
A Fast Scalable Implicit Solver for Nonlinear
Time-Evolution Earthquake City Problem on

Low-Ordered Unstructured Finite Elements with
Artificial Intelligence and Transprecision Computing

Tsuyoshi Ichimura1,2,3, Kohei Fujita1,3, Takuma Yamaguchi1, Akira Naruse4,
Jack C. Wells5, Thomas C. Schulthess6, Tjerk P. Straatsma5, Christopher J. Zimmer5,

Maxime Martinasso6, Kengo Nakajima7,3, Muneo Hori1,3, Lalith Maddegedara1,3

1Earthquake Research Institute & Department of Civil Engineering, The University of Tokyo
2Center for Advanced Intelligence Project, RIKEN, 3Center for Computational Science, RIKEN

4NVIDIA Corporation, 5Oak Ridge National Laboratory
6Swiss National Supercomputing Centre, 7Information Technology Center, The University of Tokyo

Abstract—To address problems that occur due to earthquake
in urban areas, we propose a method that utilizes artificial
intelligence (AI) and transprecision computing to accelerate a
nonlinear dynamic low-order unstructured finite-element solver.
The AI is used to improve the convergence of iterative solver
leading to 5.56-fold reduction in arithmetic count from a standard
solver, and FP16-FP21-FP32-FP64 computing is used to accelerate
the sparse matrix-vector product kernel, which demonstrated
71.4% peak FP64 performance on Summit. This is 25.3 times
faster than a standard solver and 3.99 times faster than the
state-of-the-art SC14 Gordon Bell Finalist solver. Furthermore,
the proposed solver demonstrated high scalability (88.8% on the
K computer and 89.5% on Piz Daint), leading to 14.7% peak FP64
performance on 4096 nodes of Summit. The proposed approach
utilizing AI and FP16 arithmetic has implications for accelerating
other implicit solvers used for earthquake city simulations as well
as various fields.

JUSTIFICATION FOR ACM GORDON BELL PRIZE

An implicit unstructured nonlinear dynamic low-order
finite-element solver utilizing AI and FP16-FP21-FP32-FP64
computing obtained 19.8% peak FP64 performance on Piz
Daint and 14.7% peak FP64 performance on Summit, leading
to 25.3-fold speedup over a standard solver and 3.99-fold
speedup over the SC14 Gordon Bell Finalist solver.

PERFORMANCE ATTRIBUTES

Category of achievement:
time-to-solution, peak performance, scalability
Type of method used: implicit
Results reported on the basis of:
whole application including I/O
Precision reported: mixed precision
System scale: results measured on full-scale system
Measurement mechanism:
timers, FLOP count (hardware counters)

I. OVERVIEW OF THE PROBLEM

Data analytics exemplified by machine-learning, which
has high affinity with computer architecture and thus is

straightforward to attain high performance, is overwhelming
physics-based simulation and sweeping over the supercom-
puting field, even as if high peak performance is taken for
granted. However, in the first place, reasonable development
of both data analytics and physics-based simulation, and
development of computation environment supporting these
methods, is essential for extracting information from data.
This important problem of integration of data analytics and
physics-based simulation has been anticipated as a frontier in
the supercomputing field. In this paper, we enhance the value
of supercomputing by advancing this frontier from the point
that the mathematical structure of data analytics and physics-
based simulation have many parts in common. Our approach of
combining data analytics and physics-based simulation based
on the similar mathematical structure may be a turning point;
its generalization is straightforward and is expected to bring
large ripple effect to data analytics, physics-based simulation
and the combination of both methods in the supercomputing
field. We show the effectiveness of our approach by targeting
the low-order unstructured finite-element method as it is the de
facto standard in manufacturing industry and thus enlargement
of problem size and acceleration of this method can lead
to large benefits. Although the unstructured finite-element
method is challenging to attain performance due to the random
data access feature, we show our approach in attaining high
performance on this selected problem.

By 2050, 70% of the global population is expected to
live in cities; thus, cities are currently shifting toward smart
cities capable of highly efficient urban activities, and super-
computing is expected to play a role in this shift. Smart
cities are simulated based on three-dimensional city data,
and large amounts of real-time observation data are analyzed
using supercomputers to control city states effectively and
optimize society’s goals of productivity, safety, etc.. These
analyses target both physical and virtual activities; thus, the
scale of these simulations is expected to increase, making smart
control and optimization of cities a frontier in supercomputing
[1]. In addition, increasing urban density and efficiency leads
to greater vulnerability; thus, resiliency should be improved
significantly. Ignoring the need for resilient infrastructure could

SC18, November 11-16, 2018, Dallas, Texas, USA
978-1-5386-8384-2/18/$31.00 ©2018 IEEE

Faulting

b) Seismic response of city

a) Wave propagation

Crust Bedrock

Surface soil

City

Underground structures

Buildings

Fig. 1. The earthquake process consists of plate movement, wave generation,
wave propagation, and seismic response of cities. Analyzing this process
incurs significant computational costs because the target domain is large and
the required resolution is fine. Physics-based simulation of cities, which is
essential to realize smart cities, is particularly expensive, and is expected to
be the focus of future SC Gordon Bell Sessions.

lead to a house of cards. Even the impression that such defects
exist could damage a city’s brand. Thus, improving resiliency
is essential to realize smart cities. Natural disasters, such as
earthquakes, can cause critical damage to cities. From this
perspective, relative to realizing a smart city, we describe the
computing innovations required to improve seismic resilience
in cities.

Large earthquakes cause catastrophic damage to life, prop-
erty, and society. Thus, they are considered a research area
where supercomputing can play an important role [2]. Earth-
quakes are triggered by a fault caused by plate strain due to
plate movement. Generated waves are propagated through the
earth’s crust (a in Fig. 1). Then the waves are amplified in soft
soils near the surface, which cause shaking and result in fatal-
ities and damage to property (b in Fig. 1). Reducing seismic
damage is an important goal and has been an important topic
at recent SC Gordon Bell Sessions, e.g., the SC08 Gordon Bell
Finalist [3], SC14 Gordon Bell Finalist [4], and SC17 Gordon
Bell Prize [5] targeted wave propagation, and the SC14 Gordon
Bell Finalist [6] and SC15 Gordon Bell Finalist [7] targeted
wave amplification and shaking. The latter papers focused on
earthquake response of cities; however, these papers computed
the ground response, and used these results to compute the
response of buildings in a city. In other words, the coupling
between the ground and urban structures was not considered.
This is reasonable in terms of anti-seismic building design;
however, relative to usability and resiliency in highly dense
and optimized smart cities, fully coupled analysis of ground
and urban structures is required. In this paper, we expand
on the earthquake simulations targeted in past Gordon Bell
Sessions and focus on fully coupled ground-urban structure
seismic response analysis of cities. We employ computer-aided
engineering (CAE) using three-dimensional urban data. We
construct computer-based urban models, convert these mod-
els to numerical analysis models, and compute its response.
The CAE approach is highly generalizable; thus, the insights
gained here are expected to benefit CAE-based industries. The
difference between standard CAE and this study is the scale of
computation. Typical CAE is of the order of 106∼8 degrees of
freedom; however, analysis models have a dimension greater
than 1010 degrees of freedom when applied to cities. Thus,
urban analysis becomes a frontier, and we make innovation
for this challenging problem.

In this paper, we developed a method that utilizes artificial
intelligence (AI) and transprecision computing to accelerate a
CAE-based earthquake city simulation. The proposed approach
has implications for accelerating other implicit solvers with AI
and FP16 (half precision) arithmetic; thus, it is expected to
have implications for earthquake city simulations as well as
simulations in various fields.

