C. Hyperparameter Optimization

For many applications that could benefit from leveraging
deep learning, determining the network topology and the
appropriate hyperparameter values remains a key problem. For
example, hyperparameters such as the number of layers and
the corresponding hyperparameters for each layer type used
must be defined. Given the wide range of potential hyperpa-
rameter options, and the nonlinear relationship among them, an
enormous search space that requires significant computational
power to optimize exists.

Despite the development of advanced deep learning frame-
works [17] which make deep learning very accessible, hyper-
parameter selection remains a significant barrier and typically
requires deep learning domain expertise to achieve satisfactory

results, especially for datasets that have not been as heavily
studied as natural image datasets like ImageNet [18].

Progress has been made toward reducing the barrier of
hyperparameter optimization. In the work of [19] it was
shown that a simple random search outperformed manual
tuning performed by an expert. Then, in [8] [9], it was
shown that Tree of Parzen Estimators (TPE) outperformed
random search. These works showed that by leveraging a small
cluster computer, optimized networks could be achieved that
outperform human experts in a fraction of the time. More
recently, the work of [20] showed that using a surrogate radial
basis function (RBF) outperforms TPE. However, despite the
progressive improvements, the significant drawback to all of
these approaches is that they do not assist in defining the
network topology (i.e., the number of layers and layer types);
and, the topology has a significant impact on the overall
performance of a deep learning network for an application.

V. INNOVATIONS REALIZED

A. Nanoscience and Nanotechnology Innovations

Using MENNDL, we develop a deep learning network for
rapid analysis of the dynamic STEM data from 2-dimensional
material under electron beam irradiation. This custom network
allows us to create a library of defects, map chemical transfor-
mation pathways at the atomic level, including detailed transi-
tion probabilities, and explore subtle distortions in local atomic
environment around the defects of interest [21]. Employing the
custom network, we are able to get an unprecedented insight
into the nature and mechanisms of solid-state reactions and
electron-beam-matter interactions on the atomic level, which
is of crucial importance to controllable nanofabrication as well
as to fundamental atomic-scale chemistry. Furthermore, the de-
veloped network solves the problem of instructing a computer
how to choose automatically the ”best region” in a sample to
make a measurement or perform atomic manipulations without
human supervision. This is a critical step towards a fully-
automated (”self-driving”) microscope.

B. Deep Learning Innovations

Our deep learning framework is called Multinode Evo-
lutionary Neural Networks for Deep Learning (MENNDL).
MENNDL relies on two optimization methods, genetic algo-
rithms [10], [22] and support vector machines [23], [24], to
intelligently optimize deep learning network topologies and
hyperparameters. MENNDL effectively parallelizes network
evaluation and fully utilizes the computational power of Sum-
mit. The resulting software framework facilitates the discovery
of an optimal deep learning network for a particular scientific
dataset in a quick, efficient, and automated manner using a
GPU-based HPC system.

This framework has two components. The first component
utilizes a genetic algorithm to determine the appropriate topol-
ogy (number and type of layers) and corresponding hyper-
parameters of a deep learning network. The set of network
topologies that achieve the highest accuracy are then used
as input to the second component, which utilizes a support



vector machine to further refine hyperparameters within a fixed
topology network. Like other approaches for hyperparameter
optimization, including random and grid search, MENNDL
benefits from additional compute resources in order to evaluate
more potential solutions quickly. Unlike random and grid
search, however, MENNDL utilizes machine learning and the
results from previously evaluated networks in determining new
networks to evaluate. As such, there is less wasted compute
time on poorer performing networks and more time training
and evolving better performing networks.

Like the work of [8] [9], MENNDL can create deep
learning networks within hours that will perform as well or
better than what a domain expert could create within months.
However, unlike [8] [9], which only optimized some of the
hyperparameters, the key innovation is that this framework
effectively utilizes Summit to optimize the entire topology
(e.g., number and type of layers) and hyperparameters of
a deep learning network for scientific data in general, and
in this demonstration, electron microscopy data specifically.
Consequently, this framework can create deep learning net-
works that are more highly tuned to an application space and
go beyond what a domain expert would conceive as being
optimal. This reduction of months to hours in designing a deep
learning network topology enables scientists to move more
quickly toward finding new discoveries within their data. In
this particular application, we have demonstrated this approach
enables atomic level mapping of chemical transformation
pathways in solids.