II. CURRENT STATE OF THE ART

Computing fully coupled ground and urban structure re-
sponses under large earthquake conditions involves nonlinear,
time-history analysis of a large target domain with highly
localized super high-resolution complex structures, i.e., the
target domain is 103 × 103 × 101∼2 m with structures of
complex geometry with feature size of 10−2∼1 m. Complex
geometry can be modeled with low compute cost with stress-
free boundary conditions for nonlinear dynamic solid contin-
uum equation using a three-dimensional finite-element method
[8] with low-order solid elements (unstructured second-order
tetrahedral elements) in double precision. The bottleneck in
such analyses is the generation of finite-element models with
dimension greater than 1010 degrees of freedom with complex
geometry and performing 103∼4 time step nonlinear response
analysis on these models. Modeling complex geometry with
solid elements leads to locally small elements; thus, explicit
time integration leads to very small time steps for stability,
which, in turn, leads to significant computational costs. Here,
we use implicit time integration (Newmark-β method (β = 1/4,
δ = 1/2)) to avoid instability, although we have to solve huge
matrix equations. The target nonlinear time history problem
becomes(

4

dt2
M+

2

dt
Cn +Kn

)
δun =

fn − qn−1 +Cnvn−1 +M

(
an−1 +

4

dt
vn−1

)
, (1)

where δu, u, v, a, and f denote incremental displacement,
displacement, velocity, acceleration, and outer force vectors,
respectively. M, C, and K denote the consistent mass matrix,
damping matrix, and stiffness matrix, and dt and n denote the
time step increment and time step number, respectively. We use
Rayleigh damping for C, where element damping matrix Cn

e
can be written with element consistent mass matrix Me and el-
ement stiffness matrix Kn

e . The nonlinear time history problem
is computed by solving Eq. (1) and by updating vectors using
the obtained δun as qn = qn−1+Knδun, un = un−1+δun,
vn = −vn−1 + 2

dtδu
n, an = −an−1 − 4

dtv
n−1 + 4

dt2 δu
n.

Generation of super-complex urban models with more than
1010 degrees of freedom and computation of nonlinear time
history problems with 103∼4 time steps are difficult problems.
To the best of our knowledge, fully coupled ground-city
nonlinear analysis has not been conducted to date. However,
we have previously developed a method that can generate
larger than 1010 degrees of freedom complex urban models [9]
(Best Paper Award at HPC Asia 2018). As Eq. (1) dominates
the compute cost of the analysis, the remaining difficulty
toward nonlinear analysis of cities is to develop a fast and
scalable solver suitable for this equation. The SC14 Gordon
Bell Finalist GAMERA [6] uses a low-order unstructured
finite-element method to conduct large-scale nonlinear seismic

analysis and is considered the state-of-the-art method for
such problems. However, it only targets the ground; thus,
GAMERA is designed to solve problems with significantly
better characteristics (convergence of the system of equations)
than the urban problem targeted in this study. Therefore, a
new solver that is suitable for our target urban problem is
required. Thus, we propose MOTHRA1 in this paper. The
standard method for solving such complex problems is PCGE
(described in Section III), and we use PCGE for comparison.
In summary, we compare the performance of the proposed
MOTHRA solver to that of the state-of-the-art GAMERA and
standard PCGE solvers. A previous study [7] solved large-
scale nonlinear dynamic problems; however, that study took
advantage of the uniformity of the target domain to speed
up analyses. Unfortunately, exploiting domain uniformity is
difficult with very complex problems, such as the target urban
problem. Another study [9] computed the dynamic response
of cities; however, that study only performed a linear analysis,
i.e., nonlinearity was not considered. Relative to the limitations
of these previous studies, we consider GAMERA to be the
state-of-the-art solver.

III. INNOVATIONS REALIZED

Here, we summarize the design concept of MOTHRA
with analyzing characteristics of the target problem, and then
we explain how innovations are realized. Our target is to
solve An δun = bn in Eq. (1) derived from the three-
dimensional nonlinear finite element method with unstructured
second-order tetrahedral elements in double precision for each
of the 103∼4 time steps with a relative error tolerance of
10−8. Here, An =

(
4

dt2M+ 2
dtC

n +Kn
)

and bn = fn −
qn−1 +Cnvn−1 +M

(
an−1 + 4

dtv
n−1

)
, and both change in

each time step n. A characteristic of this problem is that the
degrees of freedom of un are greater than 1010. In addition,
A is sparse; thus, access to un becomes random. As M is
diagonally dominant, small dt leads to solvable characteristics
of An even for very complex urban models. In addition,
the problem size is large compared to the memory capacities
of current computer systems. Therefore, it is impractical to
allocate An in memory even when compressed formats such
as compressed row storage are used. A well-known method
for solving this problem is PCGE in double precision, that is
a conjugate gradient (CG) solver, which uses a 3 × 3 block
diagonal matrix of An as a preconditioner [10] (Fig. 2), and
the element-by-element method (described later in Section III-
B) which computes a matrix-vector product on the fly without
storing An in memory [11]. However, as PCGE is computed
in FP64 and ghost layers are updated by point-to-point com-
munication in FP64, the computational performance of PCGE
is insufficient on recent supercomputers with relatively fast
arithmetic performance compared to memory and intercon-
nect bandwidths. In addition, while PCGE does converge,
its convergence is poor; thus, there is room for significant
improvement relative to time-to-solution, which can be realized
using a more sophisticated preconditioner. GAMERA can
solve similar problems; however, it was designed for previous
generation computers; thus, its performance is not optimal
on recent supercomputers. In addition, our target problem

1iMplicit sOlver wiTH artificial intelligence and tRAnsprecision computing.
Mother Guardian Kaiju; named after its form for searching solutions by
changing shape of its system.

Conjugate Gradient Iteration

(2nd order tetrahedral mesh)

z = D-1r, where D is a block diagonal matrix of An with

block size 3 x 3

(FP64 computation)

L
o

o
p

 u
n

ti
l
c
o

n
v
e

rg
e

d

L
o

o
p

 f
o

r
a

ll
ti
m

e
 s

te
p

s
 (

n
 =

 1
,2

,…
)

FP64

computation

FP64

communication
Use z for search direction

3 x 3 Block Diagonal Preconditioner

Conjugate Gradient Solve An δun = bn

up to relative error ε = 1.0 x 10-8

Newmark-beta time-integration

rank #1rank #0

Fig. 2. Algorithm of PCGE . One matrix-vector product with FP64
computation and FP64 communication for updating ghost layers is conducted
per CG iteration. Preconditioning is conducted using a 3 × 3 Block Diagonal
matrix of An. The light blue region denotes the target domain, while the
dashed line denote the MPI partition boundary.

shows significantly poor convergence characteristics, which
can be improved using more aggressive algorithms. We have
developed a new solver MOTHRA enhanced by artificial
intelligence (AI) and transprecision computing that is based on
the idea of reducing data transfer by localization and homoge-
nization in preconditioned CG solvers. This new solver obtains
great performance on the largest current generation GPU-based
Piz Daint and next generation GPU-based Summit supercom-
puters. Its significant performance is briefly summarized here
(see Section V for details). The random access dominated low-
order finite-element matrix-vector product core kernel of the
implicit MOTHRA solver obtained 71.4% peak FP64 FLOPS
on Summit’s V100 graphic processing unit (GPU), and 19.5%
peak FP64 performance for whole application on 288 GPUs
of Summit. This is a 25.3-fold speedup over PCGE and a
3.99-fold speedup over GAMERA, representing 4.56-fold and
3.01-fold improvement in peak performance, respectively. The
proposed solver attained high weak scalability (88.8%, 89.5%,
and 75.5% efficiency on the K computer, Piz Daint, and Sum-
mit, respectively), leading to 14.7% peak FP64 performance on
4096 nodes of Summit. In addition, 93.4% strong scalability
(576 to 2,304 processes) was achieved on the K computer. The
following sections explains the details of major innovations
with AI and transprecision computing and Fig. 3 summarizes
the proposed method MOTHRA.

Although MOTHRA uses a sophisticated algorithm in-
cluding AI, these are only used for the preconditioner. Thus,
the numerical results of MOTHRA match with PCGE in
adequate accuracy (relative error less than the error tolerance
of 10−8). We have checked the accuracy of MOTHRA on
both performance measurement problems and the application
problem, and confirmed that the same solution was obtained
with higher computational performance.

A. Preconditioner enhanced by Artificial Intelligence

We use AI to improve the convergence of the solver.
The poor convergence is due to the uneven distribution of
the strength of graph connectivity (i.e., matrix component) in
the target matrix. We train an AI (in particular, an Artificial
Neural Network) to estimate the relationship between the
localization of graph connectivity strength and the reduction

Adaptive Conjugate Gradient Iteration

(2nd order tetrahedral mesh)

PreCGc (1st order tetrahedral mesh)

Solve rc = An
c zc up to εc = 0.7

PreCGc
part (1st order tetrahedral mesh)

Solve rcp = An
cp zcp up to εcp = 0.05

PreCG (2nd order tetrahedral mesh)

Solve r = An z up to ε = 0.5

L
o

o
p

 u
n

ti
l
c
o

n
v
e

rg
e

d

L
o

o
p

 f
o

r
a

ll
ti
m

e
 s

te
p

s
 (

n
 =

 1
,2

,…
)

FP64 computation

FP64 communication

Use zc as Dirichlet

boundary condition

Use zc as initial solution

Use zcp as initial solution

Use z for search direction

rank #1

FP16-32 computation

FP16 communication

FP16-32 computation
FP32 communication

FP16-32 computation

FP16 communication

Step n

Transprecision & AI Preconditioner – use to roughly solve r = An z

Adaptive Conjugate Gradient Solve up to ε = 1.0 x 10-8

rank #0

Step n+1, n+2, n+3

Time-parallel method (Solve m = 4 timesteps simultaneously and use for initial guesses for future time steps)

Solve with CG solver #1 with

FP21 for storing vectors

Solve with CG solver #2 with

FP21 for storing vectors

Fig. 3. Algorithm of implicit solver with AI and transprecision computing for nonlinear time history unstructured low-order finite-element simulations. The
solver is based on the adaptive CG method, and the preconditioning equation r = Anz is solved efficiently by the AI and transprecision computing. Here,
preconditioning equation r = Anz is first solved roughly by the linear tetrahedral element CG solver PreCGc , and its solution is used as an initial solution
for the linear tetrahedral element CG solver PreCGc

part . Here, the light blue regions denote the target domain, while the dashed lines denote the MPI partition
boundaries. The AI is used to estimate parts of the problem that have poor convergence characteristics. These parts are included in PreCGc

part part, which reduces
computation cost compared to using PreCGc . Next, the PreCGc

part results are used as an initial solution for the second-order tetrahedral element CG solver
PreCG to obtain highly accurate estimates for the preconditioning equation r = Anz. Transprecision is used in these preconditioners to reduce computational
and communication costs (transprecision is used in EBE kernels as FP16-32, storing vectors in CG solvers as FP21, and in point-to-point communication as
FP16 communication). As the search direction of the FP64 CG solver points to a very accurate solution, the number of iterations of the FP64 CG loops is
reduced significantly; thus, nearly all computations can be conducted in low precision arithmetic. Furthermore, the time-parallel algorithm enables solving m = 4
time steps. We split the four time steps to group of two, and solve them in parallel. This leads to more concurrency in each CG solver, leading to overlap of
point-to-point communication with memory bandwidth bound kernels. As FP64 is used in both computation and communication for all PCGE components,
we can expect significant speedup using MOTHRA on recent computers with a large gap in arithmetic performance among high and low accuracy arithmetic.

of convergence, and we use this AI to estimate parts of the
matrix that reduce convergence performance. Here, the idea
is to reduce the concentration of graph connectivity strength
as estimated by the AI with local operation to improve the
solver’s convergence. In other words, we train the AI using
a data-set of graph connectivity strength and distribution of
poor convergence in a small problem with similar graph
characteristics as the larger target problem. We then use the
AI to estimate parts of the larger target problem that result
in poor convergence and perform a local operation to improve
convergence. Note that the AI is only used to efficiently detect
parts of the problem that result in poor convergence; therefore,
degradation of the quality of the results does not occur, i.e.,
only the time to solution is improved. The graph connectivity
dataset for a small-scale problem may be small in terms of
supercomputing; however, it is a large and high-quality dataset
when considered training data for the AI. Here, we stress
the fact that small-scale datasets that are often disregarded
in supercomputing can be utilized as large-scale high-quality
datasets for AI training. Thus, these small-scale datasets have
the potential to improve large-scale supercomputing.

This concept is straightforward and can be applied gener-
ally; however, developing an AI that can effectively estimate
parts of the problem with poor convergence requires careful
consideration. We explain our implementation in the following.

In preconditioned CG methods, preconditioning matrix D is
used as z = D−1r to improve convergence (Fig. 2). In
contrast, in order to efficiently implement a more sophisti-
cated preconditioner, we use the adaptive CG method, which
solves r = Anz roughly with another CG solver to improve
convergence [12]. However, training an AI that estimates the
relationship between graph connectivity strength and poor
convergence in this form leads to poor generalization ability.
As a result, we must select a suitable problem setting according
to the characteristics of An. We first homogenize this problem
because second-order tetrahedral elements have two types of
nodes (i.e., edge and vertex nodes) and the graph connectivity
characteristics of these nodes differ completely. Rather than
using the target second-order tetrahedral element problem
r = Anz, we use a coarse but equivalent problem rc = An

c zc
with linear tetrahedral elements. This leads to homogeneous
graph connectivity characteristics for the target matrix An

c .
Here, we refer to solving r = Anz using the CG method
as PreCG , and we refer to solving rc = An

c zc with CG as
PreCGc in the preconditioner. Next, we exploit the fact that
the solution u can be expressed as u(x) =

∫
G(x,y)b(y)dV

using Green’s function G and force distribution b, which
reflects the properties of the differential equation and model.
Considering that the properties of G (its main part is given as
a perturbation of e|y−x|/c2/dt with time increment dt, shear
wave velocity c2 near point x, and the distance dij between

TABLE I. PERFORMANCE OF AI. THE NUMBER OF ITERATIONS AND
FLOP COUNT REQUIRED FOR SOLVING 25 TIME STEPS FOR MODEL W-1

DESCRIBED IN SECTION IV ON SUMMIT IS INDICATED.

Without AI With AI
CG iterations 132,665 88
PreCGc iterations - 5,803
PreCGc

part iterations - 26,826
PreCG iterations - 3,103
FLOP count 184.7 PFLOP 33.2 PFLOP

node i and its nearest node j), we expect that the connectivity
strength of graph vertex i of An

c is governed with the frequency
of strength of dij/c2/dt. As e|y−x|/c2/dt sharply attenuates
with distance, the interaction between nodes are localized,
and thus, the independence between parameters are enhanced,
which leads to AI with higher performance. We trained our
AI based on deep learning to relate this characteristic value
to the residual error of a small-scale problem. Although it
is very difficult to develop an AI with high accuracy on a
heterogeneous problem, localization and homogenization to
characterize the target problem leads to an AI with better
generalization ability (SC17 Best Poster Award [13] is one
example of constructing an AI with high generalization ability
using such characteristics of the system). We use notation
An

cp as part of An
c estimated as having poor convergence

by AI, and we refer to solving rcp = An
cpzcp using CG

as PreCGc
part . Solving is preformed in the order PreCGc ,

PreCGc
part , and PreCG ; thus, we expect improvement in

convergence compared to when only PreCG is used.

We use an AI trained by deep learning using a small part of
the measurement problem described in Section IV as a training
dataset, and use it to extract parts of An

c in the problem used
in Section V-A. The resulting number of nodes in An

cp was
17,162,689, which corresponds to 10.9% of the total number of
nodes in An

c (i.e., 157,339,343 nodes). 88 CG iterations, 5,803
PreCGc iterations, 26,826 PreCGc

part iterations, and 3,103
PreCG iterations were required for solving 25 time steps with
this problem. On the other hand, PCGE required 132,665 CG
iterations; thus, the convergence was improved by using the
AI preconditioner (Table I). As the arithmetic count for each
iteration of PreCGc and PreCGc

part is smaller than a CG
iteration, this leads to reduction of arithmetic count by 184.7
PFLOP / 33.2 PFLOP = 5.56 times, which leads to significant
speedup. As shown in Section V, applying the same AI to
larger problems to extract An

cp leads to similar speedup; thus,
we can see that the AI-based preconditioner is also extremely
effective for larger problems.