C. Optimization Innovations for Summit

There are several key innovations in the development of
MENNDL that enables it to scale to effectively utilize Sum-
mit’s resources.

1) Compute Utilization Optimizations: The genetic algo-
rithm component of MENNDL is implemented using a global
single-population master-slave genetic algorithm (GA) [?], in
which one node (the master) is used to host the population
and evolutionary processes of the algorithm and the remaining
nodes are used to evaluate the fitness of networks in the popu-
lation (Figure 1). Each individual in the population represents
a single deep learning network and is shown in Figure 1
as a double-helix. The fitness score for each network in the
population corresponds to its accuracy on a validation data set
after training for a fixed number of iterations on a training data
set using Caffe [26]. Depending on the network topology and
hyperparameters, the time required to evaluate a particular net-
work can vary significantly (as shown in the figure by different
length double-helixes), and GAs are inherently synchronous.
As a result, while the GA is parallelizable, its utilization of
the machine decreases with scalability. To overcome this issue
and ensure maximum utilization of computational resources as
well as maximizing the number of networks that can be evalu-
ated within a given time, MENNDL utilizes an asynchronous
genetic algorithm architecture similar to [27]. Thus, each GPU
of each node is continuously evaluating a network rather than

waiting for all of the other nodes to finish evaluation of their
respective individuals.

Once MENNDL establishes a network topology and an
initial set of hyperparameters, the support vector machine
(SVM) component of MENNDL is then used to tune the
hyperparameters on the fixed topology network. In particular,
an SVM is used to predict whether certain hyperparameters
will perform well for the given network topology. During this
component of MENNDL, we first utilize each compute node
to evaluate as many random hyperparameter sets as possible
in a pre-defined fixed time period. Once this time period is
complete, the master node collects all of the results, builds
the appropriate SVM from those results, and then the SVM is
transmitted to each of the nodes. Then, each node determines
a hyperparameter configuration that is predicted to perform
well based on the SVM provided by the master node. Once
a hyperparameter set that is predicted to perform well has
been found, the node trains that network for a pre-defined
fixed time period. All of the compute nodes are continuously
evaluating/training one or more networks throughout except
when the master node is building the appropriate SVM;
however, very little time is spent in the building of the SVM on
the master node, resulting in high node utilization throughout.

2) I/O Transfer Optimizations: A key bottleneck for train-
ing deep learning networks on HPC is data transfer costs.
Unlike simulation codes that typically perform a significant
number of write operations, machine learning code performs
a significant number of read operations. In the case of deep
learning, a single network will train by iteratively reading
over a dataset thousands of times. In this particular application
of hyperparameter optimization utilizing HPC, there are tens
of thousands of networks all performing thousands of read
operations from the same data set. To minimize data transfer
costs and increase the utilization of the GPUs, MENNDL takes
advantage of one of Summit’s key architectural features where
“each node has 1.6TB of non-volatile memory that can be used
as a burst buffer” [28]. At the beginning of the job execution,
local copies of the data are created on the burst buffer of each
node. Then, throughout the network evaluation process, the
local copies of the data are utilized rather than requiring con-
tinuous data transfers from the parallel file system throughout
training.

3) Communication Optimizations: MENNDL includes op-
timizations that reduces the size of the communicated mes-
sages between nodes. Deep learning networks are typically
specified in a custom file format based on the framework
being used to implement and train the network. As noted
above, we use the deep learning framework Caffe for network
evaluation. Caffe uses a file format called “prototxt” to specify
a network’s topology and hyperparameters. For the GA com-
ponent of MENNDL, we devised a compression technique on
the network specification by encoding network topology and
hyperparameters in a fixed length genome string. This genome
string is then used to communicate networks between the
master node coordinating the GA and the compute nodes that
will train the networks. Prototxt files are on the order of kilo-
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Fig. 1. An illustration of the genetic algorithm component of MENNDL.

bytes, whereas the network genome representation, which is
decompressed to form a full prototxt file at the compute node,
is on the order of bytes. As such, this results in a thousand-fold
lossless compression technique for network representations.
Similarly, during the SVM component of MENNDL, we use
a fixed length string to communicate between the master and
slave nodes. Since a fixed network topology is defined prior
to the SVM component execution, the length of this string is
determined based on the exact number of hyperparameters to
be optimized. Again, rather than communicating the prototxt
file (on the order of kilobytes) to define the network, only the
array of hyperparameter values and corresponding accuracy
value (on the order of bytes) is communicated.