B. Preconditioner enhanced by Transprecision Computing

As the preconditioning r = Anz does not require high
accuracy, we can use FP32 for PreCGc , PreCGc

part , and
PreCG . We aim to improve computational efficiency by
further use of the arithmetic space. Targeting flexible use of
arithmetic space and improving system performance, support
of a range of arithmetic data types is a trend in recent hardware.
For example, IEEE754 FP16 [14] arithmetic units have been
implemented in recent GPUs in addition to FP32 and FP64
arithmetic units [15], [16]. The trend of systems with relatively
slow memory and interconnect bandwidth in comparison with
fast arithmetic units is continuing; thus, reduction of data
transfer sizes using low precision data types is also important

for reducing time-to-solution. However, as the exponent and
fraction of FP16 is limited (1 sign bit, 5 exponent bits, and 10
fractional bits), it is not straightforward to use FP16 for general
scientific computations. Using FP16 in the preconditioning of
implicit solvers is one idea; however, the range of values in
a general matrix is large. Therefore, only very limited types
of equations can be solved with meaningful accuracy when
storing a global matrix in FP16. Indeed, the values of the ma-
trix components have a large range for the target city problem;
thus, direct use of FP16 is difficult, even for preconditioning
purposes. On the other hand, from a finite-element method
formulation perspective, the problem is discretized with local
base functions in each element; thus, the range of values in
each element is small. The large range in the components
in the global matrix is caused by assembling elements with
different characteristics. Thus, we use FP16 for element-wise
computation, which is used for local expansion in the finite-
element method. Here, we use FP16 for local matrix-vector
products in the element-by-element (EBE) method, which is
a matrix-free, matrix-vector product method. We describe the
details of the transprecision EBE kernel in the following.

In the EBE method, matrix-vector product y ← Ax is
computed as follows:

y←
∑
e

(QeT (Ae(Qex))). (2)

Here, A =
∑

QeTAeQe, and Qe is a mapping matrix
between the local node number of element e and the global
node number. As direct computation of Eq. (2) in FP16
leads to frequent overflow/underflow of variables, we use
xe
h ← f(Qexs), αe

s ← g(Ae
s), and βe

s ← h(Qexs), and
we compute ys ←

∑
e Q

eTαe
sβ

e
sB

e
h(x

e
h). Here, subscripts

s and h indicate values and functions in FP32 and FP16,
respectively, and f and g represent functions that make the
values of vector xe

h and the values used in function Be
h close

to 1 (under infinite numerical accuracy, these functions satisfy
Aexe = g(Ae)h(xe)Be(f(xe))). Although random addition
to ys and computation of scalars αe

s, β
e
s are computed in FP32,

the most costly Be
h(x

e
h) can be computed in FP16. Thus,

use of this transprecision kernel in systems with high FP16
performance is expected to lead to shorter time-to-solution.

For EBE accelerated by FP16, the time involved in random
load of xs and random addition to ys becomes dominant in
the total elapsed time. To reduce random access time, we use
a time-parallel algorithm [9]. Based on the idea that node-
element connectivity is independent of time, random data
access is reduced by solving several time steps in parallel.
When m time steps are solved in parallel, the arithmetic
count required for one iteration of the iterative solver increases
m times compared to a standard solver. However, since the
obtained solution for future time steps can be used for highly
accurate initial solutions, we can reduce the total number
of solver iterations by approximately 1/m. Thus, using the
time-parallel algorithm, we can reduce random access while
maintaining the same arithmetic count, which leads to shorter
time-to-solution on recent computers. In addition, by splitting
the m time steps into two groups, we can run two independent
solvers at the same time, which enables overlap of computation
and communication among the two solvers. We have also
implemented methods to utilize shared memory of GPUs to
reduce atomic additions to L2 cache.

TABLE II. PERFORMANCE OF EBE MATRIX-VECTOR PRODUCT
KERNEL (ELAPSED TIME PER VECTOR IS SHOWN)

System Elapsed FLOPS efficiency
time to FP64 peak

One K computer node
FP64 (one vector) 56.71 ms 10.9%
FP32 (one vector) 46.43 ms 13.2%
FP32 (two vectors) 18.53 ms 25.7%

One P100 GPU on Piz Daint
FP64 (one vector) 785.3 us 19.1%
FP32 (one vector) 623.4 us 24.0%
FP16-32 (two vectors) 392.7 us 50.3%

One V100 GPU on Summit
FP64 (one vector) 413.5 us 21.9%
FP32 (one vector) 400.3 us 22.8%
FP16-32 (two vectors) 178.2 us 71.4%

Table II shows the performance of the kernels. Here, FP64
(one vector) and FP32 (one vector) computes Eq. (2) directly
in FP64/FP32 and are used with PCGE and GAMERA,
respectively. FP16-32 (two vectors) is the proposed transpreci-
sion EBE kernel with the time-parallel algorithm solved with
m = 4 parallel time steps grouped into groups of two time
steps. Note that elapsed time is normalized per vector. On Piz
Daint and Summit with FP16 cores, FP16-32 (two vectors)
improved FLOPS efficiency over FP64 by 2.63 and 3.26 times,
respectively. As FP16 arithmetic is not supported on the K
computer, i.e., the uniform precision of FP32 is used, we can
see that the 2.35 times performance improvement is obtained
by reducing data transfer sizes by changing from FP64 to FP32
and reducing the number of random accesses using the time-
parallel algorithm.

Tensor Cores equipped on V100 GPUs, which are useful to
attain high performance on data analytics, can also be used for
physics-based simulations. For example, we have implemented
a Tensor Core based algorithm for computing the mass matrix
part of EBE kernel. Here, the EBE kernel is decomposed such
that 16×16 matrix-matrix multiplication is frequently used.
Although this modification required 1.21 times more FLOP
count when compared to the baseline algorithm, the kernel
was accelerated by 1.32-fold when compared with using FP32
cores on the V100 GPU. As Tensor Cores are extremely fast
compared to the FP32 cores on V100 GPUs, redesigning the
algorithm such that computation fits on Tensor Cores can
be effective even if it requires more arithmetic counts. We
can see that Tensor Core computing is not only effective for
data analytics problems but also physics-based simulations by
suitable algorithm development2.

With GPU accelerated systems, the interconnect band-
width and GPU device memory bandwidth is relatively slow
compared to its high arithmetic performance per node; thus,
reducing the amount of point-to-point communication and
GPU device memory transfer is required to obtain scalability
and performance. Thus, we use transprecision communication
for the neighbor ghost layer updates of the EBE computation
results, and use transprecision data storage for vectors stored
in CG solvers. When vector data ys are sent/received between
two processes, we send vector yh ← ys/|ys| and scalar |ys|,
and we unpack the data by y′

s ← |ys|yh at the recipient (L

2The implementation of the Tensor Core accelerated EBE kernel into the
unstructured finite-element application is our future work; thus, Tensor Cores
are not used in the measurements in Section V.

infinity norm is used for |.|). Although y′
s does not match ys

exactly, the errors are localized at only MPI partition bound-
aries; thus, it does not change the convergence characteristics
for most problems. The CG vector quantities are stored in a
custom 21 bit data type with 1 sign bit, 8 exponent bits, and
12 fractional bits, which we call here FP21. We store three
FP21 values in 64 bit memory, and convert them to three FP32
values for computation. After computation on FP32 cores, we
convert them back to FP21 values and store them back into
64 bit memory. This adds computation for data conversion;
however, since FP21 data types are only used for memory
bandwidth bound kernels, reduction in data size by using
FP21 leads to speedup even when this conversion is added.
Furthermore, as the FP16 communication and FP21 data types
are only used for preconditioning, it does not change the final
results in double precision. As will be shown in Section V,
the number of iterations when using FP16 communication and
FP21 data types in CG vectors does not change the number
of iterations significantly; thus, this leads to reduction in inter-
node communication and device memory data transfer size by
approximately 1/4 and 1/3, respectively, when compared to
using FP64 data types.

IV. HOW PERFORMANCE WAS MEASURED

A. System and Environment Where Performance was Mea-
sured

The MOTHRA algorithm becomes faster on hardware
with high transprecision kernel performance. In addition, we
can expect improved scalability on large-scale systems where
communication is a bottleneck. Thus, we measured perfor-
mance on Piz Daint and Summit, which we also used to
compare kernel performance. We also measured performance
on the K computer to observe the differences in characteristics
compared to GAMERA.

Summit [17]: Summit comprises 4,608 IBM Power System
AC922 nodes, each with two IBM POWER9 (22 SIMD multi-
core) processors and six NVIDIA Volta V100 accelerators.
Each node has 512 GB of DDR4 memory for use by the
POWER9 processors, and each of the six accelerators has
16 GB of 900 GB/s bandwidth high bandwidth memory
(HBM2). The compute nodes are connected with a dual-rail
EDR InfiniBand network with node injection bandwidth of 25
GB/s in both send/receive directions. Nodes are interconnected
in a non-blocking fat tree topology, with SHArP technology
designed to offload collective operation processing to the
network [18]. The peak FP64 performance of a node is 7.8
TFLOPS × 6 = 46.8 TFLOPS, which yields a total of 215
PFLOPS for the entire system. The FP32 peak performance
is double that of FP64, and FP16 peak performance is four
times that of FP64 when using double-width arithmetic units.
Tensor Cores with mixed FP16 and FP32 arithmetic are also
available.

Piz Daint [19]: Piz Daint is a hybrid system comprising
1,431 Cray XC40 (CPU only) nodes and 5,320 Cray XC50
(CPU and accelerator) nodes. In this study, we used the XC50
nodes, each of which has an Intel Xeon E5-2690 v3 2.60
GHz CPU (12 cores) and an NVIDIA Tesla P100 accelerator.
Each XC50 node has 64 GB of memory for use by the Xeon
processors and 16 GB of 732 GB/s bandwidth HBM2 for

the accelerator. The compute nodes are connected by Cray
Aries routing and communications ASIC with the Dragonfly
network topology, which provides a node injection bandwidth
of 10.2 GB/s in both the send/receive directions [20]. The peak
FP64 performance of a node is 4.7 TFLOPS, which yields 25
PFLOPS for the entire system. The FP32 peak performance is
double that of FP64, and FP16 peak performance is four times
that of FP64 when using double-width arithmetic units.

K computer [21]: The K computer comprises 82,944 com-
pute nodes, each with a single eight-core SPARC64 VIIIfx
CPU. The FP64 peak performance of the CPU is 2 (GHz) ×
2 (FMA) × 2 (SIMD width) × 2 (sets per core) × 8 (cores)
= 128 GFLOPS, which yields 10.6 PFLOPS for the entire
system. Note that the SIMD width does not change regardless
of precision; thus, the peak performance for FP32 is the
same. Each node has 16 GB of DDR3 SDRAM, with a peak
bandwidth of 64 GB/s. Tofu, a six-dimensional interconnection
network, is used for communication between nodes [22]. Each
node can communicate simultaneously in four directions at 5
GB/s throughput in each direction.

B. What Application Was Used to Measure Performance

City problems that include underground structures are
large in scale and becomes nonlinear during seismic shaking.
In addition, the sharp coefficient contrast between materials
leads to poor convergence characteristics. Thus, such problems
are among the most costly in urban earthquake simulations.
Therefore, accelerating the computation of these problems is
expected to lead to speedup of other urban earthquake prob-
lems. Thus, we target a problem that mimics an underground
structure with a hard layer in two-layered ground (Fig. 4).
The hard layer is of linear material with properties similar to
those of reinforced concrete underground structures, the first
soil layer is a nonlinear material that softens due to strain, and
the second soil layer is bedrock with linear material properties.
To measure weak scaling, we duplicated this problem in the
x, y directions. Although the problem settings are periodic, we
used the METIS graph partitioning method [23] to partition the
problem for parallel computation such that the load balancing
characteristics were similar to those of an actual city problem.
We input a wave with dt = 0.01 s (1995 JMA Kobe wave
[24]) and measured the time required to solve 25 time steps.
As the solution depends on dt and spatial discretization, we
checked the numerical convergence of the results when fixing
the problem setting and discretization sizes. We used semi-
infinite absorbing boundary conditions on the sides and bottom
of the model. Although we can use an arbitrary nonlinear
constitutive model, we used the modified RO model [26] and
the Masing rule [27] for nonlinear modeling of soils.

Using this problem, we compared the performance of the
proposed MOTHRA, the standard PCGE , and the state-of-
the-art GAMERA solvers. As GAMERA and MOTHRA
are both complex algorithmically, it is difficult to perform a
rigorous comparison of component-wise costs. However, as
both methods are based on adaptive CG methods, GAMERA
can be considered as MOTHRA without PreCGc

part using
AI, FP16/FP21 computation and communication, and the time-
parallel algorithm. PCGE can be considered as GAMERA
with FP64 computation and communication and disabling
PreCGc . Note that the relative error tolerance of all solvers

Hard ground layer

(ds = 1.77 m)

Soft ground layer

(ds = 0.44 m)

Underground structure

(ds = 0.44 m)

x
y

z

4
0
 m

1.77 m
5.55 m

Fig. 4. Measurement model generated using [25]. The model is duplicated
in the x and y directions to make a periodic problem suitable for measuring
weak scaling.

was set to ϵ = 1.0×10−8 for all problems. For MOTHRA, we
used 0.7, 0.05, and 0.25 for error tolerances of the PreCGc ,
PreCGc

part , and PreCG preconditioning solvers, respectively.
For GAMERA, we used the error tolerances for the pre-
conditioning solvers presented in the literature [6]. We used
one GPU per MPI process for Piz Daint, one GPU per MPI
process (6 MPI processes per node) for Summit and use eight
OpenMP threads per MPI process for the K computer. We used
MPI Wtime to measure elapsed time on all systems. Hardware
counters were used to measure FLOPS on the K computer, and
FLOPS were measured on Piz Daint/Summit using nvprof.
PCGE was conducted in FP64, while GAMERA was con-
ducted in mixed precision of FP32 and FP64. We refer to
the implementation of the transprecision computing algorithm
following Fig. 3 as MOTHRA, while we refer to the algorithm
in which FP16 communication is disabled (communication
in FP16 in Fig. 3 was performed in FP32) as MOTHRA-
a, which will be used to analyze communication performance.
As the K computer does not support FP16 arithmetic and its
memory bandwidth is relatively high compared to the floating
point arithmetic performance, we conducted the computation
and communication shown as FP16 and FP21 in Fig. 3 using
FP32 (we refer to this implementation as MOTHRA-b). All
measurements included outputting results to files.

V. PERFORMANCE RESULTS

In the city simulations targeted in this study, 1010 degrees-
of-freedom nonlinear response problems must be solved for
103∼4 time steps on recent supercomputers within the 100∼1 h
job time limit. As the memory sizes are small compared to the
computational capability, we use full size of device memory
to conduct analysis of a large scale problem. Thus, we target
12.3 million degrees-of-freedom per MPI process for Piz Daint
and Summit for the measurement problem (Table III). As this
problem size does not fit on each node of the K computer, we
use 6.15 million degrees-of-freedom per MPI process on the K
computer. The performance for problems with large degrees-
of-freedom per MPI process is important for solving actual
problems; thus, attaining weak scalability is important3. On the
other hand, reducing the problem size per MPI process leads to

3As shown in Table III, the total number of iterations required for conver-
gence with PCGE was nearly constant among all models; thus, this model
set is suitable for measuring weak scaling.