VI. PERFORMANCE MEASUREMENTS

A. Application Used to Measure Performance

1) Scanning Transmission Electron Microscopy Data: We
analyzed a STEM “movie” showing the phase evolution and
atomic defect dynamics in a fixed region (15nm×15nm) of a
single layer of molybdenum (Mo)-doped tungsten disulphide
(WS2) under 100 kV electron beam irradiation. We utilized the
fact that macroscopically (on the length scale of the image) the
defects can be discovered via the Fourier method, providing
the ground truth for training. Thus, we utilized a manually-
tuned Fourier transform based approach to label defects within
the first frame of the video (Frame 0). We divide this image
into tiles to produce a training and validation set for hyper-
parameter optimization. The resulting best network is then
used to produce detection results on subsequent frames not
used for training or validation. The initial frame (used for train-
ing and validation), as well as two subsequent frames (used to
evaluate the effectiveness of deep learning on this problem),
are shown in Figure 2. It is clear that the Fourier transform-
based method labels tuned for the first frame produce radically
different results from the human-expert labels and thus, it is
not a practically useful as an automated labeling method. The
Fourier transform-based method would need to be re-tuned for
each frame, while the MENNDL designed network does not.

2) MENNDL Software Details: The GA component of
MENNDL’s code is written in C++ and utilizes MPI for node-
to-node communication. The master node uses CPU resources
only. The SVM component of MENNDL’s code is written
in Python, and we use the SVM implementation in Python’s
scikit-learn package using a radial basis function (RBF) kernel.
Each slave or worker node that performs network evaluations
launches nvcaffe (NVIDIA’s Caffe fork) to train a particular
network configuration for both components of MENNDL.

B. System and Environment

The system used for these measurements is Oak Ridge
Leadership Computing Facility (OLCF)’s Summit machine.
Upon completion, Summit will have approximately 4,600
compute nodes. Each node will contain two IBM POWER9
CPUs and six NVIDIA Volta GPUs connected together with
NVIDIA’s NVLink [28]. In this work, we measure our ap-
plication performance on the available nodes on Summit and
project performance for the full 4,600-node system.

Measuring floating point operations (Flops) for our soft-
ware framework is a non-trivial task. In particular, MENNDL
stochastically generates and then evaluates (through the train-
ing process) deep learning networks. The specific hyperparam-
eters chosen for any network have an enormous impact on the
performance of the network. The hyperparameters determine
what is possible for the network to learn and, as a result, the
accuracy of the trained network. The hyperparameters also
have a direct impact on the number of Flops required to
process a batch of training data, the size and shape of that data
throughout the network hierarchy, and the efficiency of GPU
utilization. In order to measure the Flop performance of either
application, it is first necessary to understand the performance
of the individual GPUs. Since the network hyperparameters are
being randomly generated and those hyperparameters impact
the Flop performance, the performance of any individual GPU
can be viewed as a random variable X1, X2, ..., Xn ∼ X . The
unknown distribution X will be a function of many things
including what type(s) of networks MENNDL is generating.
While the specific distribution of X may not be known, its
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Fig. 2. Identification of structural defects in scanning transmission electron microscopy data. First row: raw experimental data. Second row: result of a
human expert (semi-)manually labeling atomic defects. Another human expert may label this slightly differently. Third row: result of a Fourier-transform
based method tuned to Frame 0. Fourth row: result produced by convolutional neural network. In the third and fourth rows, white indicates correctly identified
defects (good), purple pixels identified as defects that were not defects (bad), and orange indicates defects that were not identified (worse). Black indicates
regions that contained no defects and were identified as such.



mean (µ) and variance (σ2) can be empirically estimated.
Regardless of the distribution of X , once µ and σ2 are known,
the (typical) performance of the application as a whole can be
accurately determined. As it is simply the sum of i.i.d. random
variables, the whole application performance Z =

∑n
Xi is a

random variable which is normally distributed: Z =
∑n

Xi ∼
N (nµ, nσ2).