TABLE III. MODEL CONFIGURATIONS FOR PIZ DAINT/SUMMIT (WITHOUT BRACKETS) AND K COMPUTER (WITH BRACKETS). 1 GPU IS USED PER
MPI PROCESS FOR SUMMIT/PIZ DAINT, WHILE 8 OPENMP THREADS ARE USED PER MPI PROCESS FOR K COMPUTER. 1 GPU IS USED FOR 2 K COMPUTER

NODES. MODEL W-1 IS USED FOR STRONG SCALING MEASUREMENTS.

Model # of MPI processes Degrees-Of-Freedom DOF per process # of elements PCGE iterations
W-1 288 (576) 3,545,198,451 12,309,716 (6,154,858) 883,104,768 132,665
W-2 576 (1,152) 7,088,615,271 12,306,623 (6,153,311) 1,766,209,536 131,320
W-3 1,152 (2,304) 14,174,736,543 12,304,458 (6,152,229) 3,532,419,072 129,765
W-4 2,304 (4,608) 28,345,910,535 12,302,912 (6,151,456) 7,064,838,144 128,165
W-5 4,608 (9,216) 56,687,546,151 12,301,984 (6,150,992) 9,419,784,192 126,475
W-6 6,144 (12,288) 75,580,545,159 12,301,521 (6,150,760) 18,839,568,384 125,636
W-7 12,288 (24,576) 151,152,541,191 12,300,825 (6,150,412) 37,679,136,768 123,910
W-8 24,576 (49,152) 302,293,683,783 12,300,361 (6,150,180) 75,358,273,536 -

36,275.6

36,118.1

36,776.5

36,163.7

36,660.4

36,853.8

36,389.1

4,093.4

3,990.3

3,852.4

3,844.8

3,862.4

4,262.5

3,671.3

3,774.1

2,195.9

2,108.2

2,059.7

1,974.7

1,957.7

2,053.1

2,013.3

1,951.2

0 5000 10000 15000 20000 25000 30000 35000 40000

49152

24576

12288

9216

4608

2304

1152

576

Elapsed time (s)

#
 o

f
M

P
I

p
ro

c
e

s
s
e

s
 (

#
 n

o
d

e
s
)

MOTHRA-b GAMERA PCGE

(8.98%)(19.1%)
(10.5%)

(8.40%)

(17.2%)
(9.35%)

Fig. 5. Weak scaling results on K computer. Elapsed time and performance
efficiency to FP64 peak are shown.

2,867.1

2,999.8

3,034.6

3,065.1

2,759.3

393.3

401.0

399.5

378.5

373.2

134.9

127.2

121.2

112.9

119.0

123.7

120.8

121.1

117.8

110.7

0 500 1000 1500 2000 2500 3000 3500

4608

2304

1152

576

288

Elapsed time (s)

#
 o

f
M

P
I

p
ro

c
e

s
s
e

s
 (

#
 G

P
U

s
)

MOTHRA MOTHRA-a GAMERA PCGE

(22.1%)
(20.6%)

(8.71%)

(4.75%)
(8.26%)

(19.8%)
(18.2%)

(4.93%)

Fig. 6. Weak scaling results on Piz Daint. Elapsed time and performance
efficiency to FP64 peak are shown.

reduction in solvable problem sizes; thus, small problem size
per MPI process is a problem setting that will not be used for
solving actual applications. Therefore, performance on such
problem settings (i.e., performance for strong scaling at high
node counts) is not important; thus, we should regard this as
supplementary information.

A. Performance of MOTHRA Algorithm

We first compare performance of PCGE , GAMERA and
MOTHRA using model W-1 in Table III. As shown in
Fig. 5, 6 and 7, MOTHRA was 18.6-fold, 24.9-fold, and 25.3-
fold faster than PCGE on the K computer, Piz Daint, and

2,082.9

1,922.1

2,033.8

1,912.2

1,927.5

1,939.5

1,923.7

454.2

415.1

380.2

374.6

349.8

327.3

311.7

302.5

107.1

106.1

101.1

96.9

88.9

92.0

86.3

83.9

100.4

90.0

83.7

84.3

82.9

80.4

77.6

75.8

0 500 1000 1500 2000 2500

24576

12288

6144

4608

2304

1152

576

288

Elapsed time (s)
#

 o
f
M

P
I

p
ro

c
e

s
s
e

s
 (

#
 G

P
U

s
)

MOTHRA MOTHRA-a GAMERA PCGE

(6.47%)
(17.6%)

(19.5%)

(4.27%)

(4.31%)
(13.7%)

(3.94%)
(14.7%)

Fig. 7. Weak scaling results on Summit. Elapsed time and performance
efficiency to FP64 peak are shown.

Summit, respectively. This is due to the reduced FLOP count
and the improved peak performance; a 5.56-fold reduction of
arithmetic count from PCGE (184.7 PFLOP) was obtained by
MOTHRA (33.2 PFLOP) on Summit. Note that GAMERA,
which also reduces arithmetic count by sophisticated pre-
conditioning, still required 44.0 PFLOP, and this highlights
the capability of MOTHRA to reduce arithmetic counts.
Furthermore, the highly efficient transprecision EBE kernel of
MOTHRA improved the PCGE FLOPS efficiency of 4.27%
to 19.5% on Summit, leading to the 25.3-fold speedup. This is
also 3.99-fold faster than the state-of-the-art GAMERA. The
elapsed time ratio of Piz Daint to Summit was 110.7 s / 75.8
s = 1.46, which is close to the 1.66 difference in hardware
peak FLOPS capability of the P100/V100 GPUs. Thus, the
proposed solver can improve performance according to gains
in hardware capabilities.

B. Scaling of Application on Large Scale Problem

First we see the weak scaling performance on the K
computer (Fig. 5). Even though FP16 communication was
disabled, we observed high scalability (88.8%) from W-1 (576
processes) to W-8 (49,512 processes) on the K computer. The
high performance on a single node and high scalability leads
to high peak performance of 17.2% of peak FP64 FLOPS
with the largest problem (W-8), which yielded a 1.86-fold
speedup over GAMERA. Next we see the effectiveness of
FP16 communication on Piz Daint (Fig. 6). As the ratio of
hardware FLOPS to interconnect bandwidth of Piz Daint is
4.7 TFLOPS : 10.2 GB/s, which is relatively slow compared
to the 128 GFLOPS : 5 GB/s of the K computer, we can

expect improvement of performance and scalability using FP16
communication. The same solution was obtained with less than
5% difference in the number of iterations required for solving
25 time steps using FP32 communication (MOTHRA-a) and
FP16 communication (MOTHRA), i.e., the iterations required
for [CG, PreCGc , PreCGc

part , PreCG] was [119, 4516,
26593, 2448] and [117, 4453, 26553, 2422] for MOTHRA-
a and MOTHRA, respectively. This leads to decrease of
communication size by approximately 50%, which lead to
1.07 times speedup on W-1 (288 GPUs). The reduction of
communication sizes lead to better scalability; the 88.2% weak
scaling efficiency of MOTHRA-a was improved to 89.5%
using MOTHRA (measured from W-1 (288 nodes) to W-
5 (4,608 nodes, near full system)). This lead to 23.2-fold
speedup over PCGE and 3.18-fold speedup over GAMERA
when measured on the full Piz Daint system. MOTHRA
attained 19.8% of FP64 peak on full Piz Daint, which is
very high for a low-order unstructured implicit finite-element
simulation on GPU supercomputers. Finally, we see weak
scaling performance of MOTHRA on Summit (Fig. 7). The
FLOPS/network capability ratio of Summit is 46.8 TFLOPS
: 25 GB/s, which is further reduced from Piz Daint; thus,
MOTHRA reducing communication is expected to be further
effective. As expected, the performance of MOTHRA using
FP16 improved by 1.10 times from the version using FP32
communication (MOTHRA-a) on W-1. Together with high
weak scalability of 75.5%, this lead to 4.52-fold speedup over
GAMERA on W-8 (4,096 nodes with 24576 GPUs, near
full system). The performance of this run was 28.2 PFLOPS
(14.7% of FP64 peak) on 4096 nodes of Summit.