Deep learning network training is commonly performed
using Stochastic Gradient Descent (SGD) [29] [30]. A random
subset (a batch) of the data is chosen; it is then fed through
the network (forward pass); a loss function is computed;
finally, network weights are updated using computed gradients
(backward pass). The number of floating point operations
required to complete one forward and backward pass (one
iteration) on a single batch of data can vary even when all
network hyperparameters are held constant. To compute the
typical number of operations required per batch for a single
(fixed) set of hyperparameters, NVIDIA’s profiler nvprof
is used to count the total number of operations performed
for N batches for N in {4, 6, 8, 10, ..., 18}. This gives us 8
data pairs each containing a number of training batches and
a total number of floating point operations. A best-fit line for
these data points is computed. The y-intercept captures the
number of floating point operations required to initialize this
particular network while the slope captures the typical number
of operations per batch. MENNDL utilizes nvcaffe, which
records the (average) number of batches per second. From this,
the average Flop-performance of this (fixed) network can be
computed by multiplying the slope (floating point operations
per batch) by the number of batches per second. This provides
Xi for a single network. This process is repeated in order to
generate as many data points Xi as desired.

Ultimately, in order to estimate accurately µ and σ2 (the
mean and variance of the distribution X), deep learning
networks were profiled on a set of the available nodes on
Summit (specifically, one network for each GPU on Summit).
Once µ and σ are estimated, the expected, overall system
performance Z =

∑n
Xi can be determined. Z is normally

distributed with mean nµ and variance nσ2, where n is the
number of networks evaluated.

VII. PERFORMANCE RESULTS

A. Sustained and Peak Performance

To measure performance as described in Section VI-B, we
first determine the distribution of X (the performance of a
single GPU) as well as its mean (µ) and variation (σ2). To this
end, we profiled 4, 200× 6 = 25, 200 networks (one network
on each GPU using 4,200 nodes of Summit). This gives us
statistically large sample of Xi values. The distribution is
shown in Figure 3.

We measured a mean, GPU-level, performance of 5.039
TFlops (single precision) or 6.053 TFlops (mixed, single-half
precision) with standard deviation of 1.725 TFlops and 2.701
TFlops respectively. Though we show the distribution for both
single precision only and mixed single-half precision, through-

Fig. 3. The observed distribution X from using single precision training
(single) and mixed single-half precision training (half).

out the rest of this work, we focus only on mixed single-half
precision, as that achieves better performance overall.

Given these measurements, we determine the expected,
overall system performance Z =

∑n
Xi, where Z is normally

distributed with mean nµ and variance nσ2. In our case
n = 4, 200 × 6 (since we were only able to run on up to
4,200 nodes of Summit), but it is reasonable to expect the
performance to hold up to the full machine (about 4,600 nodes)
since the ratio of communication to computation is so small. In
Figure 4 we show the observed and projected performance (in
PFlops) for mixed single-half precision training. Note that this
figure is in log-log scale (so the deviation appears to shrink
as the number of nodes increases). As shown in this figure,
the sustained performance for mixed single-half precision is
approximately 152.5 PFlops for 4,200 nodes. When Sum-
mit’s full 4,600 nodes are available, we project that we will
achieve approximately 167 PFlops sustained performance for
mixed single-half precision. These results were obtained using
preproduction system software, not-yet generally available
software, and performance results on Summit are expected to
improve over coming months.

Our Flops measurement is done just using the GPUs on
Summit. The theoretical peak performance of an individual
NVIDIA Volta GPU is 15.6 TFlops for single precision
performance. Thus, the theoretical peak performance of Sum-
mit’s full 4,600 node system (with six GPUs per node) is
approximately 433 PFlops. Given that, our projected value of
167 PFlops mixed-precision is achieving approximately 38.6%
of Summit’s theoretical peak single-precision performance.
Peak performance on our particular application would require



Fig. 4. Mixed single-half precision, whole application performance. The
shaded region shows our measured performance.

every GPU running a network that maximizes the performance
of that GPU. This is unreasonable to expect, since different
network topologies and hyperparameter settings have radically
different performance characteristics (as shown in Figure 3),
and evaluating different networks is key to the performance
of our application. It is worth noting that the best network
performance we observed (as shown in Figure 3) achieved
approximately 15.6 TFlops in single precision. Thus, if that
network was duplicated across all of the GPUs of Summit,
our peak application performance would approach Summit’s
theoretical peak performance of 433 PFlops, however, there
is little scientific value in evaluating a single network tens of
thousands of times.