This paper targets problems with large degrees-of-freedom
per MPI process; thus, MOTHRA is designed to solve such
problems with high efficiency. Even under such circumstances,
the strong scaling efficiency of MOTHRA from 576 pro-
cesses to 2,304 processes was 93.4% on the K computer,
yielding speedup of 18.2-fold over PCGE and 2.04-fold over
GAMERA with the greatest node count (Fig. 8). On Piz
Daint and Summit, we obtained decent speedup relative to an
increased number of processes leading to significantly shorter
time-to-solution than the GAMERA and PCGE on the same
node counts.

In summary, the proposed MOTHRA solver obtained very
high performance on small problems, i.e., 19.5% of FP64 peak
on Summit and 22.1% of FP64 peak on Piz Daint. For the K
computer with high interconnect capability, we attained high
scalability without the use of FP16 communication. For Piz
Daint and Summit, high scalability was attained by reducing
point-to-point communication using the transprecision algo-
rithm. These high scalability is due to the increased arithmetic
counts per iteration with the time-parallel method, which
results in reduced latency for synchronization between parallel
computing elements in addition to the reduced communication.

VI. IMPLICATIONS

In this paper, we have shown that AI and transprecision
can be used to improve the performance of iterative solvers
by localization and selecting suitable basis functions for the
target problem. Here, we used AI to train/estimate parts
of the problem that show poor convergence characteristics
to localize computation, and we used localization of finite

1,923.7

1,120.1

564.1
377.8

302.5

185.7

119.7
84.8 75.8

50.5
41.0 35.5

16

32

64

128

256

512

1024

2048

256 1024 4096
E

la
p

s
e

d
 t
im

e
 (

s
)

of MPI processes (# of GPUs)

PCGE

GAMERA

MOTHRA

2,759.3

1,386.7

747.4

417.5 373.2

214.7

133.0
90.4

110.7

66.8
41.7

30.4

16

32

64

128

256

512

1024

2048

4096

256 1024 4096

E
la

p
s
e

d
 t
im

e
 (

s
)

of MPI processes (# of GPUs)

PCGE

GAMERA

MOTHRA

36,389.1

18,908.7

9,508.8

3,774.1

1,867.7

1,065.7

1,951.2

1,025.6

521.9
512

1024

2048

4096

8192

16384

32768

65536

256 1024 4096

E
la

p
s
e

d
 t
im

e
 (

s
)

of MPI processes (# of nodes)

PCGE

GAMERA

MOTHRA-b

K computer

Piz Daint

Summit

Fig. 8. Strong scaling results on the K computer, Piz Daint, and Summit

element basis functions to introduce transprecision comput-
ing. The random access dominated low-order finite-element
matrix-vector product core kernel of the implicit MOTHRA
solver achieved 71.4% peak FP64 FLOPS on the Summit’s
V100 GPUs and achieved 19.5% peak performance for entire
application on 48 Summit nodes. This is a 25.3-fold speedup
over PCGE and a 3.99-fold speedup over the state-of-the-
art GAMERA (improvement of 4.56-fold and 3.01-fold in
peak performance, respectively). The proposed solver attained
high weak scalability (88.8%, 89.5%, and 75.5% efficiency
on the K computer, Piz Daint, and Summit, respectively),
leading to 14.7% peak FP64 performance on 4096 nodes of
Summit. In addition, 93.4% strong scalability (576 to 2,304
processes) was obtained on the K computer. These results
demonstrate that AI and transprecision computing can be used
for iterative solvers, and the fact that it can obtain high
performance on recent supercomputers has implications for
relevant applications. By using the proposed MOTHRA solver
on the most recent supercomputers, we can solve problems
with high societal importance. For example, a seismic sim-
ulation of a large densely constructed city with complicated
geometry comprising ground, underground structure, and high-
rise buildings has been performed on Summit (Fig. 9; mesh
generated using SGI UV300 and computed using 2,304 Sum-
mit GPUs, corresponding to problem size of W-4). As city
problems involve large data uncertainty, and many stakeholders
are involved in decision making and evaluation, realizing
high quality computing in consideration of such uncertainties
is becoming increasingly important. On the other hand, the
nonlinearity of urban response is large; thus, computationally
costly methods, such as Monte-Carlo simulations, are required
to handle these uncertainties. Therefore, many cases of huge

BuildingsUnderground

structure

Soft ground layer

Medium ground layer

Hard ground layer

a) Overview of city model

c) Close up view of city model with brown part indicating PreCGc
part

b) Location of underground structure d) Displacement response of city e) Displacement response of underground structure

Fig. 9. Usage example of MOTHRA computed on 384 Summit nodes (2,304 GPUs): a) overview of 1,024 m × 1,024 m × 370 m city model based on
[28], [29] with underground and building structures surrounded by two-layered ground modeled with 3,961,851,160 elements and 16,291,917,564 degrees of
freedom; b) location of underground structure; c) close-up of the underground structure modeled with 25 cm second-order tetrahedral elements (brown part
indicates PreCGc

part part extracted by AI); d) displacement response to ground shaking; e) displacement response of underground structure

computations are required in city simulations. As a result,
further accelerated solvers and faster computer systems are
required. City simulation is and will continue to be a frontier.

To our knowledge AI and supercomputing has not been
linked at such a scale before. The major difficulty of connect-
ing AI with HPC is in the difference in accuracy of results:
HPC results are accurate but expensive. On the other hand,
although the accuracy is not as high, AI can solve problems
that are impossible to be addressed by HPC. In our approach
we redesign the HPC algorithm to take advantage of AI with
less accuracy locally, accelerating the time-to-solution without
loss of accuracy in the final results. We can understand that a
new type of algorithm design can be enabled by use of AI. This
approach of using AI within an HPC simulation is general and
can be applied to other domains. We can expect more flexibility
in computer system design with this increase of flexibility in
algorithm design.

The fact that AI and transprecision computing can be used
for HPC gives implications for future systems. We can expect
use of low-precision arithmetic for accelerating other precon-
ditioning algorithms; thus, development in hardware support-
ing low-precision arithmetic seems promising for improving
performance per watt. Support in programming languages and
compilers for FP16 data types are also anticipated to realize
this on wide range of systems and applications. The use of AI
in HPC supports the trend in equipping hardware specialized
for conducting certain types of AI computation efficiently
(e.g., Tensor Cores). On the other hand, the balance between
arithmetic/memory bandwidth/interconnect bandwidth is ex-
pected to remain important in future system designs; although
we circumvented the communication bandwidth bottleneck
of Summit using FP16 communication, further reduction in

relative interconnect performance will become difficult to
achieve algorithmically. As hardware systems become more
complicated, the importance of collaboration between com-
puter and computational scientists/engineers is increasing, and
codesign of systems and applications is required to realize the
potential performance of future systems.

ACKNOWLEDGMENTS

Our results were obtained using the Summit at Oak Ridge
Leadership Computing Facility, a US Department of Energy,
Office of Science User Facility at Oak Ridge National Lab-
oratory (ORNL), Piz Daint at Swiss National Supercomput-
ing Centre (CSCS), and K computer at RIKEN Center for
Computational Science (R-CCS, proposal numbers: hp170249,
hp180217). We thank Yukihiko Hirano (NVIDIA) for co-
ordination of the collaborative research project. We thank
Christopher B. Fuson, Don E. Maxwell, Oscar Hernandez,
Scott Atchley, Verónica Melesse-Vergara (ORNL), Jeff Larkin,
Stephen Abbott (NVIDIA), Lixiang Luo (IBM), Richard Gra-
ham (Mellanox Technologies) for generous support concerning
use of Summit. We thank Andreas Jocksch, Luca Marsella,
Victor Holanda, Maria Grazia Giuffreda (CSCS) for generous
support concerning use of Piz Daint. We thank the Operations
and Computer Technologies Division of R-CCS and the High
Performance Computing Infrastructure helpdesk for generous
support concerning use of K computer. We thank Sachiko
Hayashi of Cybernet Systems Co., Ltd. for support in visual-
izing the application example. We acknowledge support from
Post K computer project [30] (Priority Issue 3 - Development
of integrated simulation systems for hazards and disasters
induced by earthquakes and tsunamis) and Japan Society for
the Promotion of Science (18H05239, 26249066, 25220908,
and 17K14719).