B. Weak Scaling

Figure 4 shows our weak scaling results, in which we
increase the number of networks to evaluate as we increase the
number of nodes. The problem size per node is six networks
(as we evaluate one network on each GPU per node). Because
the time to evaluate each network can vary as each has a
unique set of hyperparameters (as shown in Figure 3), there is
some variation expected. Overall, the variance in per network
Flops is small and is not dependent on the number of nodes.
Thus, our application exhibits linear weak scaling.

C. Strong Scaling

MENNDL performs a hyperparameter optimization, so the
more samples that are made of the search space, the more
likely it is that an optimal set of hyperparameters will be
found. As a result, we scale the size of the problem (the num-
ber of networks to evaluate) to match the resources available,
so weak scaling results are more illustrative of our expected
performance. However, we may also define a strong scaling
result by framing our problem as gaining an understanding of

the search space landscape in order to drive hyperparameter
optimization.

To sufficiently understand the landscape of the search space,
a minimum number of hyperparameter configurations should
be sampled, which can define our minimum problem size.
Since the number of hyperparameters can change based on
the network’s topology, this is a non-trivial value to define for
MENNDL as a whole. To simplify the problem, we identify
a lower bound for a minimum problem size for MENNDL
by restricting our attention to a minimum problem size for
the SVM component of MENNDL. A canonical “small”
deep neural network, LeNet [24], has 11 hyperparameters,
each of which may take on a range of values. To gain a
base understanding of what the hyperparameter search space
looks like for a given problem on LeNet, it is reasonable to
assume that at least 2 to 3 values will be chosen for each
hyperparameter value. Thus, for LeNet, between 211 and 311

(2,048 and 177,147) networks should be evaluated. For our
strong scaling results, we selected several different numbers
of networks (50,000, 100,000, and 200,000), which represent
different numbers of LeNet hyperparameter configurations to
evaluate in order to gain a nominal understanding of the
hyperparameter search space.

As shown in Figure 5, we have very promising strong
scaling results. The key issue that prevents perfect strong
scaling for a fixed problem size (a fixed number of networks),
is that different networks take different amounts of time to
evaluate. Thus, as evaluations are completed, eventually there
are some idle nodes for a fixed problem size, because some
nodes are still being used to evaluate the networks while others
have no new networks to evaluate. In practice, MENNDL will
continue to generate new networks to evaluate, so nodes will
not be idle because there is not a network to evaluate.

Fig. 5. Strong scaling results for different problem sizes (different number
of networks to evaluate.



D. Application Results

To train a deep convolutional neural network (CNN) [31]
for atomic defect identification, we label an initial image via
the Fourier method, providing the ground truth for training.
Unlike the Fourier method, once the CNN is trained, it relies
on local edge properties for identification of defects and is thus
stable towards rotations and fragmentations of the lattice. This
allowed us to train a CNN using only the (properly augmented)
first frame of dynamic STEM data (movie) or a single image
obtained before recording a movie.

We utilized the human expert ground truth to train and
validate CNNs using MENNDL. We trained MENNDL for
65 generations and achieved a validation accuracy of 99.51%
using Frame 0 of Figure 2 broken up into small tile images.
The best performance seen as a function of the current
generation is shown in Figure 6. The performance of the
best network at generation 0 in the figure is what one would
reasonably expect for the performance of a network that was
created by a scientist who had no prior knowledge about what
network topology and hyperparameter settings would perform
well for their problem. As shown in the figure, MENNDL
is able to evolve a network topology and hyperparameter set
over time that decreases the validation error, customizing the
network to the dataset.

Fig. 6. Best validation error observed vs generation of MENNDL training.

The images in row 4 of Figure 2 show how the best
MENNDL trained network performs on the expert-labeled
testing images. In contrast to the Fourier transform-method
based results shown in row 3 of Figure 2, the CNN-based
defect identification shows a stable behavior throughout the
entire movie allowing the extraction of most of the atomic
defects in a fast and automated fashion. In other words, the
CNN generalizes better what was learned from the frame 0
image to apply to frames 88 and 99, thus better capturing
where real defects are occurring. The Fourier transform-based
method, which is the current state of the art, must be re-tuned
by hand for each frame in order to have higher accuracy.