REFERENCES

[1] HPC Connects Plenary: The Century of the City, SC17: International
Conference for High Performance Computing, Networking, Storage and
Analysis, 2017.

[2] T.H. Jordan, SC15 Invited Talk Spotlight: Societal Impact of Earthquake
Simulations at Extreme Scale, SC15: International Conference for High
Performance Computing, Networking, Storage and Analysis, 2015.

[3] L. Carrington, D. Komatitsch, M. Laurenzano, M. Tikir, D. Michea,
N.L. Goff, A. Snavely, and J. Tromp, “High-frequency simulations
of global seismic wave propagation using SPECFEM3DGLOBE,”
Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis (SC’08), IEEE Press,
2008, pp. 1–11.

[4] A. Heinecke, A. Breuer, S. Rettenberger, M. Bader, A-A. Gabriel,
C. Pelties, A. Bode, W. Barth, X-K. Liao, K. Vaidyanathan, M.
Smelyanskiy, and P. Dubey, “Petascale High Order Dynamic Rupture
Earthquake Simulations on Heterogeneous Supercomputers,” Proceed-
ings of the International Conference on High Performance Computing,
Networking, Storage and Analysis (SC’14), IEEE Press, 2014, pp. 3–14.

[5] H. Fu, C. He, B. Chen, Z. Yin, Z. Zhang, W. Zhang, T. Zhang, W.
Xue, W. Liu, W. Yin, G. Yang, and X. Chen, “18.9-Pflops nonlinear
earthquake simulation on sunway taihulight: Enabling depiction of 18-
Hz and 8-meter scenarios,” Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis
(SC’17), ACM, 2017, pp. 2–13.

[6] T. Ichimura, K. Fujita, S. Tanaka, M. Hori, M. Lalith, Y. Shizawa, and
H. Kobayashi, “Physics-based urban earthquake simulation enhanced
by 10.7 BlnDOF x 30 K time-step unstructured FE non-linear seismic
wave simulation,” Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis (SC’14),
IEEE Press, 2014, pp. 15–26.

[7] T. Ichimura, K. Fujita, P. E. B. Quinay, L. Maddegedara, M. Hori, S.
Tanaka, Y. Shizawa, H. Kobayashi, and K. Minami, “Implicit Nonlinear
Wave Simulation with 1.08T DOF and 0.270T Unstructured Finite
Elements to Enhance Comprehensive Earthquake Simulation,” Proceed-
ings of the International Conference on High Performance Computing,
Networking, Storage and Analysis (SC’15), IEEE Press, 2015, pp. 1–12.

[8] O.C. Zienkiewicz and R. L. Taylor, The Finite Element Method for
Solid and Structural Mechanics, Elsevier, 2005.

[9] K. Fujita, K. Katsushima, T. Ichimura, M. Horikoshi, K. Nakajima,
M. Hori, and L. Maddegedara, “Wave Propagation Simulation of
Complex Multi-Material Problems with Fast Low-Order Unstructured
Finite-Element Meshing and Analysis,” Proceedings of the International
Conference on High Performance Computing in Asia-Pacific Region
(HPC Asia 2018), ACM, 2018, pp. 24–35.

[10] Y. Saad, Iterative methods for sparse linear systems, SIAM, 2003.
[11] J. M. Winget and T. J. Hughes, ”Solution algorithms for nonlinear tran-

sient heat conduction analysis employing element-by-element iterative
strategies,” Computer Methods in Applied Mechanics and Engineering,
vol. 52(1–3), 1985, pp. 711–815.

[12] G. H. Golub and Q. Ye, “Inexact conjugate gradient method with inner-
outer iteration,” SIAM Journal on Scientific Computing, vol. 21(4),
1997, pp. 1305–1320.

[13] T. Ichimura, K. Fujita, T. Yamaguchi, M. Hori, M. Lalith, and N. Ueda,
“AI with Super-Computed Data for Monte Carlo Earthquake Hazard
Classification,” Research Poster for SC17: International Conference
for High Performance Computing, Networking, Storage and Analysis,
2017.

[14] D. Zuras, et al., “IEEE Standard for Floating-Point Arithmetic,” IEEE
Std 754-2008, 2008, pp. 1–70.

[15] NVIDIA Tesla P100 white paper, [Online].
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-
architecture-whitepaper.pdf

[16] NVIDIA Tesla V100 GPU architecture, [Online].
https://images.nvidia.com/content/volta-architecture/pdf/volta-
architecture-whitepaper.pdf

[17] Summit, [Online].
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/

[18] R. L. Graham, D. Bureddy, and P. Lui, “Scalable Hierarchical Ag-
gregation Protocol (SHArP): A Hardware Architecture for Efficient

Data Reduction,” 2016 First International Workshop on Communication
Optimizations in HPC (COMHPC), Salt Lake City, UT, 2016, pp. 1–10.

[19] Piz Daint, [Online]. https://www.cscs.ch/computers/piz-daint/
[20] B. Alverson, E. Froese, L. Kaplan, and D. Roweth, Cray XC Series

Network, [Online].
https://www.cray.com/sites/default/files/resources/CrayXCNetwork.pdf

[21] H. Miyazaki, Y. Kusano, N. Shinjou, F. Shoji, M. Yokokawa, and T.
Watanabe, “Overview of the K computer system,” FUJITSU Sci. Tech.
J., vol. 48(3), 2012, pp. 302–309.

[22] Y. Ajima, T. Inoue, S. Hiramoto, and T. Shimizu, “Tofu: interconnect
for the K computer,” FUJITSU Sci. Tech. J., vol. 48(3), 2012, pp. 280–
285.

[23] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme for
partitioning irregular graphs,” SIAM Journal on scientific Computing,
vol. 20(1), 1998, pp. 359–392.

[24] Strong ground motion of The Southern Hyogo prefecture earthquake in
1995 observed at Kobe JMA observatory, Japan Meteorological Agency,
[Online].
https://www.data.jma.go.jp/svd/eqev/data/kyoshin/jishin/hyogo nanbu/
dat/H1171931.csv

[25] T. Ichimura, M. Hori, and J. Bielak, “A Hybrid multiresolution mesh-
ing technique for finite element three-dimensional earthquake ground
motion modeling in basins including topography,” Geophysical Journal
International, vol. 177, 2009, pp. 1221–1232.

[26] I. M. Idriss, R. Dobry, and R. D. Sing, “Nonlinear Behavior of Soft
Clays during Cyclic Loading,” Journal of the Geotechnical Engineering
Division, vol. 104(ASCE 14265), 1978, pp. 1427–1447.

[27] G. Masing, “Eigenspannungen und Verfestigung beim Messing,” Pro-
ceedings of the 2nd International Congress of Applied Mechanics, 1926,
pp. 332–335.

[28] 5m mesh digital elevation map, Tokyo ward area, Geospatial Informa-
tion Authority of Japan, [Online].
https://www.gsi.go.jp/MAP/CD-ROM/dem5m/index.htm

[29] National Digital Soil Map, The Japanese Geotechincal Society, [Online].
https://www.denshi-jiban.jp/

[30] FLAGSHIP 2020 Project, Post-K Supercomputer project [Online].
https://www.r-ccs.riken.jp/fs2020p/en/