VIII. IMPLICATIONS

The key contributions of this work are:

• The first artificial intelligence system operating at over
100 PFlops.

• An artificial intelligence system, MENNDL, to utilize
HPC for automatic, intelligent, and rapid design of deep
learning networks for scientific datasets.

• The first known approach to automatically identifying
atomic-level structural information in scanning transmis-
sion electron microscopy (STEM) data.

It is hard to overestimate the impact of the ability to
automatically analyze all of the data available from current
STEM experiments. The previous state-of-the-art approaches
for image-based feedback in STEM experiments require hand-
tooling for each individual image, thus making them useless
for real-time application. In this work, we introduce a way to
use HPC to enable the automation of designing a deep learning
network for automated STEM image analysis. As a result, this
MENNDL deep learning approach is the first to overcome the
issues associated with the previous state-of-the-art approach.
MENNDL is fast, efficient, and capable of generalizing to new
images without manual hand-tooling. As opposed to utilizing
off-the-shelf networks that were trained on natural images, a
deep learning network is tailored specifically for STEM data,
which can then be used to produce image-based feedback
in real-time. This feedback is required in order to enable
atom by atom fabrication, which is the ultimate goal of the
field of nanotechonlogy. As the U.S. National Nanotechnology
Initiative Strategic Plan [1] states:

These advances promise to improve human health
and quality of life ... nanotechnology has become
ubiquitous in our daily lives and can be found in
a wide variety of commercial products including
healthcare products, cosmetics, consumer electron-
ics, apparel, and automobiles.

Currently, the number of existing commercial STEM plat-
forms worldwide and number of trained operators is sky-
rocketing, with tools available in most universities and re-
search centers worldwide. The availability of cloud-based
computation infrastructure provides the capability to store
and manage the data. What is lacking is the high perfor-
mance computing that enables transforming the data coming
from STEM platforms (images, movies capturing dynamics,
hyperspectral images, ptychographic datasets) into material-
specific descriptors such as atomic coordinates and trajectories,
valence states and orbital populations, as well as signatures of
quantum phenomena. Such transformation will have to be fast
(to enable real-time feedback), unbiased, and quantitative. This
last requirement sets physics-based data analysis apart from
the largely qualitative and semiquantitative labeling needs that
emerge in classical applications of deep learning such as
medicine, biology, and image recognition. This requirement
in turn necessitates optimization of the deep learning network
topology and hyperparameters to those optimal for this specific



domain. Prior to this work, the capability for making these
tools was unavailable.

This work produces deep learning networks that are tuned
specifically for STEM data. These networks can be made
available to the greater electron microscopy community, much
like networks that have been tuned manually for natural images
have been shared in the computer vision community. As such,
scientists can leverage these networks and, with much lower
computational costs, tune these networks for their electron
microscopy datasets in order to automate their own specific
image analysis tasks. We expect that this will dramatically
accelerate the rate of scientific discovery.

Beyond the impact on the field of nanofabrication, MEN-
NDL also provides the key capability for automatically and
quickly customizing the topology and hyperparameters of deep
learning networks for many scientific datasets by leveraging
the Summit supercomputer. In this work, we describe its
application to STEM data. Additionally, it has been used to
custom-build deep learning networks that outperform networks
designed and hand-tuned by domain experts for a variety of
datasets, including datasets from high energy physics, small
angle neutron scattering, medical imaging [10], and remote
sensing [24]. In these applications, state-of-the-art results have
been achieved. Not only do these networks outperform those
created by domain experts, they are designed using HPC in
a matter of hours, as opposed to the weeks or months it
takes for a person to hand-tune a network. Moving forward,
MENNDL will enable non-deep learning experts and non-HPC
experts to leverage some of the world’s fastest computers to
build customized deep learning networks for scientific datasets
in a matter of hours. MENNDL will allow for more rapid
understanding of the types of problems that can be solved
using deep learning, as well as faster application of state-
of-the-art machine learning techniques to a wider variety of
scientific fields.

In summary, we have developed an artificial intelligence
system (MENNDL) that is capable of automatically creating
deep learning networks customized for particular scientific
datasets. We have demonstrated that by running MENNDL on
Summit at over 100 PFlops we can produce state-of-the-art
results on STEM data image analysis.
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